
Metabolites are the substrates and products 
of metabolism that drive essential cellular 
functions, such as energy production and 
storage, signal transduction and apoptosis. 
In addition to being produced directly by the 
host organism, metabolites can derive from 
microorganisms, as well as from xenobiotic, 
dietary and other exogenous sources1.

The biochemical actions of metabolites 
are far-reaching. To start, metabolites can 
regulate epigenetic mechanisms and 
maintain the pluripotency of embryonic 
stem cells (ES cells)2–6. It has also been 
well established that metabolites such as 
ATP, acetyl-CoA, NAD+, and S‑adenosyl 
methionine (SAM) can function as 
co‑substrates, regulating post-translational 
modifications that affect protein activity7,8. 
In addition, fatty acids and hormones can 
interact with plasma proteins to enable 
their transport in the bloodstream9,10. 
Furthermore, metabolite–protein 
interactions can aid in facilitating cellular 
responses by initiating signalling cascades, 
thus evidencing the role of metabolites in 
signal transduction11,12.

Indirectly, metabolites affect the 
environment in which they are produced. 
Under normal conditions, homeostatic 
controls exist to counteract any adverse 
biological consequences of such effects. 
For example, acidic metabolites decrease the 
pH of the microenvironment13,14, and high 
concentrations of these acidic metabolites 

Untargeted metabolomics aims to measure 
the broadest range of metabolites present 
in an extracted sample without a priori 
knowledge of the metabolome. The 
types of metabolites that are recovered 
are influenced by the extraction and 
analytical method of choice, but they 
result in a complex data set that requires 
computational tools to identify and 
correlate metabolites between samples 
and to examine their interconnectivity 
in metabolic pathways in relation to the 
phenotype or aberrant process (see BOX 2 
and Supplementary information S1 (box)). 
By contrast, targeted metabolomics 
provides higher sensitivity and selectivity 
than untargeted metabolomics, but 
metabolites are analysed on the basis of 
a priori information, whereby methods 
are developed and optimized for the 
analysis of specific metabolites and 
metabolic pathways of interest. Targeted 
analysis also constitutes an important 
part of a metabolomics workflow to 
validate and expand upon results from 
untargeted analysis16.

The types of samples that can be 
analysed using metabolomics are 
wide-ranging and include tissues, cells and 
biofluids. Tissue analysis, in particular, is 
perhaps the most powerful approach for 
studying localized and specific responses 
to stimuli and pathogenesis, yielding 
explicit biochemical information about 
the mechanisms of disease. Traditionally, 
tissue analysis involves extraction of the 
complete tissue material into a liquid form, 
from which the metabolite changes are 
averaged across the different cell types and 
regions of the analysed organ. In addition 
to this total tissue analysis, subregional, 
cellular and even subcellular metabolite 
profiles can provide further insight into 
structure-to‑function relationships; 
this is particularly valuable in the case 
of heterogeneous tissues such as brain 
and cancers17. Simultaneous sampling of 
arterial blood (entering the organ) and 
venous blood (draining the organ), followed 
by paired analysis, can also have value in the 
investigation of tissue metabolic activity16. 
This paired arteriovenous approach 
provides information about the metabolite 
uptake and release patterns across the 

are found, for instance, in the colon, 
owing to bacterial fermentation of dietary 
carbohydrates that leads to the production 
of short-chain fatty acids. These are, 
however, efficiently neutralized by mucosal 
production of bicarbonate. Notably, such 
homeostatic controls can be compromised 
with age and during disease, leading to 
functional decline and a failure to return 
to steady state. In addition, the adaptation 
of aberrant glycolytic cancer cells to the 
large amounts of lactate and protons that 
they produce occurs through modification 
of the activity of transporters, exchangers, 
pumps and carbonic anhydrases, which 
all help to maintain the intracellular pH 
and enable cells to survive the acidic 
microenvironment15. Thus, as metabolites 
can have a wide range of functions in 
the cell and organism, there is growing 
motivation to better ascertain their specific 
functions, as well as to understand their 
physiological roles. This can be done 
by implementing various metabolomic 
approaches to identify metabolites and 
metabolic pathways that are associated with 
particular phenotypes, and then integrating 
this knowledge with functional and 
mechanistic biological studies.

The main methodologies that are used 
for metabolite recovery and identification 
are untargeted (global) and targeted mass 
spectrometry-based metabolomics, which 
are discussed in more detail in BOX 1. 
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Abstract | Metabolomics, which is the profiling of metabolites in biofluids, cells and 
tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative 
developments in informatics and analytical technologies, and the integration of 
orthogonal biological approaches, it is now possible to expand metabolomic 
analyses to understand the systems-level effects of metabolites. Moreover, because 
of the inherent sensitivity of metabolomics, subtle alterations in biological 
pathways can be detected to provide insight into the mechanisms that underlie 
various physiological conditions and aberrant processes, including diseases.
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tissue of interest and therefore gives insight 
into tissue metabostasis. The power of this 
paired analysis allows for the measurement 
of metabolite arteriovenous differences or 
ratios and offers a compelling compromise 
with sampling effort, compared to 
the traditional approach of venous 
blood analysis.

During the past few years, substantial 
progress has been made in metabolomic 
analysis by improving instrument 
performance, experimental design and 
sample preparation, ultimately facilitating 
broader analytical capabilities. Moreover, 
the surge in new chemoinformatic 
(computational approaches for handling 
chemical information) and bioinformatic 
(computational approaches for handling 
biological information) tools has provided 
extensive support for data acquisition, 
analysis and integration. This has greatly 
enhanced our ability to identify metabolites 
in various samples and allowed us to 
correlate these metabolites with particular 

Current challenges in metabolomics
During the past few years, metabolomics has 
evolved considerably to overcome challenges 
that initially confounded analysis18. A major 
challenge still exists for the identification of 
metabolites and validation of metabolites 
in human populations. However, the 
most important challenge is to develop 
workflows for assigning biological meaning 
to metabolites and to move towards finding 
mechanisms of disease.

Metabolite identification and validation. 
The initial focus of metabolomics has 
been on biomarker discovery, with the 
aim of identifying metabolites that are 
correlated with various diseases and 
environmental exposures. This has, for 
example, led to the identification of plasma 
trimethylamine N‑oxide (TMAO) and 
urinary taurine as markers of cardiovascular 
disease (CVD)19 and ionizing radiation 
exposure20–22, respectively. In order to 
correlate metabolites with a phenotype, 
the two biggest hurdles faced are metabolite 
identification and biomarker validation. 
In any given untargeted metabolomics 
experiment, only a subset of all metabolite 
features present can be positively identified. 
This has been facilitated by novel in silico 
tools23–25 (see below, as well as BOX 2 and 
Supplementary information S1 (box)), the 
expansion and development of metabolite 
databases26 (see BOX 2 and Supplementary 
information S1 (box)) and the synthesis of 
previously unattainable standard compounds 
that can confirm the identification of the 
metabolite (these standards are either novel 
compounds or were previously not available 
in an isotope-labelled form)27.

Biomarker validation can be challenging, 
owing to difficulties in measuring subtle 
differences in metabolite concentrations 
between control and aberrant conditions, 
and because of the lack of follow‑up with 
targeted metabolomic experiments (BOX 1). 
These follow‑up experiments should be 
carried out in an additional cohort of 
biological samples for validation of the 
metabolite changes with the phenotype. 
Moreover, one of the largest challenges to 
biomarker validation is overcoming inter-
individual metabolite variation, which 
arises owing to differences in genetic factors 
and environmental exposures. All of these 
influences result in significantly different 
metabolic responses in population studies1, 
making it extremely difficult to pinpoint 
metabolites that are correlated with a 
particular condition and, ultimately, to 
provide clinical biomarkers. This is the case 

phenotypes, thus establishing useful 
biomarkers that are indicative of particular 
physiological states or aberrations. The 
ultimate challenge now is to move beyond 
simply identifying metabolites and 
using them as biomarkers, and to start 
establishing the direct physiological roles 
of metabolites and their involvement in 
metabolic networks, as well as determining 
how changes in their levels are implicated 
in different phenotypic outcomes. This 
Innovation article focuses on how this most 
relevant hurdle for metabolomics can be 
overcome. We describe how advances in 
technologies that are used in metabolite 
identification and analysis, experimental 
design and pathway mapping are helping 
us to gain more meaningful data, revealing 
important nodes for further investigation. 
We also discuss how this information, 
when combined with traditional biological 
methods, can enable us to ascertain 
molecular mechanisms and begin to infer 
biological causality.

Box 1 | Mass spectrometry in metabolomics

Mass spectrometry
Mass spectrometry is an excellent analytical platform for metabolomic analysis, as it provides high 
sensitivity, reproducibility and versatility. It measures the masses of molecules and their fragments to 
determine their identity. This information is gained by measuring the mass‑to‑charge ratio (m/z) of 
ions that are formed by inducing the loss or gain of a charge from a neutral species. The sample, 
comprising a complex mixture of metabolites, can be introduced into the mass spectrometer either 
directly or preceded by a separation approach (using liquid chromatography or gas chromatography). 
Direct injection has been successfully implemented for high-throughput metabolomics. However, as 
thousands of ions can be present in metabolomic experiments, chromatographic separation before 
entering the mass spectrometer minimizes signal suppression and allows for greater sensitivity, and 
— by providing a retention time identifier — it can further aid metabolite identification. In addition 
to m/z and retention time information, the identification of an ion is facilitated by fragmentation 
pattern information that is acquired by tandem mass spectrometry83.

Untargeted metabolomics
Untargeted or global metabolomic analysis allows for an assessment of the metabolites extracted 
from a sample and can reveal novel and unanticipated perturbations. Untargeted analyses are most 
effective when implemented in a high-resolution mass spectrometer, to facilitate structural 
characterization of the metabolites. Its primary advantage is that it offers an unbiased means to 
examine the relationship between interconnected metabolites from multiple pathways. However, it 
is not yet possible to obtain all metabolite classes simultaneously, as many factors affect metabolite 
recovery, depending on the functional group of the metabolite. In addition, there are a large number 
of unknown metabolites that remain unannotated in metabolite databases35. Thus, depending on the 
pH, solvent, column chemistry and ionization technique used, untargeted metabolomics can provide 
a detailed assessment of the metabolites in a sample, revealing a wide range of metabolite classes.

Targeted metabolomics
Targeted metabolomic analyses measure the concentrations of a predefined set of metabolites. 
A standard curve for a concentration range of the metabolite of interest is prepared, so that accurate 
quantification can be gained. This type of analysis can be used to obtain exact concentrations of 
metabolites identified by untargeted metabolomics, providing analytical validation.

Imaging metabolomics
It is also possible to reveal the localization of selected metabolites within a tissue sample using 
imaging mass spectrometry techniques, such as matrix-assisted laser desorption ionization 
(MALDI)84, nanostructure-imaging mass spectrometry (NIMS)70,85, desorption electrospray 
ionization mass spectrometry (DESI)86 and secondary ion mass spectrometry (SIMS)87, 
among others. NIMS and DESI are especially suited to the analysis of small molecules.
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especially when examining a multifaceted 
disease such as cancer. There are a number of 
methods that can be applied before and after 
analysis to overcome some of the biological 
variation associated with human studies. 
Establishing appropriate experimental design 
and statistical power for the study, and using 
patient questionnaires with subsequent 
population stratification, as well as regression 
modelling, can allow for the extraction 
of important metabolites28. These types of 
approaches can remove confounding samples 
from the analysis and help to streamline 
the data to identify metabolites that are 
correlated with the biological stimulus and 
not another influence. In addition, using 
appropriate metabolite normalization 
strategies, such as analysing metabolite ratios 
or normalizing to creatinine in urine studies, 
may help. Developing databases to collect 
data on the normal fluctuations in metabolite 
concentration ranges that occur in response 
to factors such as diet29, age, gender, circadian 
rhythm and exercise, which are frequent 
causes of sample-to-sample variability, 
would also be useful. Indeed, some databases 
that contain information on specific 
metabolite concentration ranges in human 
biofluids and in dietary components — the 
Human Metabolome Database (HMDB)30 
and FooDB, respectively — have already 
been developed. 

Functional analysis of metabolites. Perhaps 
the largest challenge that metabolomic 
researchers face in any study is relating the 
identified metabolites to their biological 
roles, which is a necessary step for 
moving beyond biomarkers and towards 
mechanisms. Biomarkers obtained from 
human population studies can provide a 
starting point for finding links between 
diseases and metabolic pathways31, and 
further mechanistic work can be carried 
out using in vitro and animal-based studies, 
as previously shown32. Furthermore, 
patient-derived primary cell lines and 
xenografts can provide more reliable models 
for finding relatable data, as such samples 
make it possible to control for genetic and 
environmental influences.

However, to evaluate the biological roles 
of one or several metabolites (a metabolic 
signature), one first has to determine their 
functions in metabolic pathways and 
their interconnectivity, and, more broadly, 
determine which metabolic pathways are 
perturbed by the aberrant condition33. 
Only such a multi-level analysis can 
provide a comprehensive understanding 
of the systemic biological changes that 

In addition, novel experimental approaches, 
such as stable isotope-assisted analysis 
(see below), can trace metabolite utilization 
in pathways in a temporal manner.

Recent technical advancements
Developments in innovative informatics 
strategies have been a major driver in 
overcoming some of the challenges presented 
with metabolomic analysis33. Advances 
in data processing, statistical analysis and 
metabolite characterization have enabled 
the identification of more metabolites that 
are associated with a particular phenotype 
than was ever previously achievable. Moving 
towards mechanistic investigations, novel 
metabolic pathway analysis tools that assess 
the interconnectivity of these metabolites 
can provide important insights, particularly 

are associated with particular metabolites 
and potentially direct further mechanistic 
studies. Determining the interactions 
of metabolites in metabolic pathways 
is particularly challenging. Metabolic 
pathway maps currently include ~2,000 
metabolites; however, similar to metabolite 
databases, they are somewhat incomplete, 
as some metabolites have not yet been 
characterized34,35. Novel molecules are 
regularly being discovered, adding to the 
pool of known metabolites22,36. Multi-layered 
approaches that integrate metabolomic and 
other ‘omics’ data (see below) acquired from 
the same samples provide an opportunity 
to investigate the system-wide changes in a 
disease and to delve further into metabolic 
pathway interactions and the mechanisms 
of disease development and progression37,38. 

Box 2 | Computational tools in metabolomics

Metabolomic analyses, and untargeted metabolomics in particular, result in the generation of 
complex data sets; therefore, computational tools are crucial to process and interpret these results. 
The problems associated with big data processing, statistical analyses, metabolite identification and 
biological interpretation are not trivial, but there are now some novel tools available that accelerate 
and automate the computational workflows, providing user-friendly tools for both novice and 
expert bioinformaticians (for further details, refer to Supplementary information S1 (box)).

Data processing and statistical analysis
After data upload, mass spectral peaks are picked, realigned and annotated. The data is 
deconvoluted using computational tools to remove instrumental and chemical noise, thus 
providing only the biologically relevant information.

The types of statistical analyses that can be implemented for metabolomics data are vast, and 
choosing the correct test can be challenging. Online tools such as XCMS Online42, DeviumWeb 
MetaboAnalyst43 and many others give researchers the ability to carry out a wealth of tests. Some 
of the most recent advances are tools that provide false discovery rate measurements to ensure 
that the data have statistical power. Other concepts that are especially useful for finding 
biologically relevant metabolites are multi-group and meta-analyses, which can reveal shared 
metabolic changes across multiple experiments88.

Metabolite identification and databases
Initial putative metabolite identifications can be made on the basis of the accurate mass‑to‑charge 
ratio (m/z) of the mass spectral ion. This is aided by the use of comprehensive metabolite databases 
such as METLIN89, HMDB90, MassBank91 and GMD26,92. Tandem mass spectrometry experiments can 
then be carried out on the isolated ion, followed by matching with an authentic standard, in order 
to obtain characteristic fragments and retention time information to distinguish the ion from 
structural isomers. In silico prediction tools provide further insight into metabolite identification 
when a particular m/z or tandem mass spectrometry fragmentation pattern does not provide a 
match24,93. A recent innovation in ion mobility mass spectrometry, the rotationally averaged 
cross-collisional section (CCS), provides another level of metabolite identification, and databases 
containing CCS information are currently in the early stages of development94. Despite all of these 
innovations, some metabolite features cannot be assigned to a molecular structure. It is therefore 
important that they are published (databases for these have already been set up on METLIN) to aid 
in their future identification and correlation to phenotypes.

Biological interpretation
Network modelling and pathway-mapping tools can help us to understand the parts that 
metabolites play in relation to each other and in biological aberrations. Thereafter, metabolites can 
be placed into context with upstream genes and proteins to lead mechanistic investigations47. 
As well as the established and comprehensive metabolic network resources Kegg95, 
Recon1 (REF. 34) and Biocyc96, there are several recently developed programs that use novel 
methods to find pathway connectivity, as well as aiding in metabolite identification. These include 
mummichog46 and metabolite set enrichment analysis (MSEA)97. In addition, stable isotope 
metabolomics56,57 and omics-scale big data integration can reveal interconnectivity between 
metabolites and their relationships with genes and proteins (see also main text).

P E R S P E C T I V E S

NATURE REVIEWS | MOLECULAR CELL BIOLOGY	  VOLUME 17 | JULY 2016 | 453

©
 
2016

 
Macmillan

 
Publishers

 
Limited.

 
All

 
rights

 
reserved.

http://www.hmdb.ca/
http://foodb.ca/
http://www.nature.com/nrm/journal/vaop/ncurrent/full/nrm.2016.25.html#supplementary-information
https://github.com/dgrapov/DeviumWeb


when paired with advanced metabolomic 
techniques such as stable isotope tracing 
and integration with other orthogonal data 
sets, ultimately providing systems-level 
analyses (FIG. 1).

Informatics. The development of 
computational and chemoinformatic tools 
for metabolomics can effectively support 
experimental data upload, processing, 
statistical analyses and metabolite 
identification, and, when used in conjunction 
with bioinformatic tools, can place 
metabolites into biological context (see BOX 2 
and Supplementary information S1 (box)). 
Metabolomic data sets obtained by mass 
spectrometry (BOX 1) contain information 
on thousands of ions that are generated 
in the mass spectrometer from each 
sample, in which the ions represent the 
precursor intact metabolite or its fragments, 
adducts or isotopes. Computational 
tools are thus essential for reducing the 
redundancy in these complex data sets 
and facilitating identification of the most 
relevant metabolites.

For researchers in the field of 
metabolomics, computational resources are 
growing at a rapid rate, and many of these 
have been discussed in detail elsewhere33,39. 
However, metabolomic analysis remains a 
time-consuming process, and metabolite 
identification is still a limiting factor. 
Therefore, computational workflows 
that significantly speed up the process of 
data upload and data mining, with novel 
methods for automated or in silico metabolite 
identification and biological interpretation, 
are needed. Such automated computational 
workflows — allowing data streaming from 
the instrument to the software, automated 
qualitative and quantitative metabolite 
characterization, calculation of fold change 
and statistical significance, and, importantly, 
metabolite pathway analysis — have recently 

As discussed above, to move from 
using metabolites as predictive biomarkers 
to leading mechanistic investigations, 
the metabolites need to be put into their 
biological context by identifying 
their roles in metabolic pathways, their 
interconnectivity with other metabolites, 
and their relationships to upstream 
genes and proteins. Informatics approaches 
can greatly facilitate these analyses and can 
help to reveal broad potential metabolite 
activity across multiple metabolites 
and pathways46, and can also provide 
big data integration across different 
-omics technologies (see below)47 such 
as the systems biology approach recently 
developed on XCMS Online. As an example, 
a recent study took advantage of various 
bioinformatics tools to analyse genetic 
influences on metabolites in human blood. 
For this, a network of genetic–metabolic 
interactions was generated, first using 
Gaussian graphical models to connect 
biochemically related metabolites and 
then connecting metabolites with genetic 
loci from a genome-wide association 
study38. Novel concepts such as these have 
maximized the ability to extract important 
biological information from metabolites.

Stable isotope-assisted metabolomics. One 
of the most promising ways to ascertain the 
roles of metabolites in metabolic pathways is 
to track their utilization with stable isotope 
tracers. These experiments make use of 
commercially available metabolites labelled 
with stable isotopes such as carbon (13C), 
nitrogen (15N) or deuterium (2H). The design 
of stable isotope-assisted experiments is 
based on a priori information for a particular 
metabolite or metabolic pathway of interest; 
these studies can thus be led by information 
obtained from untargeted metabolomic 
analysis (BOX 1).

The results from targeted and/or 
untargeted metabolomic analysis do not 
provide information on intracellular 
metabolic rates and relative pathway 
activities, and, for example, increased levels 
of one metabolite can be caused by increased 
activity of metabolite-producing enzymes or 
decreased activity of metabolite-consuming 
enzymes49. Following up with stable isotope-
labelling experiments provides additional 
information on how a particular compound 
(nutrient or substrate) is metabolized with 
respect to a particular phenotype and can 
help to identify the pathways that contribute 
the most to substrate utilization. Thus, 
stable isotope-assisted tracing of a labelled 
substrate can reveal its metabolic fate.

been developed (for more detail, see 
Supplementary information S1 (box)).

As metabolomics is highly 
interdisciplinary, and not all laboratories 
have personnel that are specialized in 
all areas of the experimental workflow, 
it is often the case that some of these 
computational tools are out of reach 
for those not specialized in informatic 
approaches or new to the metabolomics 
field. Fortunately, this is beginning to change, 
with several resources provided through 
the US National Institutes of Health (NIH) 
Common Fund Metabolomics Program. 
This programme funds six regional 
comprehensive metabolomic resource cores, 
a data repository and a coordination centre, 
to enable hands‑on and online training in 
a range of areas, including data processing 
and interpretation. Another initiative, the 
Coordination of Standards in Metabolomics 
(COSMOS), is also helping to promote 
the standardization of metabolomics, by 
providing both experimental and data 
sharing, thus aiding new researchers in the 
field40 (see Supplementary information S1 
(box)). There are several tools, including the 
workflows mentioned, that are user-friendly 
but have advanced parameters for expert 
users, thus providing a resource for all levels 
of expertise41,42. Some of these are available 
as part of the mass spectrometry vendor 
software, whereas other tools are provided 
as open-access software that can be utilized 
from data upload through to the metabolite 
pathway analysis42,43. These tools have already 
been successfully used to correlate single or 
multiple validated metabolites to a biological 
aberration. For example, MZmine 2 was 
used to show the interaction between dietary 
lipids and gut microbiota for regulating 
cholesterol metabolism44, and metabolomic 
analysis using both XCMS Online and 
MetaboAnalyst revealed metabolic 
dysregulation in ischaemic retinopathy45. 
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Figure 1 | From metabolites to pathways and mechanisms. The workflow outlines a holistic approach 
that begins with high-throughput untargeted metabolite profiling. Analysis of biofluids, cells or tissues 
reveals quantitative metabolite changes (as a result of a stimulus) that can be validated further. 
Metabolites can be mapped and analysed within metabolic pathways to relate the metabolites to each 
other, and within interconnected biological pathways, providing potential targets for further mechanistic 
studies. The combination of metabolomic, orthogonal biological analysis and isotope‑assisted 
deciphering of pathways allows the mechanism of the aberrant phenotype to be ascertained.
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There are several ways to carry out 
a stable isotope-assisted experiment. 
In metabolic steady state experiments, 
the measured metabolite pools (or levels) 
are equilibrated, and fluxes (or conversion 
rates) are roughly constant35. In addition, 
the labelling enrichment becomes stable 
over time (from a labelled nutrient into 
a given metabolite) to reach the isotopic 
steady state. The interpretation of 
isotope-enriched data in such conditions 
can provide information on relative 
pathway activity, such as the relationship 
between metabolites, and it also allows 
quantification of nutrient contributions to 
the production of different metabolites49. 
By contrast, in kinetic (or dynamic) flux 
experiments, the system has yet to reach 
steady state, and flux refers to the in vivo 
velocities of the individual metabolic 
reactions35. Thus, kinetic flux analysis 
provides dynamic labelling patterns, 
which allow quantification of metabolite 
flux when combined with intracellular 
metabolite concentrations48,49. As a 
notable example, kinetic flux revealed 
mechanisms for NADPH metabolism, 
including the contribution of the 10‑formyl-
tetrahydrofolate pathway to NADPH 

Orthogonal approaches for mechanistic 
studies. Owing to the fact that transcript 
and protein levels have only a modest 
correlation with each other, and that 
metabolites can be further modified by 
enzymatic processes and can originate 
from and be modified by various internal 
and external stimuli, it is necessary to 
introduce metabolomic analysis approaches 
that provide big data integration across 
different -omics (genomics, epigenomics, 
proteomics and transcriptomics) in 
order to comprehensively determine 
the consequences of all metabolites on 
biology (FIG. 2). Such integrative approaches 
can help to determine the relationships 
between gene and protein expression and 
metabolite concentrations, and the balance 
between production and consumption of 
metabolites58. As an example, by combining 
metabolomics with metagenomics and 
metatranscriptomics data, it was possible to 
elucidate the origins and roles of bacteria-
derived metabolites59,60. A recent study 
also revealed that gut bacteria transplanted 
from thin or obese people recapitulated 
the respective phenotypes in gnotobiotic 
mice, with changes to microbial genes and 
concomitant downstream metabolites60. 

production50. Steady state flux analyses have 
also contributed to revealing important 
substrate utilization, with a recent clinical 
example uncovering selective activation of 
pyruvate carboxylase over glutaminase 1 in 
early-stage non-small-cell lung cancer51.

Stable isotope-assisted metabolomics 
can be used to calculate flux within a 
specific set of related pathways — or, on 
a larger scale, it can encompass multiple 
metabolites, labelled precursors and 
pathways. However, such analyses are 
computationally highly complex for 
dynamic experiments, leading to a decrease 
in accuracy35. In order to overcome this, 
algorithms have recently been developed 
that combine both stable isotope analysis 
and untargeted metabolomics52–55. 
This technology, called global isotope 
metabolomics, provides comprehensive 
differential labelling between two 
biological conditions, offering further 
understanding of metabolism at a systems 
level. Even though untargeted stable isotope 
metabolomics is a relatively new tool, 
its value has already been demonstrated 
in several studies56,57. It also provides 
yet another example of the power of 
informatics in metabolomic analyses.
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Figure 2 | Controlling and influencing metabolism: perspectives from 
metabolomics. Using various orthogonal techniques, targets identified with 
metabolomics can be further verified and investigated in more detail. 
For  instance, other ‘omics’ approaches, including (epi)genomics, 
transcriptomics and proteomics, can reveal further mechanistic insights into 
phenotypical changes associated with the metabolite. Various orthogonal 
techniques also allow targeting of metabolic pathways and can be used to 
influence metabolite levels and to interfere with metabolic pathways. These 
approaches can be directed at the gene level and aimed at silencing gene 
expression, with techniques like CRISPR–Cas-mediated knock outs or RNA 

interference (RNAi). Alternatively, metabolic pathways can be influenced at 
at the protein level with the use of antimetabolites. Manipulating sources of 
exposure to different stimuli can also influence the metabolome, providing 
further mechanistic insights. For instance, using antibiotics or germ-free 
models with species-specific inoculation reveals the direct effect of the 
microbiome on metabolite production. Similarly, immunomodulators can be 
used to change the efficacy of the host immune system to respond to both 
the resident microbiota and pathogens, and their metabolic products. This 
collectively opens up possibilities for better understanding and, eventually, 
controlling metabolism.
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In addition, it was possible to demonstrate 
that individuals from rural African and 
African American populations that 
exchanged diets underwent large changes in 
their metagenome and metabolome, and this 
altered their cancer risk61.

Leading on from multi-layered omics 
approaches, there are a number of additional 
orthogonal techniques that can be used to 
further investigate the biological relationships 
between metabolites, proteins and genes 
(FIG. 2). At the gene level, RNA interference 
(RNAi) or CRISPR–Cas systems can be used 
to modulate gene expression, and this can 
help to determine how genes directly affect 
enzyme activity and metabolite production. 
Similarly, at the protein level, structural 
analogues of essential metabolites — so-called 
antimetabolites — can be used to inhibit 
a specific metabolic process and attenuate 
metabolite production or transportation 
from the cell62, thereby allowing investigation 
of the function and importance of specific 
metabolites63. Other approaches that can 
be used are those that directly change the 
host metabolome, for instance, through 
modulating the exposure of the organism to 
certain stimuli. For example, manipulating 
the microbiome using germ-free models, 
antibiotics or immunomodulators (which 
can change the host response to the resident 
microbiota) can reveal how bacteria and 
their metabolites affect the host and their 
metabolism and can allow us to link 
these changes to susceptibility to certain 
diseases60. As an example, it has been shown 
recently that the microbiome is important 
for the efficacy of immunotherapeutics 
used in cancer therapy, and that only in 
individuals harbouring certain bacterial 
species can these compounds lead to 
efficient stimulation of cancer-fighting 
T cells64,65. Of note, T cells are known to have 
distinct energy requirements depending 
on their activation status, with naive T cells 
utilizing oxidative phosphorylation for ATP 
generation, and effector (activated) T cells 
consuming glucose by aerobic glycolysis 
and glutaminolysis to support cell growth, 
in a similar manner to cancer cells66,67. 
Altogether, targeted manipulation of the local 
cellular environment to affect cellular energy 
status, in concert with modulation of the 
microbiome, opens up interesting possibilities 
to influence the survival of both effector 
T cells and cancer cells68.

Novel biological insights
Advances in metabolomic analysis have 
allowed us to gain a novel understanding of 
metabolism for various states, processes and 

in the presence of biofilms was investigated 
and confirmed by immunohistochemistry. 
In addition, immunofluorescence revealed 
the presence of pro-inflammatory 
cytokines in biofilm-covered tissues. 
This inflammatory state was observed in 
normal-looking tissues that were associated 
with biofilms, suggesting that such tissues 
might be in a pro-carcinogenic state and 
that biofilm formation indeed promotes 
colon tumorigenesis71. In sum, this example 
shows how a combination of several 
metabolomic approaches with orthogonal 
biological techniques can be used for the 
initial metabolite discovery, leading to 
the elucidation of the potential role of biofilms 
in colon carcinogenesis (FIG. 3). According 
to this study, colonic bacteria utilize 
polyamines to build biofilms (producing 
DAS), and this biofilm formation induces 
pro-inflammatory and pro-carcinogenic 
effects in the host tissues, increasing the risk 
of tumour formation. Interestingly, some 
metabolomic studies have associated DAS 
with other cancers, including cancers of the 
lung72, breast73, blood74 and bladder75, as well 
as identifying it as a dietary metabolite76. 
Thus, further studies assessing the roles 
of diet and bacteria in cancers are of the 
utmost importance.

Metabolic regulation of cell pluripotency. 
At the epigenetic level, metabolites have 
been shown to regulate pluripotency in 
human ES cells, with a recent study revealing 
a metabolic switch during the transition 
between human naive and primed ES cells2. 
It has been found that this switch is regulated 
by nicotinamide N‑methyltransferase 
(NNMT), which controls SAM levels that are 
required for histone methylation. Analysis 
of oxygen consumption rates revealed 
that primed human ES cells have a lower 
mitochondrial respiration capacity than 
naive human ES cells, and transcriptomic 
analysis confirmed a downregulation of 
mitochondrial electron transport chain genes 
in the primed state. The transition from 
naive to primed human ES cells also involved 
reduced WNT signalling and increased 
hypoxia-inducible factor 1α (HIF1α) 
stabilization (shown by proteomic analysis). 
Untargeted and targeted metabolomics 
based on gas chromatography and liquid 
chromatography mass spectrometry (GC–MS 
and LC–MS) (BOX 1) revealed concomitant 
changes in metabolic pathways, including 
glycolysis, fatty acid β-oxidation and lipid 
biosynthesis. Transcriptomic and genomic 
analyses showed that the genes involved in 
these pathways were also changed. The use 

diseases, and a few of the most recent studies 
exemplifying the novel biological insights that 
can be gained with the use of metabolomics 
are discussed below. These studies collectively 
show how information at the metabolite 
level, particularly when combined with other 
techniques, can lead to successful association 
of metabolites with phenotypical causality, 
thus bringing us closer to a mechanistic 
understanding of metabolism.

Role of bacterial biofilms in cancer. A recent 
study carried out on a patient population 
investigated in more detail a previously 
validated biomarker for colon cancer, 
N1, N12‑diacetylspermine (DAS)69. In this 
study, a multidisciplinary approach was used 
that combined four different metabolomic 
tools with traditional biochemical techniques. 
First, it revealed that only DAS, and not 
its precursors, was correlated with biofilm 
presence as well as with colon cancer, and that 
DAS is probably a metabolic end-product of 
polyamine metabolism. The metabolomic 
approaches used included untargeted analysis 
(BOX 1) to compare normal tissues to the 
tumour tissues, both of which were either 
associated with or devoid of biofilms. This was 
followed by a targeted validation step (BOX 1) 
to confirm the fold change in metabolites 
and expand the analysis to other metabolites 
in related pathways. Nanostructure-imaging 
mass spectrometry (NIMS)70 (BOX 1) revealed 
the in situ localization of DAS in the mucosal 
layer of the colon where the biofilms resided. 
Global isotope metabolomics was further 
used to investigate the metabolic fate of 
a stable isotope of DAS in colon cancer 
cell lines, confirming that it is indeed an 
end-product of metabolism and is not 
involved in any other metabolic pathways.

In order to determine the source of the 
metabolite (the patient versus the biofilm), 
patients were treated with antibiotics to 
remove the biofilms (this was confirmed 
by fluorescent in situ hybridization (FISH) 
analysis), and their samples were analysed 
for the presence of DAS. In these tissues, 
DAS concentrations were similar to those 
previously measured in biofilm-negative 
patients, showing that the elevated DAS 
levels seen in biofilm-positive patients 
originated from the biofilms. In line with this, 
immunohistochemical analysis of patient 
samples did not show any change in protein 
levels of enzymes involved in DAS production. 
As DAS is a metabolite of polyamine 
precursors, and polyamines have been 
associated with various cellular responses 
including increased cellular proliferation, 
the propensity of colon cells to overproliferate 
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of WNT inhibitors and the generation of 
HIF1α-knockout cells by CRISPR–Cas gene 
editing further demonstrated that WNT 
activity is required for the naive state, and 
that HIF1α is required for human ES cell 
transition to the primed state. Furthermore, 
the loss of NNMT in naive human ES 
cells was associated with an increase in 
repressive histone marks (histone 3 Lys27 
trimethylation; H3K27me3) in developmental 
and metabolic genes that regulate the 
metabolic switch in naive to primed cells. 
Collectively, this comprehensive analysis 
showed that both NNMT and the metabolic 
state regulate ES cell development.

Novel therapy for cardiovascular disease. 
Another example shows how using 
metabolomics, together with other 
techniques, can lead to the establishment of 
a new therapeutic approach — in this case, 
for decreasing the risk of CVD. Initially, 
using untargeted metabolomics and then 
targeted metabolomics for validation 
and quantification (BOX 1), an association 
between an increased risk of CVD and 
plasma concentrations of choline, betaine 
and TMAO was established19,77,78. This was 
further replicated in apolipoprotein E−/− mice, 
a mouse model that is highly susceptible 
to the formation of atherosclerotic plaques — 
the primary cause of CVD — that were fed 
high-choline and high-TMAO diets, showing 
a significant correlation between plasma 
TMAO and the formation of atherosclerotic 
plaques. Functional experiments revealed that 
trimethylamine (TMA)-containing nutrients 
such as choline, phosphatidylcholine and 
carnitine are dietary precursors for TMAO, 
and that liver flavin monooxygenases 
(FMOs; primarily FMO3) are responsible 
for converting TMA to TMAO. Analysis 
of antibiotic-treated mice, together with 
the observation that the risk of CVD was 
transmissible upon microbial transfer, led to 
the conclusion that the microbiome generates 
TMA. As inhibition of FMO3 can produce 
side-effects and thus does not provide a 
sustainable therapy, the next step was to 
search for an inhibitor of microbial TMA 
production and investigate its potential as 
a therapeutic for CVD. Using a structural 
analogue to choline, 3,3‑dimethyl-1‑butanol 
(DMB), found in extra-virgin olive oil, it was 
possible to inhibit microbial TMA lyases, 
which are responsible for TMA formation. 
In vivo experiments showed that TMAO 
levels were indeed reduced in mice fed with 
high-choline or high-carnitine diets when 
these mice were simultaneously treated 
with DMB. Treatment with DMB also 

Mice treated with CMPF at doses 
comparable to levels found in human 
individuals with diabetes developed glucose 
intolerance and impaired insulin secretion 
after an oral glucose-tolerance test. This was 
monitored using targeted mass spectrometry 
and ELISA to measure plasma and tissue 
CMPF concentrations, and also by glucose-
stimulated insulin secretion (GSIS) tests. 
Mechanistically, CMPF was shown to 
impair mitochondrial function, decrease 
glucose-induced ATP synthesis and induce 
oxidative stress, as assessed by measuring 
mitochondrial membrane potential and 
with fluorescence- and bioluminescence-
based assays, as well as gene expression 
analysis. Inhibitors of organic anion 
transporters (OAT), which are responsible 
for the clearance of CMPF, blocked the 
transportation of CMPF into β‑cells of the 
pancreas and prevented β‑cell dysfunction. 
In line with this, treatment of pancreatic islets 
isolated from OAT3-knockout mouse models 
with CMPF had no effect on insulin content 

prevented atherosclerotic lesion development 
in apolipoprotein E−/− mice on a choline-
enhanced diet79. Altogether, this work led 
to the proposal of a novel therapy for CVD, 
which bypasses the issues that arise when 
using inhibitors targeted to a patient’s own 
proteins — an approach potentially resulting 
in various side-effects for the patient. Instead, 
this study showed that harmful metabolites 
can be inhibited at their earliest production, 
by ‘drugging’ the gut microbiome, which 
in the case of CVD is the source of the 
metabolite contributing to the disease.

Metabolite-driven regulation of β‑cells. An 
important metabolite, 3‑carboxy-4‑methyl-
5‑propyl-2‑furanpropanoic acid (CMPF), was 
recently identified in the plasma of humans 
with gestational diabetes, as well as in those 
with impaired glucose tolerance and type 2 
diabetes80. CMPF was identified by untargeted 
and targeted metabolomic analysis (BOX 1), 
with further validation by enzyme-linked 
immunosorbent assay (ELISA).
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Figure 3 | Novel biological insights. Diacetylspermine (DAS) has a role in biofilm-associated colon 
cancer. Various metabolomic and orthogonal biological techniques contributed to the association of 
DAS with bacterial biofilms and their role in the pathology of cancer. Fluorescence in situ hybridization 
(FISH) analysis and 16S rRNA sequencing identified the presence of bacterial species and biofilms on 
colon tissues. Untargeted and targeted metabolomics identified and validated the association of 
polyamine metabolites with colon cancer tissues. Stratification by biofilm status showed that DAS was 
upregulated primarily in biofilm-associated tissues, which was confirmed by mass spectrometry 
imaging. Network modelling using the KEGG and BioCyc databases, and pathway analysis using 
untargeted stable-isotope assisted metabolomics, showed that DAS is an end-product of polyamine 
metabolism. For further analysis, orthogonal techniques were used. Immunohistochemistry and 
immunofluorescence revealed increased cellular proliferation and pro-inflammatory cytokines 
in biofilm-associated tissues. The combination of these techniques led to the conclusion that bacterial 
biofilms induce a pro-carcinogenic state in the colon epithelium.
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or GSIS. Altogether, the metabolite CMPF, 
identified by metabolomic analysis, provides 
a mechanistic link between β‑cell dysfunction 
and diabetes and has been shown to function 
through impairing mitochondrial function 
and inhibiting insulin biosynthesis.

Mechanism of ischaemia–reperfusion 
injury. Steady state flux analysis was recently 
used to help to identify the mechanisms 
of ischaemia–reperfusion injury, which 
is a type of tissue damage resulting from 
oxidative stress and generation of reactive 
oxygen species (ROS) following the return 
of circulation to tissue regions previously 
deprived of oxygen. It was revealed that 
succinate, which is a metabolite of the 
tricarboxylic acid (TCA) cycle, is the driver 
of ROS generation, which can lead to heart 
attack and stroke following ischaemia–
reperfusion injury81. The authors also 
used a combination of untargeted and 
targeted metabolomics (BOX 1) to reveal an 
elevation of succinate levels across several 
organs in a mouse model of ischaemia. 
Mechanistic studies involving in silico 
modelling, mitochondrial membrane 
potential measurements, ratiometric 
assessment and fluorescence assays revealed 
that in ischaemia, succinate dehydrogenase 
(SDH) functions in reverse, accumulating 
succinate from fumarate. Upon reperfusion, 
succinate is oxidized and drives electrons 
back through the mitochondrial complex I, 
thus generating ROS. Together, these findings 
indicated that SDH could be a target for the 
prevention of ROS accumulation following 
reperfusion of ischaemic tissue. Accordingly, 
antimetabolite inhibitors of SDH prevented 
succinate accumulation, inhibiting electron 
flow through complex I and subsequent ROS 
production, and thereby providing protection 
from ischaemia–reperfusion injury.

Regulation of cancer cell metabolism. 
In addition to the previous example, 
metabolic flux analysis was recently used 
to investigate the role of mitochondrial 
enzyme serine hydroxymethyltransferase 
(SHMT2) in human glioblastoma cells. 
Specifically, the roles of SHMT2 in central 
carbon metabolism and in regulating 
pyruvate kinase M2 (PKM2) activity were 
investigated and were further linked to 
glioma cell survival82. In these experiments, 
SHMT2-knockdown cells were treated 
with uniformly labelled 13C-glucose and 
showed increased flux from pyruvate 
to lactate, citrate and alanine, with a 
concomitant increase in PKM2 activity 
and oxygen consumption rate. In addition, 
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overexpression of RNAi-resistant SHMT2 
cDNA reverted these effects, confirming that 
SHMT2 negatively affects PKM2. Thus, the 
stable isotope analysis showed that SHMT2 
expression changes the metabolism of cancer 
cells and limits carbon flux into the TCA 
cycle via suppression of PKM2. This has been 
further shown to improve the survival of cells 
in ischaemic tumour regions. In addition, 
the study showed that the survival of 
cancer cells with high SHMT2 expression 
can be impaired if glycine decarboxylase 
is inhibited, as this causes accumulation 
of glycine, which then contributes to the 
production of toxic metabolites. Altogether, 
this series of experiments provided novel 
insights into cancer cell metabolism and 
demonstrated how metabolic changes can 
affect cell properties and responses — in this 
case, cell survival.

Future perspectives
Metabolomics is an exciting and evolving 
research area, with numerous success stories 
demonstrating that its power extends from 
biomarker discovery to understanding the 
mechanisms that underlie phenotypes. 
This step towards mechanistic understanding 
has been made possible by advances in 
analytical technologies and informatics, 
and the combination of these tools has 
generated novel insights into chemical 
physiology. It has also been made possible as 
metabolomics has become more widely used 
in combination with orthogonal technologies, 
such as genomics, proteomics, structural 
biology and imaging, as well as with various 
techniques that allow us to modify gene 
expression, enzymatic activity, cell signalling 
or whole metabolic pathways, including 
the contribution of the naturally occurring 
microbiota. Thus, the future prospects of 
metabolomics lie not only in the unique 
information it provides, but in its integration 
into systems biology.
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