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Abstract 

 

In interdisciplinary biomedical, epidemiological, and population research, it is 

increasingly necessary to consider pathogenesis and inherent heterogeneity of any 

given health condition and outcome. As the unique disease principle implies, no single 

biomarker can perfectly define disease subtypes. The complex nature of molecular 

pathology and biology necessitates biostatistical methodologies to simultaneously 

analyze multiple biomarkers and subtypes. To analyze and test for heterogeneity 

hypothesis across subtypes defined by multiple categorical and/or ordinal markers, the 

authors developed a meta-regression method that can utilize existing statistical software 

for mixed model analysis. This method can be used to assess whether the exposure-

subtype associations are different across subtypes defined by one marker while 

controlling for other markers, and to evaluate whether the difference in exposure-

subtype association across subtypes defined by one marker depends on any other 

markers. To illustrate this method in molecular pathological epidemiology research, the 

authors examined the associations between smoking status and colorectal cancer 

subtypes defined by three correlated tumor molecular characteristics (CpG island 

methylator phenotype, microsatellite instability and BRAF mutation), in the Nurses’ 

Health Study and the Health Professionals Follow-up Study. This method can be widely 

useful as molecular diagnostics and genomic technologies become routine in clinical 

medicine and public health.  
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Epidemiologic research typically aims to investigate the relationship between 

exposure and disease, based on the underlying premise that individuals with the same 

disease name have similar etiologies and disease evolution. With the advancement of 

biomedical sciences, it is increasingly evident that many human disease processes 

comprise of a range of heterogeneous molecular pathologic processes, modified by the 

exposome (1). Molecular classification can be utilized in epidemiology because 

individuals with similar molecular pathologic processes likely share similar etiologies (2).  

Pathogenic heterogeneity has been considered in various neoplasms such as 

endometrial (3), colorectal (3-20), and lung cancers (21-24), as well as non-neoplastic 

diseases such as stroke (25), cardiovascular disease (26), autism (27), infectious 

disease (28), autoimmune disease (29), glaucoma (30), and obesity (31).   

New statistical methodologies to address disease heterogeneity are useful not 

only in molecular pathological epidemiology (MPE) (32) with bona fide molecular 

subclassification, but also in epidemiologic research which takes other features of 

disease heterogeneity (e.g., lethality, disease severity) into consideration. There are 

statistical methods for evaluating whether the association of an exposure with disease 

varies by subtypes which are defined by categorical (33-36) or ordinal (33-35) 

subclassifiers (reviewed by Wang et al., unpublished); the published methods by 

Chatterjee (33), Chatterjee et al. (34), and Rosner et al. (35) apply to cohort studies, 

and the method by Begg et al. (36) focuses on case-control studies. For simplicity, we 

use the term “categorical variable” (or the adjective “categorical”) referring to “non-

ordinal categorical variable” throughout this paper. Given the complexity of molecular 

pathology and pathogenesis indicated by the unique disease principle (1), no single 
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biomarker can perfectly subclassify any disease entity. Notably, molecular disease 

markers are often correlated (37).  For example, in colorectal cancer, there is a strong 

association between high-level microsatellite instability (MSI-high) and high-level CpG 

island methylator phenotype (CIMP-high), and between CIMP-high and the BRAF 

mutation (38). Cigarette smoking has been associated with the risk of MSI-high 

colorectal cancer (16-18, 20, 39-42), CIMP-high colorectal cancer (17, 20, 42, 43), and 

BRAF mutated colorectal cancer (17, 19, 20, 42). Given the correlations between these 

molecular markers, the association of smoking with a subtype defined by one marker 

may solely (or in part) reflect the association with a subtype defined by another marker. 

Thus, it remains unclear which molecular marker subtypes are primarily differentially 

associated with smoking, and how it can confound the association between smoking 

and subtypes defined by other markers. Although the published methods (33-35) are 

useful to analyze the exposure-subtype associations according to multiple subtyping 

markers in cohort studies using existing statistical software, analysis using those 

methods can become computationally infeasible in large datasets. In this article, we 

present an intuitive and computationally efficient biostatistical method for the analysis of 

disease and etiologic heterogeneity when there are multiple disease subtyping markers 

(categorical and/or ordinal), which are possibly but not necessarily correlated.  

 

 

 

METHODS 
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Cohort and nested case-control studies 

 

In cohort studies where age at disease onset is available, a commonly used 

statistical model for evaluating subtype-specific exposure-disease associations is the 

cause-specific hazards model (44, 45): 

 

      𝜆𝑗(𝑡|𝑿𝑖(𝑡), 𝑾𝑖(𝒕)) = 𝜆0𝑗(𝑡)exp {𝜷1𝑗𝑿𝑖(𝑡) + 𝜷2𝑗𝑾𝑖(𝒕)},                  [1] 

 

where 𝜆𝑗(𝑡) is the incidence rate at age 𝑡 for subtype 𝑗, 𝜆0𝑗(𝑡) is the baseline incidence 

rate for subtype 𝑗, 𝑿𝑖(𝑡) is a possibly time-varying column vector of exposure variables 

for the 𝑖th individual, 𝑾𝑖(𝑡) is a possibly time-varying column vector of potential 

confounders, and 𝜷1𝑗 and 𝜷2𝑗 are row vector-valued log relative risks (RRs) for the 

corresponding covariates for subtype 𝑗. Model 1 can be estimated in cohort studies and 

incidence density-sampled case-control studies (46). Assume 𝐽 subtypes are resulted 

from cross classification of multiple categorical and/or ordinal markers. We create binary 

indicators for categorical markers; thus, hereafter, we treat the marker variables as 

either binary or ordinal. Let 𝑠𝑝𝑗 denote the level of the 𝑝th marker variable 

corresponding to the 𝑗th subtype; it is 1 or 0 if the 𝑝th marker variable is binary, and is 

the ordinal or median score of the marker level corresponding to the 𝑗th subtype if the 

𝑝th marker is an ordinal marker, 𝑝 = 1, … , 𝑃, 𝑗 = 1, … 𝐽.  

 

One-stage method. The method developed by Rosner, et al. (35), Chatterjee (33) 

and Chatterjee, et al. (34) can be usefully applied in cohort studies to study multiple 
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markers. In that method, 𝜷1𝑗 in model 1 is modeled using the marker variables, for 

example, by 𝜷1𝑗(𝜸) =  𝜸0 + ∑ 𝜸𝑝𝑠𝑝𝑗
𝑃
𝑝=1 , where some interaction terms of marker 

variables can be added. Model 1 then becomes   

 

   𝜆𝑗(𝑡|𝑿𝑖(𝑡), 𝑾𝑖(𝑡)) = 𝜆0𝑗(𝑡) exp{𝜸0𝑿𝑖(𝑡) + ∑ 𝜸𝑝𝑠𝑝𝑗𝑿𝑖(𝑡) +𝑃
𝑝=1 𝜷2𝑗𝑾𝑖(𝑡)}.     [2] 

 

To distinguish this method from the proposed two-stage one below, we name it “one-

stage method”. The parameters of interest, 𝜸0 and each 𝜸𝑝, which have the same 

dimension as 𝜷1𝑗, characterize how the levels of multiple markers are associated with 

differential exposure associations. We can obtain the maximum partial likelihood 

estimate (33, 34) of 𝜸 =  {𝜸0, 𝜸𝑝, 𝑝 = 1, … , 𝑃} using the existing statistical software for the 

Cox model analysis, such as PROC PHREG in SAS, through the data duplication 

method (47), which is based on the following transformation of model 2: 

 

   𝜆𝑗(𝑡|𝑿𝑖(𝑡), 𝑾𝑖(𝑡)) = 𝜆0𝑗(𝑡) exp{𝜸0𝑿𝑖(𝑡) + ∑ 𝜸𝑝𝑿̃𝑝𝑗𝑖(𝑡) + ∑ 𝜷2𝑙𝑾𝑙𝑖(𝑡)𝐽
𝑙=1

𝑃
𝑝=1 },  

 

where 𝑿̃𝑝𝑗𝑖(𝑡) = 𝑠𝑝𝑗𝑿𝑖(𝑡), 𝑾𝑙𝑖(𝑡) = 𝑾𝑖(𝑡) for 𝑙 = 𝑗, and 𝑾𝑙𝑖(𝑡) = 𝟎 for  𝑙 ≠ 𝑗. In this data 

duplication method, model 2 can be fit using the stratified Cox regression (stratified by 

subtype) on an augmented data set, in which, each block of person-time is augmented 

for each subtype, and variables 𝑿̃𝑝𝑗𝑖 and 𝑾𝑗𝑖 are created for 𝑝 = 1, … 𝑃, 𝑗 = 1, … , 𝐽. 

Rosner, et al. (35) also proposed an adjusted RR for the exposure-disease association 

for a disease subtype defined by one or some marker(s) while adjusting for other 

markers. The data duplication method may become computationally infeasible when the 
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augmented dataset becomes too large; this can easily happen when the original data 

set is sizable and the number of subtypes cross-classified from the multiple markers is 

large. For example, in our colorectal example, there are 3,099,586 rows in our original 

data set. With 𝑃 = 3 and 𝐽 = 8, in the augmented data set, there will be about 

3,099,586 × 8 = 24,796,688 rows, 𝑃 × 𝐽 = 24 new variables created for each exposure 

variable, and 𝐽 = 8 variables created for each confounding variable. If considering more 

markers, the large augmented dataset can easily make the Cox model analysis 

computationally infeasible. 

 

Two-stage method. When subtypes are defined by multiple categorical and/or 

ordinal markers, we propose a meta-regression method that is intuitive, does not need 

augmentation of the dataset and can be easily implemented using existing statistical 

software for the mixed model analysis. We first assume the exposure variable 𝑋𝑖(𝑡) in 

Model 1 is scalar. This includes the situations in which the exposure is continuous or 

binary, and the trend analysis for categorical exposure in which a new continuous 

variable, median level in each exposure category, is included in model 1. The meta-

regression method includes two stages of analysis. The first stage is to conduct the 

subtype-specific analysis for each cross-classified subtype from the multiple markers. 

For the cohort and nested case-control study, this analysis can be based on Model 1. 

Typically, a standard competing risks framework can be used, where it is assumed that 

only one disease subtype can be observed in each individual. The occurrence of a 

disease subtype that is different from the subtype for which the exposure association is 

studied is censored at the date of diagnosis. The model for the second stage analysis is 



9 

 

              𝛽̂1𝑗 =  𝛾0 + ∑ 𝛾𝑝𝑠𝑝𝑗
𝑃
𝑝=1 + 𝑒𝑗 ,                                                  [3] 

where 𝛽̂1𝑗, the estimated log (𝑅𝑅) representing the exposure association with the 𝑗th 

subtype, is obtained in the first stage analysis, and 𝑒𝑗  are within-study sampling errors; 

that is, 𝑉𝑎𝑟(𝑒𝑗) = 𝑉𝑎𝑟̂(𝛽̂1𝑗). Since, in the competing risk framework, the relative risks for 

distinct tumor subtypes are asymptotically uncorrelated (45), this meta-regression for 𝐽 

subtypes is the same as the standard meta-regression for 𝐽 independent studies. 

Interactions of 𝑠𝑝𝑗 can be included as covariates in model 3 if appropriate. We can use 

the Wald test to test the hypothesis 𝐻0: 𝛾𝑝 = 0, for each 𝑝. This null hypothesis implies 

that the exposure-subtype association does not change over the level of the 𝑝th marker 

variable while controlling for the other marker variables. For a categorical marker, we 

can also test whether  𝛾𝑝 = 0 for all 𝑝′s corresponding to the binary marker variables 

created for this categorical marker; the null hypothesis implies that the categorical 

marker does not contribute to the possible etiologic heterogeneity. Note that the 

difference between this two-stage method with a fixed effects meta-regression model 

and the one-stage method is essentially only in the estimation method, not the model. 

We can also add subtype-specific random effects in model 3 to account for 

heterogeneity between subtypes that cannot be explained by variables in model 3. 

Below is a random effects meta-regression model (48),  

                           𝛽̂1𝑗 =  𝛾0 + ∑ 𝛾𝑝𝑠𝑝𝑗
𝑃
𝑝=1 + 𝑏𝑗 + 𝑒𝑗,                                            [4] 

where 𝑏𝑗~𝑁(0, 𝜎𝑏
2) are subtype-specific random effects accounting for heterogeneity 

between the subtypes that cannot be explained by variables 𝑠𝑝𝑗, and 𝑒𝑗 , assumed 

independent of 𝑏𝑗, has the same definition as in model 3. This random effects two-stage 
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method uses a different model from the fixed effects two-stage and the one-stage 

methods. It has the advantage over both the fixed effects two-stage method and the 

one-stage method that it can incorporate additional heterogeneity between subtypes 

that cannot be explained by the given marker variables. If 𝜎𝑏
2 = 0, where model 4 

agrees with model 3, the random effects meta-regression model method is typically less 

efficient than the fixed effects method, and since the one-stage method is a maximum 

likelihood method, it should be the most efficient among the three methods. In the 

random effects model, the test 𝐻0: 𝜎𝑏
2 = 0 assesses the significance of the random 

effects term. Note that when the number of subtypes is small, this test may be 

underpowered and the estimate of 𝜎𝑏
2 may be imprecise. When the test rejects 𝐻0: 𝜎𝑏

2 =

0 or when we believe there is heterogeneity in addition to those explained by the marker 

variables, we may use the random effects model in the two-stage method. 

 

Unmatched case-control study 

 

In the unmatched case-control design, the first-stage model of the two-stage 

method can be the nominal polytomous logistic regression  

      𝑃(𝑌𝑖 = 𝑗|𝑋𝑖, 𝑾𝑖)/𝑃(𝑌𝑖 = 0|𝑋𝑖, 𝑾𝑖) = exp(𝛽0𝑗 + 𝛽1𝑗𝑋𝑖 + 𝜷2𝑗𝑾𝑖) , 𝑗 = 1, … , 𝐽,                     

where 𝑌 = 𝑗 represents subtype 𝑗 cases, 𝑌 = 0 represents controls, and 𝛽1𝑗 represents 

the subtype-specific log odds ratio (OR), assumed to be a scalar. The scenarios where 

the exposure is a vector will be considered in a later section. If the disease is rare, 

exp(𝛽1𝑗)  approximates 𝑅𝑅. In this design, the subtype-specific association estimates, 

𝛽̂11, … , 𝛽̂1𝐽, are typically correlated. The second stage model of the two-stage method is 
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the meta-regression model 3 or 4 with an additional condition: 𝐶𝑜𝑣(𝑒𝑗1
, 𝑒𝑗2

) =

𝐶𝑜𝑣̂(𝛽̂1𝑗1,𝛽̂1𝑗2
). R function rma.mv() can be used to estimate 𝛾𝑝, 𝑝 = 1, … 𝑃, in models 3 

and 4 and the variance of 𝛾𝑝 (49). We can then use the Wald test to test the hypothesis 

𝐻0: 𝛾𝑝 = 0 for each 𝑝, or test whether  𝛾𝑝 = 0 for all 𝑝′s corresponding to the binary 

marker variables created for a categorical marker. 

 

Interaction between markers 

 

The adjusted 𝑅𝑅̂ proposed  by Rosner, et al. (35) can also be estimated in 

models 3 and 4. For example, if there are two binary markers, cross-classification of 

which defines 4 subtypes, and the second stage model of the fixed effects meta-

regression method is 𝛽̂1𝑗 =  𝛾0 + 𝛾1 𝑠1𝑗 + 𝛾2 𝑠2𝑗 + 𝑒𝑗 , 𝑗 = 1, … ,4, where 𝛾𝑝 represents the 

difference in exposure-disease subtype associations between the two subtypes defined 

by the 𝑝th marker while the level of the other marker is the same, 𝑝 = 1, 2.  The meta-

regression method can also be used to evaluate whether the difference in exposure-

disease subtype association across the subtypes defined by one marker depends on 

the level of another marker by including appropriate interaction terms for these markers 

in the meta-regression model. For example, in the second stage fixed effects model 

𝛽̂1𝑗 =  𝛾0 + 𝛾1 𝑠1𝑗 + 𝛾2 𝑠2𝑗 + 𝛾3 𝑠1𝑗 × 𝑠2𝑗 + 𝑒𝑗 ,  rejection of the null hypothesis 𝐻0: 𝛾3 = 0 

implies that the difference in exposure-disease subtype associations across the 

subtypes defined by the first marker depends on the level of the second marker. The 

discussion above, which is for the fixed effects two-stage method, can be easily 

extended to the random effects method. 
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Categorical exposures and multiple exposures 

 

  Let 𝜷1𝑗 = (𝛽1𝑗1, … , 𝛽1𝑗𝐾), 𝐾 > 1, represent the subtype-specific exposure-disease 

association corresponding to binary indicators created for a categorical exposure with 

𝐾 + 1 levels, or multiple exposures, one or more of which could be categorical 

exposures, for which binary indicators are created. The first stage analysis of the two-

stage method, which is the subtype-specific analysis for each cross-classified subtype, 

is the same as in the cases when 𝛽1𝑗 is a scalar. At the second stage, one strategy is to 

conduct the meta-regression analysis for each element of 𝜷1𝑗 separately. For the 𝑘th 

element of 𝜷1𝑗, the random effects meta-regression model  𝛽̂1𝑗𝑘 =  𝛾0𝑘 + ∑ 𝛾𝑝𝑘𝑠𝑝𝑗
𝑃
𝑝=1 +

𝑏𝑗𝑘 + 𝑒𝑗𝑘,  or the fixed effects meta-regression model, which does not include the random 

effects term 𝑏𝑗𝑘, may be used to characterize the relationship between 𝛽1𝑗𝑘 and levels of 

the multiple markers. For an any given 𝑘, in cohort and nested case-control studies, 

𝑒𝑗𝑘’s,  𝑗 = 1, … 𝐽, are independent, and in unmatched case-control studies, 

𝑐𝑜𝑣(𝑒𝑗1𝑘, 𝑒𝑗2𝑘) = 𝑐𝑜𝑣( 𝛽̂1𝑗1𝑘,  𝛽̂1𝑗2𝑘). 

Alternatively, the second stage model can be a random effects multivariate meta-

regression model (50, 51) 

                              (
𝛽̂1𝑗1

…
𝛽̂1𝑗𝐾

) =  (

𝑟01

…
𝑟0𝐾

) +  ∑ (

𝑟𝑝1

…
𝑟𝑝𝐾

)𝑃
𝑝=1 𝑠𝑝𝑗 + 𝒃𝑗 + 𝒆𝑗,                  [5]                   

where the error term 𝒆𝑗 = (𝑒𝑗1, … , 𝑒𝑗𝐾) is a 𝐾- dimension normal distribution with 

𝑐𝑜𝑣(𝑒𝑗𝑘1,𝑒𝑗𝑘2
) = 𝐶𝑜𝑣̂(𝛽̂1𝑗𝑘1,𝛽̂1𝑗𝑘2

) for 𝑘1 ≠ 𝑘2, and 𝑣𝑎𝑟(𝑒𝑗𝑘 ) = 𝑉𝑎𝑟̂(𝛽̂1𝑗𝑘 ). In cohort and 
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nested case-control studies, 𝑐𝑜𝑣(𝑒𝑗1𝑘1
, 𝑒𝑗2𝑘2

) = 0, and for unmatched case-control 

studies, 𝑐𝑜𝑣(𝑒𝑗1𝑘1
, 𝑒𝑗2𝑘2

) = 𝑐𝑜𝑣( 𝛽̂1𝑗1𝑘1
,  𝛽̂1𝑗2𝑘2

), for 𝑗1 ≠ 𝑗2, 𝑘1, 𝑘2 = 1, . . 𝐾. The random 

effects term 𝒃𝑗 is a 𝐾- dimension normal distribution with mean zero, independent from 

𝒆𝑗. The fixed effects multivariate meta-regression model is model 5 with 𝒃𝑗 excluded. As 

pointed out in (50, 51), the estimator of 𝑟𝑝𝑘 using the multivariate random effects meta-

regression method is more efficient than that from the univariate random effects meta-

regression method presented above. Presumably the same conclusion can be made on 

the fixed effects models. R function rma.mv() can be used to estimate 𝛾𝑝𝑘  in the 

random effects and fixed effects multivariate meta-regression models.  

      

EXAMPLE 

 

To illustrate the proposed meta-regression method for multiple markers, we 

examine the associations between smoking status (never, former, current) and 8 

possible colorectal cancer subtypes defined by three binary markers, CIMP (high vs. 

low/negative), MSI (high vs. microsatellite stable (MSS)) and BRAF (mutant vs. wild-

type). The smoking status is coded as 0 for never, 1 for former, and 2 for current, and 

the trend association is examined. The analysis includes 88,620 women in the Nurses’ 

Health Study (NHS) and 46,251 men in the Health Professionals Follow-Up Study 

(HPFS), with 3,099,586 person-years of follow-up. In each cohort, one subtype with 

fewer than 5 cases (CIMP-low/negative, MSI-high, BRAF-mutated) was excluded, 

leading to a total of 1118 colorectal cancer cases (654 women in NHS, and 464 men in 

HPFS) in the remaining 7 subtypes.  
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In the first stage of the two-stage meta-regression approach, a subtype-specific 

multivariate Cox model analysis, stratified by age (months) and calendar year of the 

questionnaire cycle, and adjusted for potential confounders, was performed for each 

cohort. Table 1 contains subtype definitions, subtype-specific case numbers, and the 

estimated smoking status - colorectal cancer subtype associations in the NHS and 

HPFS. In the second stage analysis, we modeled the subtype and cohort-specific 

log(RR) using the three markers considered, MSI, CIMP and BRAF, and cohort (NHS vs. 

HPFS), and compared the results with those from the one-stage method (33-35); in the 

one-stage method, we conducted the Cox model analysis for each cohort using the data 

duplication method, and then combined the estimates from NHS and HPFS by the fixed 

effects meta-analysis approach. Table 2 shows inferences for exponential of the 

coefficients of the marker variables in the model for log(RR) which represent the ratios 

of RRs (RRR) between marker levels. For example, based on the meta-regression 

method, the estimated ratio of the RR for the association of smoking with CIMP-high 

colorectal cancer over the RR for CIMP-low/negative colorectal cancer, while the MSI 

and BRAF levels stay the same, was 1.23 (95% confidence interval: 0.84, 1.82). As 

shown in Table 2, the results from these two methods were consistent. These analysis 

results suggest that we do not have sufficient statistical evidence to conclude that the 

smoking - colorectal cancer subtype associations are different across subtypes defined 

by any one of the biomarkers (MSI, CIMP and BRAF) while controlling for the other two 

biomarkers. 

In a second analysis for illustrating the proposed meta-regression method, the 

first stage analysis was the same as before, but in the second stage, we started from a 
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model with all three markers, two-way interactions of the markers, and cohort, and then 

used stepwise model selection with a cutoff p-value of 0.05 for entering or removing the 

variables. This analysis was for selecting covariates in the meta-regression model that 

are important for characterizing the subtype-specific exposure-disease association. 

Only MSI was in the final model (RRR for MSI-high versus MSS = 1.38; 95% confidence 

interval: 1.07, 1.79; p-value = 0.015).  

 

DISCUSSION 

 

When subtypes are defined by multiple categorical and/or ordinal markers, we 

propose a meta-regression method that is intuitive, does not need augmentation of the 

dataset and can be easily implemented using existing statistical software such as SAS 

procedures for the mixed model analysis. This meta-regression method can be used to 

test for etiologic heterogeneity across multiple disease subtypes classified by multiple 

markers, to assess whether the exposure-disease subtype associations are different 

across subtypes defined by one marker while controlling for other markers, and to 

evaluate whether the difference in exposure-disease subtype association across 

subtypes by one marker depends on any of other markers.  

Addressing etiologic heterogeneity by MPE research has relevance to disease 

prevention.  As an example, we herein discuss smoking, colonoscopy and colorectal 

cancer risk.  Colonoscopy has been associated with lower colorectal cancer risk for up 

to 10 years after the procedure in individuals with average risk for developing colorectal 

cancer (52); however, it remains to be determined whether colonoscopy every 10 years 
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is also effective for colorectal cancer prevention in high-risk individuals.  A recent MPE 

study suggests that preventive effect of colonoscopy may be weaker for MSI-high 

colorectal cancer than for non-MSI-high colorectal cancer (52). MPE studies (16-18, 20, 

39-42) have also shown that smokers are susceptible to developing MSI-high colorectal 

cancer.  Taken together, it is implied that preventive effect of colonoscopy is not as 

effective for smokers compared to non-smokers.  Hence, MPE research can help us 

towards more personalized disease prevention strategies.  

In addition to heterogeneity between tumors across individuals, accumulating 

evidence has indicated heterogeneity within one tumor in one individual.  An integrative 

concept ("the unique tumor principle") on intra- and inter-tumor heterogeneity along with 

epidemiologic exposures has been discussed in detail (53). Though our current paper 

primarily addresses inter-tumor (or inter-individual) heterogeneity, it is of our interest to 

develop new statistical methodologies to address both intra- and inter-tumor 

heterogeneity in the future.   

As advancements of biomedical technologies, molecular pathology tests are 

increasingly common in clinical practice as well as epidemiologic studies (54-56). The 

MPE approach is useful not only for assessment of risk of developing disease but also 

for evaluation of predictive biomarkers for intervention in a disease population (57). In 

the future, routine clinical molecular pathology data may be integrated into population-

based disease registries and databases, and large-scale MPE studies can be routine 

research practice (58). Thus, our methodology will be widely useful.         

We developed a user-friendly SAS macro %stepmetareg implementing this meta-

regression method. It includes a stepwise selection procedure to select covariates 



17 

 

considered in the meta-regression model that are important for characterizing the 

subtype-specific exposure-disease association, represented by 𝜷̂1𝑗. The SAS macro 

can be obtained at the website, http://www.hsph.harvard.edu/donna-

spiegelman/software/ 

This meta-regression method will be most useful in situations where the number 

of subtypes is relatively low; otherwise, the number of cases for each unique tumor 

subtype defined by cross-classification of the multiple markers may be too small to 

obtain stable estimates of each 𝜷1𝑗. The minimum number of cases required for each 

tumor subtype for obtaining stable estimates of each 𝜷1𝑗 depends on the number of 

covariates in the first-stage model. A rule of thumb for the minimum events per 

covariate is 5 to 10. An advantage of the proposed two-stage method for cohort studies 

is that 𝜷̂1𝑗, 𝑗 = 1, … , 𝐽, can be estimated separately, without using the data duplication 

method, which becomes computationally infeasible when the augmented dataset 

becomes too large. In addition, the random effects model has the advantage that it can 

incorporate additional heterogeneity between subtypes that cannot be explained by the 

given marker variables. 

Disease subtype data are often missing in some proportion of cases. Chatterjee, 

et al. (34) developed an estimating function method based on model 2 which can be 

used to handle missing subtype data under a missing-at-random assumption. That 

method can be used directly to handle missing subtype data for estimating 𝜷1𝑗 in the 

first stage of the two-stage models. Statistical methods for handling missing marker data, 

which are covariates data now, in the second stage model of the two-stage method may 

be developed through extension of existing methods for missing covariates data 

http://www.hsph.harvard.edu/donna-spiegelman/software/
http://www.hsph.harvard.edu/donna-spiegelman/software/
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problems in the mixed model analysis; this is a topic of future research. Alternatively, we 

may use the conventional method of creating missing indicators for missing markers 

data, and the method of imputing the missing marker data based on regression models 

that link the marker data and covariates that contain information about the marker data. 

While using these methods, the two-stage method with a random effect meta-regression 

model could have the advantage of partially taking into account additional variability due 

to using missing indicators or using imputed marker data through the random effect 

term; future research is needed for this topic.       

In conclusion, in consideration of pathogenesis and etiologic heterogeneity of 

disease, we developed a meta-regression method to study etiologic heterogeneity 

across disease subtypes defined by multiple biomarkers. This method is useful in the 

emerging interdisciplinary field of molecular pathological epidemiology (32, 59).  There 

is an increasing need to integrate molecular pathology and epidemiology to better 

understand disease etiologies and causalities (59-62). Our meta-regression method can 

be widely useful, as use of molecular pathology and genomic technologies is 

increasingly common in clinical medicine and public health. 
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Table 1. Subtype definitions, subtype-specific case numbers and estimated 

smoking status - colorectal cancer subtype associations.a  

Subtype CIMP MSI BRAF 

N of 

cases RR 

 

   95% CIb P valueb 

1 L/N MSS Wild-type 832 1.12 1.01,1.25 0.039 

2 L/N MSS Mutant 47 0.86 0.54,1.37 0.53 

3 L/N High Wild-type 42        1.35 0.80,2.25 0.26 

4 High MSS Wild-type 34 1.28 0.71,2.32 0.41 

5 High MSS Mutant 31 1.00 0.57,1.78 0.99 

6 High High Wild-type 43 1.93 1.18,3.14 0.008 

7 High High Mutant 95 1.45 1.05,2.00 0.026 

Abbreviations:  CI, confidence interval; CIMP, CpG island methylator phenotype; L/N, 

low/negative; MSI, microsatellite instability; MSS, microsatellite stable; RR, relative risk.    

a The analysis includes only subtypes with ≥ 5 cases. The subtype-specific analyses 

were controlled for body mass index (<25, 25-29.9, ≥30 kg/m2), family history of 

colorectal cancer (yes/no), physical activity in metabolic equivalent of tasks (quintiles), 

red meat intake (quintiles of servings per day), alcohol consumption (0, quartiles of 

grams per day), total caloric intake (quintiles of calories per day) , regular aspirin use (2 

or more tablets per week or at least 2 times per week/less) and stratified by age (month), 

calendar year. Postmenopausal hormone use (never/ever) is also adjusted in NHS.  

b The cohort-specific estimates were combined using a fixed effects meta-analysis 

method. 



29 

 

 

 

Table 2. Results from modeling the smoking status - colorectal cancer subtype 

association using three markers 

  Two-stage approach  One–stage approach 

Subtype by    RRR  95% CI P value RRR  95% CI P value 

CIMP        1.23  0.84 – 1.82 0.29 1.28  0.87 – 1.88 0.21 

MSI 1.34 0.93 – 1.91 0.11 1.31  0.92 – 1.87 0.13 

BRAF 0.78  0.55 – 1.09 0.14 0.78  0.56 – 1.10 0.16 

Abbreviations:  CI, confidence interval; CIMP, CpG island methylator phenotype; MSI, 

microsatellite instability; RRR, ratio of relative risks. 

 

 

 

 




