Light Scattering Coupled to Refractive Index and UV Absorption Measurements in Studies of Membrane Proteins Homo- and Hetero Associations

Ewa Folta-Stogniew

Biophysics Resource; Keck Laboratory Yale School of Medicine

- Light Scattering Technologies
 - Static and dynamic light scattering
 - Parameters derived from SLS and DLS measurements
- Flow Mode Light Scattering Applications in Studies of Membrane Proteins
 - Determination of an oligomeric state of membrane proteins from SEC-LS/UV/RI measurement
 - Determination of complex formation and stoichiometry from SEC-LS measurements
- Capabilities and limitation of SEC-LS/RI/UV measurements

Light Scattering Experiments

Light Scattering Experiments

• Static (classical)

time-averaged intensity of scattered light

Dynamic (quasielastic)

fluctuation of intensity of scattered light with time

Measurements:

- batch mode
- "in-line" mode combined with a fractionation step,

i.e. chromatography, mainly Size Exclusion Chromatography, Flow Field Fractionation

Typical SEC(AFFF); MALLS system

Three Detector monitoring

Rayleigh-Debye-Zimm formalism

$$\frac{K^*c}{R(\theta)} = \frac{1}{MwP(\theta)} + 2A_2c$$

R(Θ)	Rayleigh ratio (excess scattered light)
С	sample concentration (g/ml)
Mw	weight-average molecular weight (molar mass)
A2	second virial coefficient (ml-mol/g2)
P(Θ)	form factor (angular dependence)
K	optical constant $[4\pi^2n^2 (dn/dc)^2 / (\lambda_o^4 N_A)]$

SEC/LS results: Molar Mass Distribution Plot

Determination of the oligomeric state of modified proteins from SEC-LS/UV/RI analysis

- 1. Glycosylated proteins
- 2. Proteins conjugated with polyethylene glycol
- 3. Membrane protein present as a complex with lipids and detergents

Input:

- Polypeptide sequence
- Chemical nature of the modifier

Results:

- Oligomeric state of the polypeptide
- Extend of modification (grams of modifier /gram of polypeptide)

"three detector method"

Yutaro Hayashi, Hideo Matsui and Toshio Takagi (1989) Methods Enzymol,172:514-28 Jie Wen, Tsutomu Arakawa and John S. Philo (1996) Anal Biochem, 240:155-66 Ewa Folta-Stogniew (2006) Methods in Molecular Biology: New and Emerging Proteomics Techniques, pp. 97–112

Determination of the oligomeric state of modified proteins from SEC-LS/UV/RI analysis

$$MW_{p} = \frac{k^{*}(LS)(UV)}{\varepsilon(RI)^{2}}$$

MW_{p}	Molecular Weight (polypeptide)
3	extinction coefficient
LS	light scattering intensity
UV	absorbance (ε)
RI	refractive index change
k	calibration constant

"three detector method"

Yutaro Hayashi, Hideo Matsui and Toshio Takagi (1989) Methods Enzymol,172:514-28 Jie Wen, Tsutomu Arakawa and John S. Philo (1996) Anal Biochem, 240:155-66 Ewa Folta-Stogniew (2006) Methods in Molecular Biology: New and Emerging Proteomics Techniques, pp. 97–112 Determination of the oligomeric state of detergent solubilized proteins:

polypeptide+lipids+detergent complexes of *unknown* detergent+lipids content

Proteins:	47 kDa	porin LamB	trimer = 141 kDa
	33 kDa	hemolysin α -HL	heptamer = 231 kDa

detergent

dodecyl maltoside (C12M) MW = 511 g/mol 0.5g/L i.e. 0.05% CMC = 0.008% micelle size 50-70 kDa

porin monomer = 47 kDa $MW = 149 \pm 3$ kDa trimer

Determination of the oligomeric state of detergent solubilized proteins:

polypeptide+lipids+detergent complexes of unknown detergent+lipids content

Proteins:	47 kDa	porin LamB	trime	trimer = 141 kDa		
	33 kDa	hemolysin	α-HL	heptamer = 231 kDa		

detergent

dodecyl maltoside (C12M) MW = 511 g/mol 0.5g/L i.e. 0.05% CMC = 0.008% micelle size 50-70 kDa monomer = 33 kDa

elution volume [mL]

Three Detector Method

allows determination of mass of detergent/lipids bound to a polypeptide

 δ is mass of detergent and/or lipids per 1 gram of polypeptide

Assumption : detergent does not produce any signal in UV

Yernool D, Boudker O., Folta-Stogniew E., and Gouaux E. (2003) Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. *Biochemistry* **42**: 12981-12988

KtrAB ion transporter:

complex of KtrB membrane protein and KtrA RCK domain (regulating and conductance of K⁺)

KtrB: integral membrane protein isolated in the presence of detergent (DDM) as a polypeptide:detergent(lipid) complex

Protein	Polypeptide [kDa]	Oligomeric state	Full complex [kDa]	Grams of detergent/lipids per gram of polypeptide		
KtrB (monomer 49kDa)	98	dimer	238	1.4		

Albright R A, Ibar J. L. V., Kim C. U., Gruner S. M., and Morais-Cabral J. H. (2006) The RCK Domain of the KtrAB K+ Transporter: Multiple Conformations of an Octameric Ring. Cell 126: 1147-1159

KtrAB ion transporter:

complex of KtrB membrane protein (49 kDa) and KtrA RCK domain (regulating and conductance of K⁺) KtrA RCK domain (16 kDa) : basic assembly dimer, higher order oligomers: tetramer or octamer

Albright R A, Ibar J. L. V., Kim C. U., Gruner S. M., and Morais-Cabral J. H. (2006) The RCK Domain of the KtrAB K+ Transporter: Multiple Conformations of an Octameric Ring. Cell 126: 1147-1159

Buffer: 25 mM Tris, 150 mM NaCl, 1 mM DTT, 1 mM NADH, 1 mM DDM

KtrAB ion transporter

(8:2) model polypeptide = 228 kDa

(8:4) model polypeptide = 325 kDa

dimer:octamer KtrB:KtrA	complex	Elution volume (ml)	Total mass of complex (kDa)	Poly- peptide (kDa)	lipids (kDa)
0.4	8:2	14.23	486	228	256
0.9	8:2	14.05	521	240	281
2.2	8:4	13.99	552	302	261
3.7	8:4	13.91	560	299	251

dimer:octamer KtrB:KtrA KtrB volu		Elution volume	8:2 model (228 kDa)		correct model ?	8:4 model (325 kDa)		correct model ?
	dimer?	(ml)	computed MW for complex (kDa)	difference from model (kDa)		computed MW for complex (kDa)	difference from model (kDa)	
0.4		14.23	228	0	Yes	250	-75	
0.9		14.05	240	12	Yes	264	-61	
2.2	Yes	13.99	274	46		302	-24	Yes
3.7	Yes	13.91	271	43		299	-27	Yes

Three detector approach

- fast and accurate determination of oligomeric state of detergent solubilized membrane
 proteins
- only protein sequence needed for determination of association state
- the amount of detergent and lipids associated with the polypeptide can be determined from a single SEC-LS/RI/UV analysis
- suitable for variety of detergents
- can be used at wide range of protein concentrations from ~ 10µg/ml to >10mg/ml (correction for non-ideality)

Ken Williams

Director of W.M. Keck Biotechnology Resource Laboratory at Yale University School of Medicine

NIH

1S10 RR014776-01 "SEC/Laser Light Scattering Instrumentation" 1S10 RR023748-01 "Asymmetric flow FFF and Composition Gradient/Light Scattering System"

Users of SEC/LS Service

Light Scattering Services contributed to> 40 publications

Full list at: http://info.med.yale.edu/wmkeck/biophysics/publications_biophysics_resource.pdf

http://info.med.yale.edu/wmkeck/biophysics Ewa.Folta-Stogniew@yale.edu