Phosphoproteomics:
Mechanisms in Controlling Cell Volume
and
Neuronal Excitability

Yale NIDA Neuroproteomics Center

Erol E. Gulcicek, Ph.D.

Keck Lab. Deputy Director, Proteomics

Jesse Rinehart and Richard P. Lifton
Department of Genetics, Howard Hughes Medical Institute,
Yale University School of Medicine



Proteomic tools for direct analysis of biological systems

Modern Proteomics

*Proteomics is in its infancy
* No complete proteome to date
« Contrast to genomics
» Splicing, PTMs, compartmentalization,..

*\We have come a long way quickly.

*New tools, techniques, and technology
means we are gaining access faster!

Targeted
Proteomics




Challenges for Phosphoproteomics

Phosphopeptides are hard to detect due to:

< Low stoichiometry

< Heterogeneity of phosphorylation
< Low ionization efficiency

< Hardware/data analysis issues

Overcoming the challenges:

Technology Tools:
2 Acquired over 1.5 million $ in new MS equipment

< Phosphopeptide enrichment

< Accuracy of phosphoprotein ID and
determination of phosphorylation sites

Target Functionally Important Proteins for Disease




Using Biomedical Technology Development
for Understanding of Disease and Addiction
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Phosphorylation dynamics in electrolyte
homeostasis

-What are the phosphorylation sites involved?

-What are the physiological mechanisms involved in their signaling pathways?

-Phosphorylation controls CI- homeostasis in neurons
-Fundamental to GABA signaling in healthy and addicted individuals
-Mechanisms via phosphorylation is poorly understood

Approach

* Use proteomic tools to target phosphoproteins involved in
electrolyte homeostasis.

« Develop new techniques to address complex phosphorylation
dynamics in vivo.



Phosphorylation mapping with TiO,

phosphopeptide affinity matrix
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Phosphorylation mapping with TiO,
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Kinases that control electrolyte homeostasis
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sPotassium (K+) and Chloride (Cl-) cotransporters (KCC) are integral
membrane proteins that couple K-CI transport out of the cell.

*All KCCs are activated by cell swelling, and their phosphorylation state
controls KCC activity.

« However, no direct evidence for phosphorylation that drives KCC activity

sInsight into KCC regulation would help understand and potentially treat

diseases like Hypertension, Sickle Cell Disease, & Epilepsy

When phosphorylated, KCC is off De-phosphorylation activates KCC
Isotonic Conditions Hypotonic Conditions



How can we determine the functional phosphorylation sites in KCC that
control co-transporter activation?

When phosphorylated, KCC is off De-phosphorylation activates KCC
Isotonic Conditions Hypotonic Conditions
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Two phosphorylation sites control KCC activity

= A double alanine mutation ablates normal regulation
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#* Two regulatory phosphorylation sites are
strictly conserved in KCCs:

Essential KCC functions

KCC1: cell volume, house keeping function

KCC2: neuronal function (neuron specific isoform)
. cell volume contro pressure

KCC4.: cell volume control, hearing, blood pressure




Essential KCC functions
KCC1: cell volume, house keeping function

4 KCC2: neuronal function (neuron specific isoform)
; , blood pressure
KCC4.: cell volume control, hearing, blood pressure

=P Cell volume control and GABA signaling are linked
By a common mechanisim that drive ClI- balance via
Activation of the K-ClI cotransporters

Hypothesis: If KCC function is conserved,
KCC2 should share these regulatory sites.



cl-
GAB A—) /lf\ Inactive GAB A—) /' Active

Promote GABA Promote GABA
excitation inhibition

« KCC2 is inactive early in neuronal development and promotes
GABA excitation

* As neurons develop, KCC2 activation promotes GABA
Inhibition

o KCC2 phosphorylation mirrors the progression of the
developmental switch to GABA inhibition

* First evidence of KCC regulation in vivo
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Two phosphorylation sites control KCC2 activity as well

= A double alanine mutation ablates normal regulation



KCC2 is phosphorylated early in neuronal development
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Phosphorylation dynamics In

electrolyte homeostasis:
Achievements and Paths forward

Conclusions:

« Quantitative proteomics can be used to target specific proteins to elucidate
their function

« Mass spectrometry is highly adaptable

« Techniques and reagents can be developed, post-discovery, to address
function in vivo

— Relevant to development of clinical proteomics

« Study both the transporter and putative upstream kinases in drug treated
animals
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