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BACKGROUND: Many endemic human and ani-
maldiseases causedby viruses, bacteria, protozoa,
or nematodes are transmitted by blood-feeding
insects or ticks. Because pathogens are ingested
with the blood meal, their interactions with the
vector’s gut microbiome, midgut secretions, and
epithelial cells are key determinants of disease
transmission. Most pathogens must infect the
vector andmultiply to be transmitted, and this
amplification greatly increases their chances
of infecting a new vertebrate host. Accordingly,
how pathogens survive or invade the midgut,
and their interactions with the invertebrate im-
mune system, are areas of great interest in vec-
tor biology. Blood-feeding arthropods secrete
saliva while probing for blood, and saliva from
many different vectors has been shown to have

antihemostatic, anti-inflammatory, and im-
munomodulatory activities that allow success-
ful blood feeding. Other vector-derived factors,
including exosomes, egested microbiota, and
pathogen-derived molecules, are injected at
the bite site where pathogens are delivered
andmodulate the local environment and the
innate immune responses of the host skin,
promoting pathogen establishment and dis-
ease progression. Thus, functional studies of
vector saliva and other vector-derived factors,
their roles in pathogen establishment and trans-
mission, the potential use of specific protein
targets to prevent vector-borne diseases, and
the use of vector salivary proteins as biomark-
ers of exposure to vector bites are also of great
importance.

ADVANCES:Over the past 20 years, the study of
vector biology has been revolutionized bymany
newmolecular, cell biology, and genomic tools.
For example, the advent of genomics and third-
generation sequencing has allowed for high-
density de novo transcriptome assembly and
single-cell RNA transcriptome analysis, even
without a reference genome. Perturbations in
vector gene expression in response to infection
with specific pathogens can nowbe studied at a
genome-wide level. The expression of recombi-
nant proteins derived from genomics or tran-
scriptomic studies has enabled structure-function
studies, the discovery of salivary biomarkers to
measure vector exposure in humans, and the
generation of specific antibodies for subcellular
localization of pathogen receptors or of vector-
derived proteins that interact with specific path-
ogens. Transient gene silencing has revealed
the participation of specific genes or signal-
ing pathways in both vector physiology and in
vector immunity against pathogens. There have
also been great advances in the genetic ma-
nipulation of insects with the CRISPR-Cas9
system and the development of gene-driven
strategies, such as CRISPR-Cas9–directed ho-
mologous repair. The symbiotic proteobacteria
Wolbachia has been introduced into natural
populations of Aedes aegypti mosquitoes to
reduce viral replication and transmission of
dengue, Zika, and Chikungunya with promis-
ing results. Such approaches may hold the long-
awaited promise of permanently modifying
natural vector populations to render them un-
able to transmit disease.

OUTLOOK: In this Review, we highlight recent
progress in our understanding of the basic
molecular and cell biology of pathogen inter-
actions with vectors and their microbiomes, as
well as the interactions between vector-derived
factors and pathogens with their vertebrate
hosts during the establishment of infection after
a vector bite. We discuss how these advances in
the biology of disease transmission have also
translated into next-generation strategies to
control natural vector populations and to mod-
ify them to disrupt their capacity to transmit
disease. Moreover, we review the development
of salivary biomarkers of vector exposure as a
tool for evaluating both epidemiological studies
and vector control strategies by measuring vec-
tor biting activity in humans.▪
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Interaction of pathogens with arthropod vector molecules promotes pathogen survival and transmission.
Vector-borne pathogens interact with the gut microbiota and with secreted molecules and midgut receptors
necessary for survival or for cell invasion. This allows them to circumvent the vector immune system to
avoid elimination, multiply, and be transmitted. Pathogens also interact with vector-secreted molecules that
are coinjected into the skin of the vertebrate host during disease transmission by the bite of an infected
vector. These vector-derived factors—which include salivary proteins, parasite exosomes, parasite molecules,
and egested microbiota—modify the hemostatic and innate immune response of the host skin, resulting
in enhanced pathogen transmission.
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Many endemic poverty-associated diseases, such as malaria and leishmaniasis, are transmitted by
arthropod vectors. Pathogens must interact with specific molecules in the vector gut, the microbiota,
and the vector immune system to survive and be transmitted. The vertebrate host, in turn, is infected
when the pathogen and vector-derived factors, such as salivary proteins, are delivered into the skin
by a vector bite. Here, we review recent progress in our understanding of the biology of pathogen
transmission from the human to the vector and back, from the vector to the host. We also highlight
recent advances in the biology of vector-borne disease transmission, which have translated into
additional strategies to prevent human disease by either reducing vector populations or by disrupting
their ability to transmit pathogens.

B
lood-feeding insects are vectors of some
of the most devastating diseases in low-
income areas, such asmalaria, Zika, den-
gue, and leishmaniasis. Vector-pathogen
interactions, particularly those mediated

by the midgut, the gut microbiota, and the
vector immune system, are intense areas of
study because they are major determinants
of disease transmission by limiting patho-
gen survival. Molecular interactions between
vector-derived factors—such as salivary pro-
teins, exosomes, and egested microbiota—and
the mammalian host modulate local skin im-
munity and are critical for pathogen establish-
ment. Thus, it is very important to understand
how saliva and other vectors or pathogen-
derived factors affect disease transmission
and to understand their potential as vaccine
targets to prevent diseases or as biomarkers
of vector exposure.

Interaction of pathogens with vector
midgut proteins

Ingested pathogens need to survive the harsh
environment of the midgut lumen, where
blood digestion takes place. The blood meal is
surrounded by a chitinous peritrophic matrix
(PM), which prevents direct contact between
the gut microbiome and epithelial cells (Fig. 1).
In Anopheles gambiae mosquitoes, the perme-
ability of the ectoperitrophic space (between the
PM and the midgut epithelium) is tightly mod-
ulated by secretion of an immune-modulatory
peroxidase (IMPer) (1). This enzyme cross-links
proteins in the ectoperitrophic space, allowing
commensal bacteria to proliferate in the gut
lumen without eliciting epithelial immunity.

This also allows early stages of Plasmodium to
develop within the gut without detection. In
tsetse flies, Trypanosoma brucei takes advan-
tage of the immature and fluid PM to move
into the ectoperitrophic space. There, it colo-
nizes the proventriculus to later establishmid-
gut infection (2).
Some pathogensmust bind to specificmidgut

receptors to survive. Leishmania major para-
sites, for example, are covered with lipophos-
phoglycans that specifically bind to PpGal, a
sand fly midgut galectin receptor required
for parasite survival and development (Fig. 1)
(3). The Borrelia surface protein OSP A binds
to TROSPA, a receptor in the gut of the Ixodes
scapularis tick (Fig. 1), an interaction required
for tick colonization by spirochetes (4). Thus,
arthropodmidgut receptors are attractive poten-
tial vaccine targets to block disease transmission.

Effect of gut microbiota and multiple blood
meals in vectorial capacity

Commensal gut bacteria proliferate extensively
as the blood meal undergoes digestion and af-
fect pathogen establishment. InA. gambiae, the
mosquito gut microbiota limits Plasmodium
infection, and oral antibiotics increase Plasmo-
dium survival (5). By contrast, the gut micro-
biota of sand flies is essential for Leishmania,
and antibiotics inhibit their development into
infective metacyclics (6). The close interaction
of pathogenswith the insect gutmicrobiota has
been exploited by using an enterobacterium
isolated from wild-caught Anopheles to limit
Plasmodium development in mosquitoes (7)
and Chromobacterium sp. from field-caught
Aedes to impair Plasmodium and dengue virus
infection (8).
Recent findings show that ingestion ofmulti-

ple blood meals can enhance pathogen trans-
mission by infected vectors (Fig. 1). When
Leishmania-infected sand flies take a second

blood meal, parasites dedifferentiate into a
multiplicative stage called retroleptomonad,
which expands the population of infective
metacyclics in the vector gut (9). Similarly,
dengue virus–infected mosquitoes fed a sec-
ond uninfected blood meal exhibit higher
systemic virus dissemination that enhances
viral transmission (10). This increase in vec-
torial capacity after the ingestion of blood
from a healthy host may explain why disease
transmission is so effective in the field.

Insect innate immunity and vector competence

Antiplasmodial responses of anopheline mos-
quitoes can limit malaria transmission. In
A. gambiae, these responses involve the se-
quential and coordinated activation of epithe-
lial immunity by invaded midgut cells (11–15),
microvesicle release by circulating hemocytes
(16, 17), and activation of the mosquito com-
plement system (15, 18). Genetic studies have
revealed that Pfs47, a protein on the surface
of the parasite Plasmodium falciparum, me-
diates immune evasion (19, 20) by interacting
with a receptor in the mosquito midgut (21).
The receptors have diverged in evolutionarily
distant mosquitoes (21, 22) and constantly se-
lect for parasites with a Pfs47 haplotype com-
patible with their receptor (22).
Antiviral immunity in Drosophila and mos-

quitoes is mediated by the RNA interference
(RNAi) pathway, whereas the Piwi-interacting
RNA (piRNA) pathway appears to be active
only inmosquitoes (23–25). Silencing key com-
ponents of the RNAi pathway in Aedes aegypti
mosquitoes increasesDengue (26) and Sindbis
virus replication (27) and, in A. gambiae, en-
hances the infection and dissemination of
O’nyong-nyong virus (28).
piRNAs range in size between 26 and 31 base

pairs and have been mostly linked to the si-
lencing of retrotransposons (29) and other ge-
netic elements in the germ line (30). However,
an antiviral role in mosquito cell lines has
been proposed, where viral DNAs (vDNAs) are
integrated into the A. aegypti genome as en-
dogenous viral elements (EVEs) and serve as
templates to produce piRNAs (31–33). EVEsmay
therefore represent a type of immune memory
by providing a record of past infections (32).
EVE-derived piRNAs are specifically loaded
onto Piwi4 and inhibit virus replication (33).
Inhibition of vDNA in Aedes albopictus and A.
aegypti mosquitoes infected with two arbovi-
ruses (Dengue or Chikungunya) reduces viral
small RNAs and results in high susceptibility
to viral infection and loss of tolerance. Thus,
vDNA is an important mechanism for per-
sistent viral infections in mosquitoes, which
makes these insects highly efficient disease
vectors (34).
Furthermore, overactivation of the JAK–STAT

pathway decreases A. aegypti susceptibility to
dengue virus infection, whereas silencing key
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components for activation of the pathway en-
hances susceptibility to infection (35). Activa-
tion of the Toll pathway and the gutmicrobiota
reduces A. aegypti susceptibility to dengue in-
fection (36), whereas constitutive activation
of the immunodeficiency (IMD) pathway de-
creasesmicrobiota bacterial loads and increases
Sindbis virus infection (37). By contrast, elimi-
nation of the gut microbiota in A. gambiae
decreases infectivity withO’nyong-nyong virus

(38). The A. gambiaemidgut activates local anti-
viral responses toO’nyong-nyongvirus infection,
which involve the IMDand JAK–STAT signaling
pathways, whereas the RNAi pathway mediates
systemic responses (38). Loquacious 2 (Loqs2) is
required to control systemic replication of den-
gue virus and Zika virus in A. aegypti. Loqs2 is
not expressed in themidgut, but ectopic midgut
expression in transgenic mosquitoes limits den-
gue virus replication and dissemination (39).

Innate immune priming
Insect immunity relies on innate immune re-
sponses that were thought to be hardwired.
However, studies in A. gambiae have revealed
that mosquitoes previously exposed to Plas-
modium infection mount a more effective re-
sponse to subsequent infections (1). The priming
response is established when ookinete inva-
sion allows direct contact of the gut micro-
biotawithmidgut cells, activatingprostaglandin
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Fig. 1. Pathogens ingested by arthropod vectors interact closely with the gut microbiota and with midgut epithelial cells. They traverse the PM, and some
interact with specific receptors, such as P. papatasi galectin (PpGal), I. scapularis TROSPA, and the P. falciparum Pfs47 receptor. Epithelial cells activate antiviral responses
mediated by the piRNA, small interfering RNA (siRNA), and JAK–STAT pathways. At the same time, caspase-mediated nitration responses of ookinete-invaded midgut
cells activate hemocyte microvesicle release, which promotes the activation of complement-mediated Plasmodium elimination. Ingestion of a second blood meal can
also provide nutritional and/or differentiation signals that enhance pathogen transmission. LPGs, lipophosphoglycans.
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synthesis mediated by two heme peroxidases
(HPx7 andHPx8) (16). This triggers the systemic
release of a hemocyte differentiation factor
(HDF) that increases the proportion of circu-
lating granulocytes (1). HDF is a complex of
lipoxin A4 bound to Evokin, a carrier from
the lipocalin family. Immune priming involves
increased ability of mosquitoes to synthesize
lipoxins, predominantly lipoxin A4 (40). Primed
hemocytes then release more microvesicles in
response to ookinete invasion, which enhances
the activation of the mosquito complement
system (17).

Vector saliva

The saliva of blood-feeding arthropods has anti-
platelet, anticlotting, and vasodilatory proper-
ties and contains modulators of inflammation
and immunity (41, 42) (Fig. 2). Despite similar
functions, these proteins are highly divergent
among insect species because blood feeding
evolved independently, and these genes evolve
rapidly. For example,most vectors that feed on
mammalianbloodhavehigh levels of adenosine
5′-diphosphate (ADP)–hydrolyzing enzymes to

inhibit platelet aggregation, but these levels
are achieved using different strategies. A 5′-
nucleotidase family exists in ticks (43), triatomine
bugs (44), and mosquitoes (45); a CD39 family
is present in fleas (46); and aCimex-type apyrase
is found in sand flies (47) and bed bugs (48).
The most potent vasodilator known, the pep-
tide maxadilan, was discovered in the sand fly
Lutzomyia longipalpis (49). Several “kratagonists”
(from the Greek “kratos”meaning “to seize”) in
vector saliva, such as lipocalins and odorant-
binding proteins, act as scavengers of histamine,
serotonin, leukotrienes, thromboxane A2, and
inflammatory cytokines (50), whereas other
protein families inhibit the activation of the
complement system (51–54).
The advent of third-generation sequencing

has revealed the existence of many previously
unknown salivary proteins—~50 different sali-
vary polypeptides in sand flies, >100 in mos-
quitoes and triatomine bugs, and thousands
in hard ticks (55, 56). The function of most of
these proteins remains unknown.The increased
number of salivary transcripts in ticks is the
result of a large expansion of several protein
families. However, only a fewmembers of each
family are expressed at a given time, and the
composition of saliva changes over time (57).
This phenomenon,whichwe refer to as sialome
switching, may be an immune evasion strategy,
but how it is regulated remains a mystery.

The effect of vector saliva and vector-derived
factors on pathogen establishment

Needle inoculation of pathogens does notmimic
their natural delivery by an insect bite. For ex-
ample, West Nile virus delivered to mice by
mosquito Culex tarsalis bites results in higher
viremia and neuroinvasion compared with
needle inoculation (58). Likewise, injection of
Semliki Forest virus in a skin site previously
bitten by Aedesmosquitoes results in higher
viremia and increased mortality in rodents
(59), mediated by interleukin-1b (IL-1b) activa-
tion and recruitment of neutrophils to the
dermis (59). Similarly, Leishmania donovani
transmission by sand fly bites induces the
activation of the inflammasome, production
of IL-1b, recruitment of neutrophils, and par-
asite visceralization (Fig. 2). By contrast, no
parasite visceralization occurs with needle-
injected parasites (60). Activation of IL-1b and
neutrophil recruitment was triggered by the
gutmicrobiota egested during the sand fly bite
(60). Plasmodium sporozoites injected at the
bite site by Anopheles stephensi result in higher
parasitemias, enhanced progression to cerebral
malaria, and death (61). SALP15, a tick salivary
protein, is essential for establishment and dis-
semination of infection by inhibiting T cell
activation and protecting Borrelia from the
host complement (62). Thus, vector-derived
factors from different disease vectors appear
to activate innate immune responses and to

recruit cells, such as neutrophils, that facil-
itate pathogen establishment (Fig. 2).
There are othermechanisms by which vector

saliva facilitates pathogen transmission. For
example, the sand fly salivary endonuclease
LunDep destroys neutrophil extracellular traps
(NETs), increasing survival of L. major par-
asites (63). The sand fly salivary hyaluronidase
enhances Leishmania infection in mice by
working as a so-called spreading factor and by
increasing neutrophil recruitment to the bite
site (64, 65). TheA. aegypti salivary proteinNeSt1
increases Zika virus pathogenesis by activating
neutrophils (66), whereas the salivary protein
AaVA-1 enhances Zika and Dengue transmis-
sion in rodents by activating autophagy in im-
mune cells (67). In addition to salivary proteins,
Leishmania proteophosphoglycans and exo-
somes as well as egestedmicrobiota are part of
the infectious inoculum of sand flies (60, 68, 69).

Arthropod salivary proteins as vaccine targets
to prevent disease transmission

Arthropod salivary proteins are promising vac-
cine candidates todisrupt transmissionof vector-
borne diseases (70, 71). Vaccination of rhesus
macaques with the sand fly salivary protein
PdSP15 confers protection from L. major trans-
mitted by sand fly bites, which correlates with
the development of a PdSP15-specific type 1 T
helper (TH1) cell immunity and anti-Leishmania
immunity (72). TH1 immunity to the salivary
protein coinjected at the bite site is thought to
protect from disease by altering the immune
response to parasite antigens (72). Recently,
immunization of guinea pigs with an mRNA
vaccine encoding selected tick salivary pro-
teins induced a skin response that prevented
Borrelia transmission by ticks in vaccinated
animals (73). Inmosquitoes, vaccination ofmice
with Anopheles salivary protein AgTRIO pro-
tects animals from Plasmodium infection (74),
whereas immunization with the A. aegypti sal-
ivary protein AgBR1 protects mice from Zika (75)
andWest Nile virus infections (76). Antibodies
to AgBR1 prevent AgBR1-induced neutrophil ac-
tivation and block saliva-mediated enhance-
ment of virus establishment (75). Recently, a
mosquito salivary peptide–based vaccine was
shown to be safe and to produce specific im-
munity in a phase 1 clinical trial in humans (77).

Arthropod salivary proteins as biomarkers
of vector exposure

Humans mount antibody responses to certain
salivary proteins that can be used as biomark-
ers of exposure to vector bites (78). Several re-
combinant vector salivary proteins and synthetic
peptides have been developed as biomarkers,
including the gSG6-P1 salivary peptide from
A. gambiae (79), Nterm-34kDa salivary peptide
from A. aegypti (80), rLJM17 and rLJM11 from
L. longipalpis (81), rSP03B from Phlebotomus
perniciosus (82), PpSP32 from Phlebotomus
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Fig. 2. In addition to pathogens, blood-feeding
arthropods deliver a series of vector-derived
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host skin. Vector-derived factors counteract the
hemostatic system and modulate host skin immu-
nity, including activation of the inflammasome,
which favors the establishment of some parasitic
and viral infections.
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papatasi (83), Tsgf118-43 from tsetse flies (84),
rTisP14.6 from Triatoma infestans (85), and
Calreticulin from I. scapularis (86). These are
useful tools to assess risk of disease transmis-
sion and the effectiveness of vector control
strategies (87) in ongoing disease elimination
campaigns.

Transgenesis, paratransgenesis, and other
vector control strategies

Genetic modifications can be used to reduce
natural vector populations or to replace them
with transgenic vectors that no longer trans-
mit disease (Fig. 3). Two major obstacles to
this approach have been overcome: first, the
identification of gene targets to be disrupted
or previously undiscovered genes that would
interrupt pathogen development, and second,
strategies to introduce a new gene or to mod-
ify a vector gene. However, once released, trans-
genic insectswillmatewithwild-type ones, and
the genetic modifications of interest will dilute
in every generation (88) unless they can spread
more effectively through non-Mendelian in-
heritance that can drive the gene through the
population.
Several gene drive mechanisms have been

proposed, such as transposable elements (88)
and other gene insertionmethods (89), includ-
ing arboviruses and the homing endonuclease
system, with various degrees of success. More
recently, the CRISPR-Cas9 system has emerged
as a very promising approach. CRISPR-Cas9–
directed homologous repair of the germ line
cuts the gene in the wild-type chromosome
of heterozygous mosquitoes and repairs it by

homologous repair with the chromosome con-
taining the effector gene of interest (90). A
great variety of genes have been proposed as
insertion targets, including expression of recom-
binant antibodies that target the pathogen (91)
or that affect mosquito reproduction (92–94).
However, a word of caution for constructs af-
fecting fertility is needed. A partial decrease of
fertilitymayultimately lead tomore rather than
fewermosquitoes because itwill reduce competi-
tion for resources during larval stages. Emerging
adults may also be better nourished and live
longer, resulting in adults with increased vecto-
rial capacity (95). This problem can be circum-
vented by strategies that are deleterious to
adult stages but allow normal larval develop-
ment (96).
An alternative strategy to modify vectors is

to introduce commensal microorganisms that
reduce vectorial capacity (Fig. 3) (97). A Serratia
strain that quickly colonizes the mosquito gut
when fed in a sugar solution was recently iden-
tified that, when engineered to secrete anti-
Plasmodium effector proteins, greatly reduces
the ability of mosquitoes to transmit malaria
(97). Rhodococcus rhodnii, a triatomine endo-
symbiont, has been modified to express an anti-
Trypanosoma peptide. This microbe rendered
Rhodnius prolixus resistant to Trypanosoma
cruzi, the parasite that causes Chagas disease
(98). In this system, symbionts are transmitted
from adults to nymphs by coprophagy. Geneti-
callymodifiedR. rhodniihasbeenused toprepare
a mixture that is actively ingested by triatomine
nymphs (99). Another successful development
has been the exploitation ofWolbachia that nat-

urally infect insects (100). This is an intracellular
bacterium that is transmitted vertically and
spreads through natural insect populations by
inducing cytoplasmic incompatibility (CI). In-
fected females have viable offspring when they
matewith either noninfected or infectedmales,
whereas Wolbachia-free females are only fer-
tile if they mate with uninfected males. When
A. aegyptimosquitoes—the vectors of dengue,
Zika, andChikungunya—are infectedwith some
strains of Wolbachia, this greatly reduces vi-
ral replication and transmission (101). This
strategy is already undergoing field trials in
several countries to disrupt transmission of
arboviruses (102, 103). A Metarhizium fungus
genetically modified to express an insect toxin
was very effective in suppressing natural pop-
ulations of mosquitoes highly resistant to in-
secticides (104). A different strategy, where the
antimalarial atovaquone was applied to sur-
faces with whichmosquitoes came into contact,
disrupted Plasmodium development, providing
an additional tool to prevent malaria transmis-
sion (105).

Future directions

Most blood-feeding arthropods eliminate the
pathogens they ingest and do not transmit dis-
ease. However, there are extremely rare, fortu-
itous encounters in which a pathogen interacts
with vector factors that allow it to survive and/or
evade elimination by the vector immune sys-
temand infect a newhostwhen the vector takes
the next blood meal. This ability to jump or fly
from one host to another gives these patho-
gens an enormous advantage, with devastating
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Fig. 3. Next-generation strategies to disrupt pathogen transmission by arthropod vectors include suppression of vector populations or elimination of the
pathogens in the vector. Effective entomopathogenic fungi expressing insect toxins or genetic modifications deleterious to specific stages of the vectors have
been developed to suppress vector populations. Pathogens can be eliminated by genetically modified arthropods or commensal bacteria expressing effectors against
the pathogen; by introducing a commensal, such as Wolbachia, that creates a physiological state nonpermissive to the pathogen; or by exposing the vector to
drugs that target the pathogen, such as contact of mosquitoes with antimalarial drugs that eliminate Plasmodium parasites.
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consequences for human and animal health.
There is growing consensus that disrupting
disease transmission by arthropod vectors is
critical for disease eradication. As we continue
to harness our growing understanding of the
biology of pathogen transmission, we uncover
critical interactions that can be targeted to
prevent disease. New translational tools are con-
stantly being developed that may allow us to
witness the long-awaited eradication of some of
the most devastating vector-borne diseases.
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