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E P I D E M I O L O G Y

Community factors associated with local epidemic 
timing of respiratory syncytial virus: A spatiotemporal 
modeling study
Zhe Zheng1*, Virginia E. Pitzer1, Joshua L. Warren2, Daniel M. Weinberger1

Respiratory syncytial virus (RSV) causes a large burden of morbidity in young children and the elderly. Spatial 
variability in the timing of RSV epidemics provides an opportunity to probe the factors driving its transmission, 
including factors that influence epidemic seeding and growth rates. Using hospitalization data from Connecticut, 
New Jersey, and New York, we estimated epidemic timing at the ZIP code level using harmonic regression and 
then used a Bayesian meta-regression model to evaluate correlates of epidemic timing. Earlier epidemics were 
associated with larger household size and greater population density. Nearby localities had similar epidemic tim-
ing. Our results suggest that RSV epidemics grow faster in areas with more local contact opportunities, and that 
epidemic spread follows a spatial diffusion process based on geographic proximity. Our findings can inform the 
timing of delivery of RSV extended half-life prophylaxis and maternal vaccines and guide future studies on the 
transmission dynamics of RSV.

INTRODUCTION
Respiratory syncytial virus (RSV) causes more than 2 million out-
patient visits annually among children in the United States (1). It is 
one of the leading causes of hospitalization for lower respiratory 
infection among young children and the elderly (2, 3). Developing 
an effective vaccine against RSV is a high priority, as prophylaxis 
against RSV is prohibitively expensive and complicated to adminis-
ter (4–7). The timing of the delivery of maternal RSV vaccines and 
extended half-life prophylaxis relies heavily on the timing of seasonal 
RSV epidemics. Understanding the community factors associated 
with the seasonality of RSV can help to optimize implementation of 
extended-life prophylaxis and maternal vaccines in the near future (8).

The timing of RSV epidemics varies markedly over space, both 
over large geographic scales and within a region (9, 10). Across the 
United States, epidemics start earliest in the southeast and later 
spread to the north and west (11). Environmental and climatic drivers 
affect the timing of the seasonal epidemic by providing a favorable 
environment for the virus and by affecting host immune defense 
and/or behavior (e.g., indoor gatherings in the cold or rainy season) 
(12–14). However, while environmental factors can explain some of 
the broad spatial differences in the timing of RSV epidemics, they 
cannot fully explain finer-scale spatial variations (12, 15). At smaller 
spatial scales, epidemics tend to start earlier and last longer in urban 
areas than in surrounding suburbs and rural areas (7).

A number of factors can influence the timing of an RSV epidemic 
in a community. Epidemic timing is broadly determined by the 
growth rate of the epidemic and, if the virus does not persist year 
round, by when the virus is reintroduced into the community 
(“epidemic seeding”) (fig. S1). Epidemic growth rates affect the 
shape of the epidemic curve, while epidemic seeding influences 
when the epidemic starts. Growth rates can be influenced by a num-
ber of demographic factors, such as the population age distribution, 

susceptibility, and contact rates (fig. S1) (16). Contact rates are 
linked to factors like household size and population density (10, 17). 
Susceptibility to infection is linked to socioeconomic status (SES) 
(10, 17). Less is known about the factors that drive epidemic seeding 
for RSV. Research on other respiratory viruses has suggested that 
virus importation from surrounding areas, importation from other 
regions (e.g., transmission through long-distance air travel or com-
muting patterns), and transmission within and between schools may 
play a role in epidemic seeding (18–21).

In this study, we developed a Bayesian statistical model to probe 
the association between the timing of seasonal epidemics of RSV 
and potential explanatory factors that influence epidemic growth rates 
and seeding, including area-based measures of human mobility, de-
mographic variables, geographic proximity, and school districts. 
The tri-state area that includes New York, New Jersey, and Connecticut 
is ideal to study the fine-scale spatial variation in RSV epidemics 
because of the demographic diversity, high volume of population 
movement, and relatively similar climate across the region. This 
area includes New York City, the most populous city in the United 
States, as well as rural areas like the North Country region of 
New York state and Litchfield County in Connecticut. In addition, 
variation in community factors exists at small spatial scales (22). 
The strong commuting ties between New York City and surrounding 
areas offer valuable opportunities to compare the impacts of com-
muting flows and geographic distance on RSV epidemic patterns. 
This study aims to gain a better understanding of the factors 
influencing local epidemic timing.

RESULTS
Characteristics of the model and data
RSV-specific hospitalization data for children <2 years were obtained 
from State Inpatient Databases from the Connecticut Department 
of Public Health (CT-DPH) and the Healthcare Cost and Utiliza-
tion Project maintained by the Agency for Healthcare Research and 
Quality (23). In total, the databases captured 67,244 RSV hospital-
izations across 2612 ZIP codes in New York, New Jersey, and 
Connecticut. The number of hospitalizations, commuters, and the 
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length of study period varied among states (Table 1), as did the so-
ciodemographic characteristics (table S1 and figs. S2 and S3).

Spatiotemporal pattern of RSV epidemics
RSV activity begins between late fall and early winter in the tri-state 
area (Fig. 1). The epidemics peaked between late winter and spring 
(Fig. 1). The estimated peak timing among ZIP codes ranged from 
late December to mid-March based on the best-fit model (Fig. 2). 
Visually, the local epidemics peaked earliest in urban areas (e.g., the 
New York metropolitan area) and then extended to less populous areas 
like upstate New  York and eastern Connecticut. Epidemic peaks 
were generally earlier in New Jersey compared to the other states.

Major correlates of local variation in RSV epidemic timing
We fit statistical models that included several demographic covari-
ates while also characterizing the structure of the unexplained vari-
ability in the data (see Materials and Methods). Earlier epidemic 
timing was associated with higher population density in all three 
states (Table 2). There was an approximately 1.5- to 2.1-week differ-
ence in epidemic timing between the top and bottom deciles of 
population density. There was also an association between earlier 
epidemic timing and larger average household size in Connecticut 
and New York; the difference in epidemic timing between the bot-
tom and top deciles of average household size was 0.7 to 1.3 weeks. 
In New Jersey, ZIP codes with higher income were associated with 
earlier epidemics. There was no association between the total num-
ber of people in the ZIP code and epidemic timing.

In all three states, there was substantial residual variability in the 
data after adjusting for the covariates. The covariates captured 41, 
30, and 51% of the variability in New Jersey, New York, and Con-
necticut, respectively. The best-fitting model assumed that the re-
sidual variation was correlated on the basis of geographic proximity. 
Alternative models that assumed that the residual variation was re-
lated to commuter connectivity or that assumed no spatial structure 
fit less well (Table  3). In Connecticut, the geographic proximity 
model only fit marginally better than the commuting model. The 
residual variability in the geographic proximity model was further 
partitioned into variation based on geographic adjacency and vari-
ability based on school district boundaries. Geographic adjacency 
explained 89, 94, and 69% of the total residual variability in New 
Jersey, New York, and Connecticut, respectively. School district ef-
fects contributed relatively little to the variations in epidemic tim-
ing (Table 4). The proportion of variability explained by population 
density, household size, school districts, and adjacency varied between 

states; however, their relative importance was consistent across states 
(Tables 2 and 4).

DISCUSSION
Understanding the timing of RSV epidemics is essential for certain 
interventions against RSV, including the administration of prophylactic 
antibodies and for assessing when to immunize pregnant women. 
We sought to better understand the underlying community factors 
associated with the timing of RSV epidemics. We find that the tim-
ing of RSV epidemics is highly spatially structured and demonstrate 
considerable variation, beginning in large urban areas and radially 
spreading to rural places over a 2.7-month period in the tri-state 
area. Epidemics generally peaked earlier in ZIP codes with higher 
population density and larger average household size, and epidemic 
timing in one location was correlated with timing in neighboring areas.

The covariates that were most strongly associated with earlier 
epidemic timing (population density and household size) could be 
related to the frequency of contact opportunities that lead to trans-
mission (fig. S1). Frequent contacts lead to rapid viral spread and 
epidemic growth, consistent with a positive correlation between 
population density and estimated RSV transmission rates for different 
U.S. states (12). The strong connectivity between neighboring areas 
could reflect epidemic seeding (fig. S1). Having stronger connec-
tions between proximate communities could provide more oppor-
tunities for introduction of the virus, eventually forming successful 
local chains of infection (24). This is supported by the localized and 
radially diffusive epidemic pattern. Other factors, such as gathering 
within schools and commuter flows, might also contribute to RSV 
transmission, but our analyses suggest that these are not the major 
drivers of the observed spatial patterns in this population.

By mid-January, the tri-state area is usually well into its annual 
RSV season, but so far in late January 2021, the level of RSV activity 
remains low (25). The positivity rate of RSV detection in this area 
has declined since nonpharmaceutical interventions to mitigate the 
coronavirus disease 2019 (COVID-19) pandemic, such as travel bans, 
mask wearing, and social distancing, were introduced in March 2020 
(25). The measures taken to slow COVID-19 transmission are likely 
also effective in controlling RSV epidemics. Studies in Western 
Australia found that RSV in children dropped 98% through their 
winter of 2020, although schools were open (26). This natural ex-
periment suggests that gathering within schools may not be the 
major driver of RSV epidemics (or at least is not sufficient in light 
of other measures).

Table 1. Number of hospitalizations, ZIP codes, school districts, commuters, and study period in New Jersey, New York, and Connecticut.  

New Jersey New York Connecticut

RSV Hospitalizations 19,708 38,376 9,160

ZIP codes 592 1,745 275

School districts* 337 934 156

Commuters 4,295,718 8,689,118 1,725,973

Study period July 2005 to June 2014 July 2005 to June 2014 July 1997 to June 2013

*We assigned the ZIP codes that do not belong to any school district as a single school district (in total 40) in the analysis.
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We found that higher median income is associated with earlier 
epidemics in New Jersey but not in the other states. The positive 
correlation between median income and the observed RSV epidem-
ic timing in New Jersey could reflect a greater delay between infec-
tion and hospitalization in poorer neighborhoods (fig. S1). It is also 
possible that the lack of an association in Connecticut and New York 
may result from the bidirectional effect of SES on RSV epidemic 
timing. Low SES may also increase susceptibility to RSV, thereby 
increasing the epidemic growth rate, although this effect may be 
partially mediated through differences in household size (fig. S1).

The results from our study have important implications for planning 
clinical trials and developing transmission dynamic models for RSV. 
First, because household size may be associated with the risk of ex-
posure and transmission of RSV, vaccine trials should ensure that 
household size is balanced between vaccinees and nonvaccinees. 
Second, transmission dynamic models should account for spatial 
heterogeneity as well as spatial correlations in the force of infection 
(e.g., using a meta-population model). The spatial patterns of RSV 
epidemic timing from the best-fit model show considerable dis-
crepancies between urban and rural areas, highlighting the need to 
consider these as distinct spatial units in RSV transmission models.

Our findings are consistent with previous genomic analyses of 
RSV, which found that household transmission is common, and vi-
ruses from nearby households share similar phylogenetic origins 
(27,  28). However, because of the small sample size and study 
design, genomic analyses were unable to compare the different 
transmission environments and their relative role in  local RSV 
transmission (27, 28). Using empirical epidemiologic, demograph-
ic, and commuting flow data, our research has found evidence to fill 
this knowledge gap. Previous epidemiological studies also suggest-
ed that household crowding and/or a larger number of siblings are 
associated with increased risk of severe RSV lower respiratory tract 
infection (17). These findings together provide a more complete 
picture of the major drivers of RSV transmission and how local risk 
factors affect regional patterns of RSV epidemic spread.

Other factors might also contribute to RSV spatial transmission 
and local seasonality (fig. S1). There are limits to what can be mech-
anistically tested with the statistical model we used in this study. As 
the demographic variables tested in our model may represent other 
underlying mechanisms, it is difficult to pinpoint the exact drivers 
of RSV dynamics with great certainty. For example, our results will 
not be able to confirm who drives transmission within households, 
as household size is correlated with the share of school-age children 
per household and the probability of having very young children. 
Mechanistic transmission dynamic models (e.g., meta-population 
models) that explicitly capture transmission and host immunity are 
needed to further study these issues.

Notably, the spatial spread pattern of RSV epidemics differs 
from that of influenza (21, 24, 29), which suggests that different age 
groups drive transmission of RSV and influenza (16). As a result, 
the level of indirect protection that might be generated by vaccinat-
ing different age groups is expected to vary for the two pathogens 
(30, 31). Spatial studies suggested that commuting flows drive the 
spread of seasonal influenza epidemics, while school-age children 
may have been major drivers of the 2009 H1N1 pandemic in the 
United States (21,  24,  29). However, our analysis suggests that 
short-range modes of transmission, especially transmission within 
and between local communities, predominate for RSV. This, to-
gether with the fact that children under five have the highest overall 
risk of RSV infection (16), suggests that it is possible that infants 
and preschool-aged children drive RSV transmission. This could 
potentially be explained by the buildup of partial immunity against 
RSV due to previous exposure as age increases (32).

Our study and interpretations have several caveats. First, we per-
formed an ecological analysis with aggregate data on sociodemo-
graphic characteristics at the ZIP code level. Thus, we did not assess 
the role of individual household size on risk of RSV transmission. 
Likewise, there could be substantial heterogeneity within ZIP codes 
in the demographic characteristics that we evaluated. Second, the 
aggregation of ZIP code–level cases to dominant school districts 

Fig. 1. RSV hospitalization incidence in children under two. The solid color lines show the time series of RSV hospitalizations in children <2 years in Connecticut (CT), 
New Jersey (NJ), and New York (NY). The vertical dotted line indicates October of each year.
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may have led to some misclassification and does not account for the 
multiple primary schools typically found within a school district. 
This could have affected the data-fitting process and resulted in a 
lower percentage of variability that was explained by school dis-
tricts. However, since school calendars and school bus routes are 
shared within the same school district, using school districts can 

help us evaluate the transmission within and between schools. Third, 
monthly time series may disguise some detailed variation compared 
to weekly time series. However, in a sensitivity analysis, we estimated 
the peak epidemic timing in Connecticut using both weekly data 
and data aggregated to the monthly level and found that the phase 
estimates were nearly identical (see the Supplementary Materials). Thus, 

Fig. 2. Estimated peak timing of RSV epidemics by ZIP code from the best-fit model. This model accounted for average household size, population density, popula-
tion size, median income, school district, and geographic proximity. The study periods were July 1997 to June 2013 in Connecticut and July 2005 to June 2014 in New York 
and New Jersey.

Table 2. The difference in epidemic timing (in weeks) between the top and bottom deciles for each variable and coefficients of spatial correlation in 
New Jersey, New York, and Connecticut. CrI, credible interval. 

New Jersey New York Connecticut

Mean 95% CrI Mean 95% CrI Mean 95% CrI

Difference in epidemic timing (weeks)

  Household size −0.13 (−0.48, 0.22) −0.65 (−0.96, −0.35) −1.26 (−1.74, −0.78)

  Population 
density* −1.48 (−2.35, −0.56) −2.13 (−3.04, −1.13) −1.61 (−2.78, −0.43)

  Population size* −1.00 (−2.17, 0.17) 0.35 (−0.61, 1.43) 0.16 (−0.74, 1.30)

  Income* 0.91 (0.35, 1.43) 0 (−0.35, 0.35) 0.22 (−0.78, 0.35)

Spatial autocorrelation ()†

0.97 (0.87, 1.00) 1 (0.99, 1.00) 0.76 (0.27, 0.99)

*Population density, population size, and income (household median income) were log-transformed in the model.     †The posterior mean of the spatial 
autocorrelation parameter, , was ≥0.75 across the three states, suggesting that the residual variability was spatially structured.
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the availability of finely resolved temporal surveillance data is not es-
sential to capture broad patterns in epidemic timing. Fourth, while 
we draw inference about the potential mechanisms that drive RSV 
transmission, the pattern of spatial diffusion that we observed may 
result from a wide range of possibilities. Thus, the interpretation of 
our study results needs to be further explored with epidemiologic 
studies, genomic analyses, and transmission dynamic models. More 
detailed data, such as the proportion of young children attending 
daycare in each ZIP code, could help to address remaining gaps in the 
knowledge of this system.

In conclusion, our results reveal substantial variation in  local 
RSV epidemic timing. We find evidence that the timing of RSV ep-
idemics is associated with average household size, population den-
sity, median income, and epidemic timing in neighboring areas. In 
general, RSV epidemics take off earlier in urban areas and spread to 
rural places with low population density and average household 
size. These findings highlight the need for infection control within 
households and communities to protect high-risk populations. Our 
results also offer additional insights that can be used to inform the 
development of transmission dynamic models and provide guid-
ance on future vaccine target populations and clinical trial design.

MATERIALS AND METHODS
Data source
RSV-specific hospitalization data for children <2 years from 1997 to 
2013 were obtained from the Connecticut State Inpatient Database 
through the CT-DPH. This dataset included the week and month of 
admission and the ZIP code of residence. Similar data for New York 
state and New Jersey were obtained from State Inpatient Databases 
of the Healthcare Cost and Utilization Project maintained by the 
Agency for Healthcare Research and Quality; these comprehensive 
databases contain all hospital discharge records from community 

hospitals in participating states (23). Datasets include the month of 
hospitalization (for 2005–2014) and ZIP code of residence. Cases 
were defined as any child <2 years old whose hospital discharge di-
agnostic codes included 079.6 (RSV), 466.11 (bronchiolitis due to 
RSV), or 480.1 (pneumonia due to RSV), based on the Internation-
al Classification of Disease Ninth Revision (ICD-9). The analysis of 
the data was approved by the Human Investigation Committees at 
Yale University and the CT-DPH. The authors assume full respon-
sibility for analyses and interpretation of data obtained from 
the CT-DPH.

Geospatial data at the ZIP code level were obtained from the 
U.S. Census Bureau’s Geography program (33). Information about 
population size <5 years old, average family type of household size, 
and median income in each ZIP code area were obtained from the 
U.S. Census Bureau’s American Community Survey (34–36). School 
district information was obtained from state geographic informa-
tion systems, education department databases, and national center 
for education statistics (37–40). Countrywide commuting patterns 
at the ZIP code level were obtained from the U.S. Census Bureau’s 
Center of Economic Studies (41). All geographic and demographic 
data except median income are from the 2010 census, because annual 
inter-censual estimates were not available for all variables during 
this time period; this corresponds to the midpoint of the hospital-
ization data from New York and New Jersey. We also performed 
sensitivity analyses using data from 2000 in Connecticut and 2014 in 
New Jersey to evaluate whether changes in demographic variables 
would influence the estimates. Ideally, we would perform sensitivity 
analysis using covariate data from each year in each state; however, 
because of the computational cost, we chose to perform sensitivity 
analysis using the data from two ends of the time-series spectrum.

Model structures
Two-stage hierarchical Bayesian model
We estimated the factors associated with spatial variability in the 
timing of RSV epidemics at the ZIP code level using a two-stage 
modeling approach. In the first stage, we obtained an estimate of 
epidemic timing (phase shift) for each ZIP code and a correspond-
ing measure of uncertainty, using harmonic regression. In the second 
stage, we fit hierarchical Bayesian spatial models with multiple 
covariates and different correlation structures. Model comparison 
techniques were used to evaluate the different models.
First stage model
The first stage consists of a harmonic Poisson regression model that 
estimates the amplitude and phase of seasonal RSV epidemics (18). 
This model was fit separately to the monthly time series of observed 
RSV hospitalizations from each ZIP code and was specified as

	​​ Y​ it​​~Poisson(​​ it​​)​	

	​​ ln(​​ it​​ ) = ln(pop ​5​ i​​ ) + ​​ i​​ + ​​ i​​ cos​(​​ ​ 2t ─ 12 ​ − ​Τ​ i​​​)​​ + ​φ​ it​​​​	

The observed number of RSV cases in ZIP code i during month 
t is denoted as Yit, phase Τi captures the shift in peak timing (with 
the 12-month period starting in early July), i is the amplitude of 
seasonal epidemics, ln(pop5i) is the offset term for the population 
under 5, i is the intercept, and φit is an observation-level random 
effect that accounts for any unexplained variability in the data (i.e., 
overdispersion). In this first stage, all model parameters were estimated 

Table 3. DIC scores of competing models in New Jersey, New York, 
and Connecticut.  

New Jersey New York Connecticut

No spatial 
correlation 1365 7098 601

Geographic 
proximity 1128 6347 472

Commuting 
flows 1151 6449 476

Table 4. Percent of random effect variation attributable to school 
districts versus geographic proximity for models fitted to RSV 
hospitalizations in New Jersey, New York, and Connecticut. Posterior 
means and 95% credible intervals are displayed. 

New Jersey New York Connecticut

School districts 11% (4%, 21%) 6% (3%, 11%) 31% (12%, 56%)

Geographic 
proximity 89% (79%, 96%) 94% (89%, 97%) 69% (44%, 88%)
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separately for each ZIP code. This model was fitted in the Bayesian 
setting using the rjags package with weakly informative prior distributions 
specified for all model parameters (42). Full details are provided in 
the Supplementary Materials.
Second stage model
On the basis of estimates of Ti (posterior means) and their uncer-
tainty (posterior standard deviations) obtained from the first stage, 
we used a Bayesian meta-regression approach in the second stage 
to explain spatial variability in the epidemic peak timing of RSV 
(43–47). Specifically, we first transformed the peak timing parameters, 
whose values are confined to [0, 2], to have support on the real line 
(useful for the second stage regression modeling) such that ​​​​ i​​  =  ln​
(​​ ​  ​T​ i​​ _ 2 − ​T​ i​​

​​)​​  ∈  ℝ​​. Next, we obtained posterior means, ​​​  ​​ i​​​, and posterior 
standard deviations, ​​​  ​​ i​​​, from the first stage and specify the second 
stage model as ​​​  ​​ i​​~N(​​ i​​, ​​  ​​i​ 

2​)​, where ​​​ i​​  = ​ x​i​ 
T​  + ​​ d(i)​​ + ​​ i​​​. We used 

stepwise forward selection to choose candidate variables from the 
causal diagram for use in our second stage models (fig. S1). We per-
formed variable selection using a simplified version of the regres-
sion model that excluded the spatial random effects. We began with 
the two variables (average household size and population density) 
that decreased the residual variance the most. We then included the 
variables representing other mechanisms, provided they did not af-
fect the posterior estimates of the previously selected variables to 
avoid issues related to multicollinearity.

We evaluated several alternative correlation structures to de-
scribe the residual variation in the data after adjusting for the ZIP 
code–level covariates (average household size, population density, 
population size, and median income). All covariates were standard-
ized before entering the models. The structure of the second stage 
model was specified as

	       	
​​
​θ​ i​​

​ 
= ​β​ 0​​ + ​β​ 1​​ * (​household size​ i​​ ) + ​β​ 2​​ * (​log pop den​ i​​ ) + ​β​ 3​​ * (​log pop size​ i​​ ) +

​     ​​  ​    β​ 4​​ * (​log median income​ i​​ ) + ​η​ d(i)​​ + ​​ i​​
  ​​	

where d(i) and i are random effects for school district d and ZIP code i. 
The school district random effects are distributed as ​​​ d(i)​​~N(0, ​​​ 2 ​)​, 
where d(i) is the school district that includes ZIP code i. The alterna-
tive structures for i were as follows:

1) No residual spatial correlation in RSV epidemic timing: 
​​​ i​​~N(0, ​​​ 2​)​.

2) RSV epidemics have similar timing in neighboring geographic 
locations: ​~CAR(, ​​​ 2​)​ (43). Here, spatial proximity was defined 
by ZIP codes with adjacent borders.

3) RSV epidemics have similar timing in locations connected 
strongly by commuting patterns ​~CAR(, ​​​ 2​) ​(43). Here, spatial 
proximity was defined by commuting patterns across ZIP codes.

We estimated the proportion of residual variability explained by 
the spatially correlated random effects (i) versus the school district 
random effects (d(i)) (see the Supplementary Materials). We also 
calculated the difference in epidemic timing between the top and 
bottom deciles for each variable to measure the relative importance 
of input variables (see the Supplementary Materials). More details 
about hyperprior distributions for these different models are given 
in the Supplementary Materials.

Parameter estimation was carried out separately for each of the 
three states via Markov chain Monte Carlo simulation with an 
initial burn-in period of 10,000 iterations and a subsequent set of 
50,000 posterior samples collected for all parameters in the first stage 
(48). A burn-in of 5000 iterations and a subsequent set of 20,000 

posterior samples were collected in the second stage. Convergence 
was assessed by Gelman-Robin diagnostics and examining individual 
parameter trace plots, with no obvious signs of nonconvergence ob-
served. Deviance information criterion (DIC) was calculated for each 
model to compare the performance; a lower DIC indicates that a 
model has an improved balance of fit and complexity (49). Equations 
for the calculation of residual variance can be found in the Supple-
mentary Materials. All analyses were performed using R v3.5.3.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/26/eabd6421/DC1
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