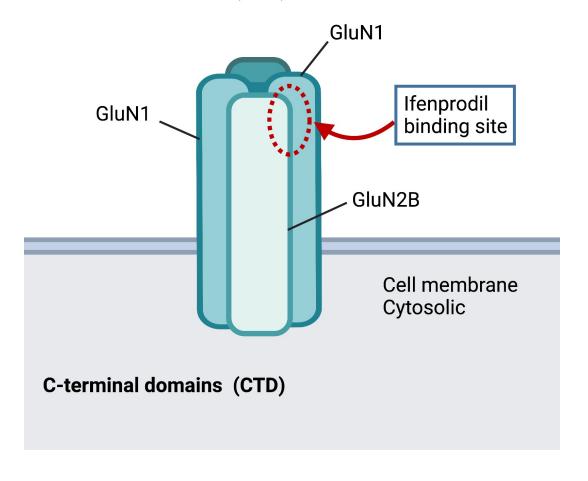


Center for Radiopharmaceutical Sciences

Radiosynthesis and evaluation of (R)- and (S)- 18 F-OF-NB1 for imaging the GluN2B subunits of the NMDA receptor in non-human primates


Hazem Ahmed¹, Ming-Qiang Zheng², Kelly Smart², Hanyi Fang^{2,3}, Li Zhang², Paul R. Emery², Hong Gao², Jim Ropchan², Ahmed Haider¹, Gilles Tamagnan², Richard E. Carson², Simon M. Ametamey¹, Yiyun Huang²

¹Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland ²PET Center, Yale University, New Haven, CT, USA ³Union Hospital, Huazhong University of Science and Technology, Wuhan, China

Target: The NMDA Receptor

- ✓ Ionotropic glutamate receptor
- ✓ Heterotetramer, consisting of three different subfamilies (GluN1a-h, GluN2A-D, GluN3A/B).
- ✓ GluN2 subunits exhibit heterogeneous expression and dictates the receptor function.
- ✓ Physiological: learning processes, memory function and synaptic plasticity.
- ✓ Pathological: neurological diseases comprising Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, schizophrenia and depression amongst others.

N-terminal domains (NTD)

Challenges facing GluN2B PET Radioligands Development

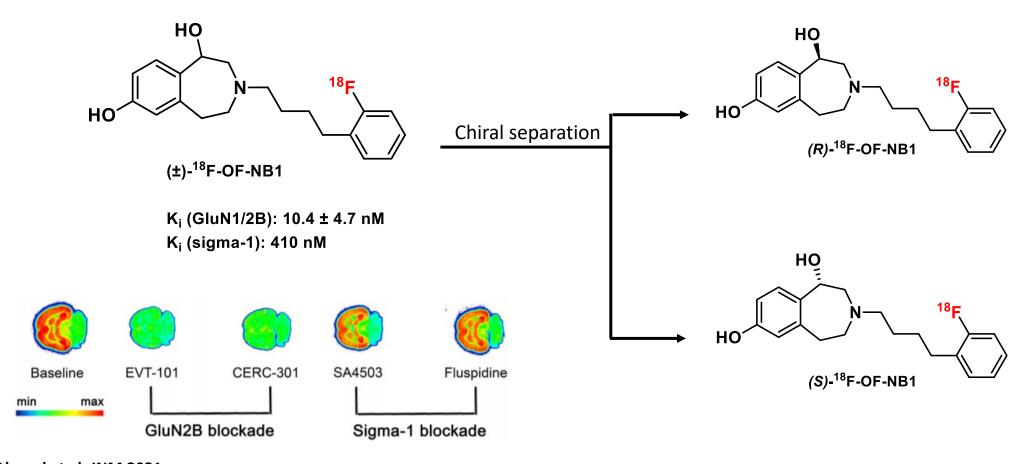
- No selectivity over other CNS receptors
- Low brain uptake
- Brain radiometabolites
- Brain uptake inconsistent with known GluN2B expression profile

Astrad et. al, Bioorg. Med. Chem. 2006

H₃C

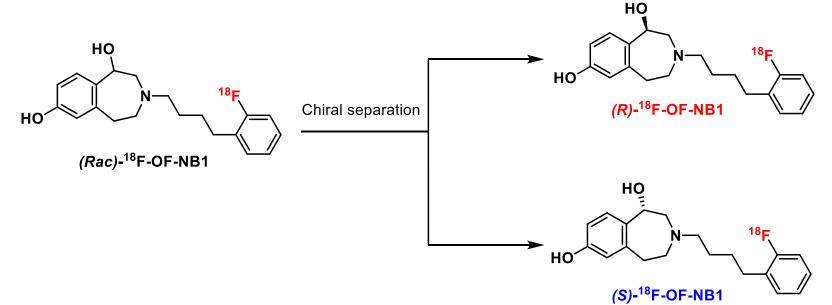
CH₃

Ifenprodil (lead structure)

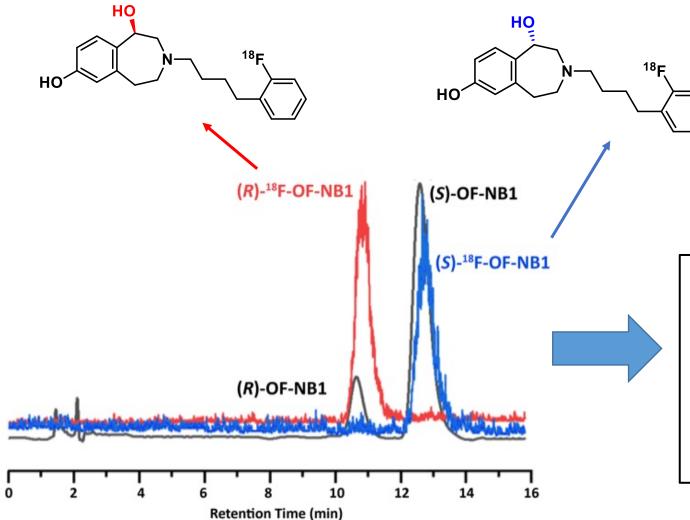

Koudih et. al, Org. Biomol. Chem. 2012

Haradahira et. al, Nucl. Med. Biol. 2011

¹⁸F-OF-NB1 is a Promising GluN2B PET Ligand


*Previous work (rodents)

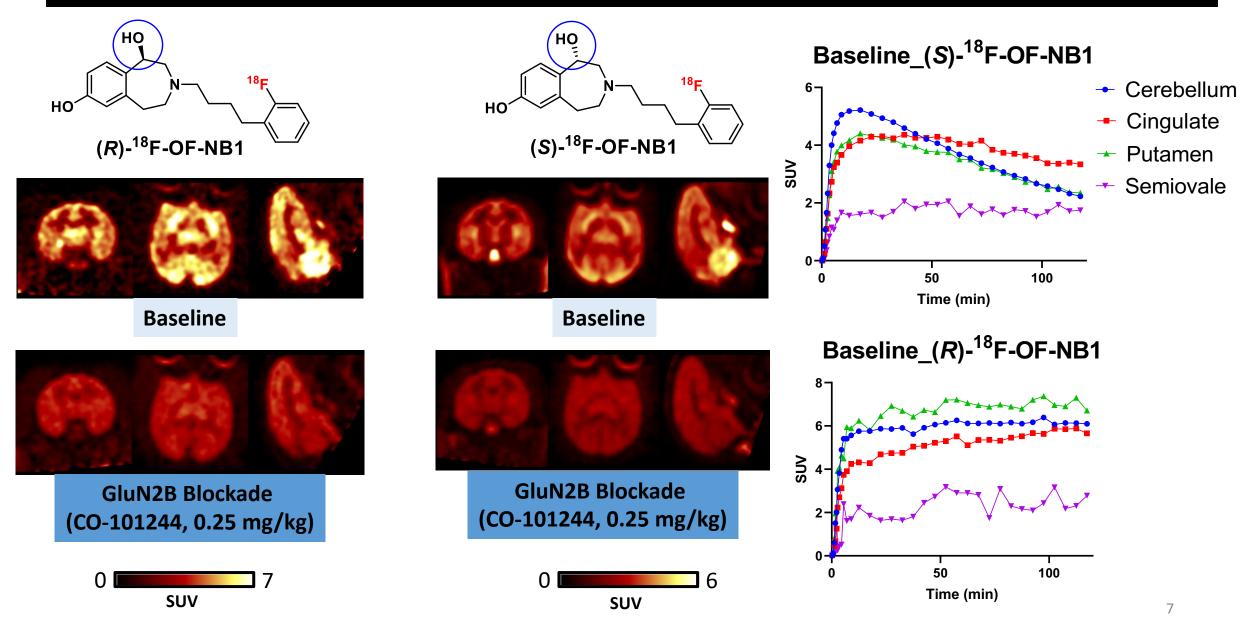
Current work (non-human primates)


^{*} Ahmed et al, JNM 2021

Radiosynthesis of ¹⁸F-OF-NB1 & Chiral Purification

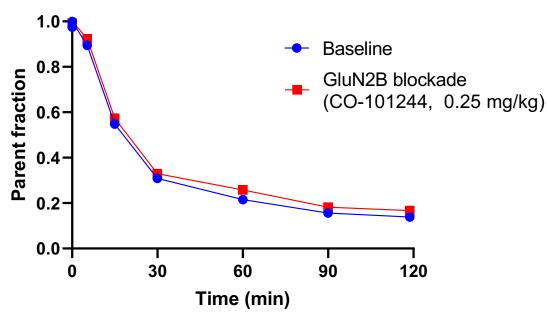
- Molar activity:59 ± 16 GBq/µmol (n=6)
- RCP >98%
- Enantiopurity: >98%

Quality Control & PET Imaging in Rhesus Monkeys

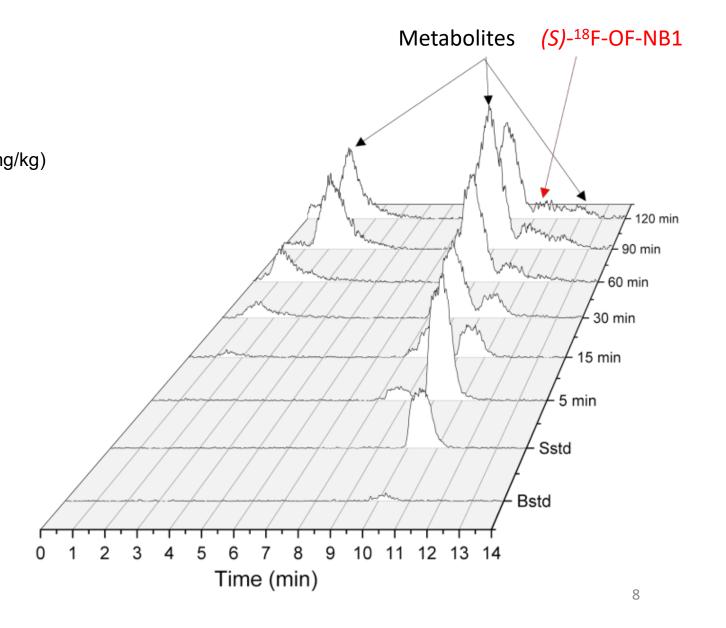

Semi-prep HPLC purification:

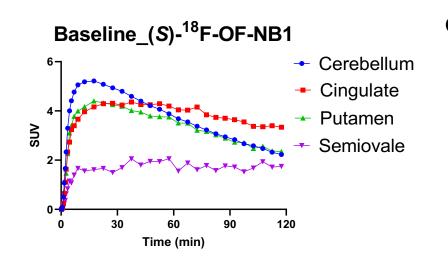
- Regis I-Amylose A 5 μm, 250 x 10 mm
- MeCN/0.05% aq. TEA (33/66), 5 mL/min

Dynamic PET Imaging (Rhesus Monkeys)

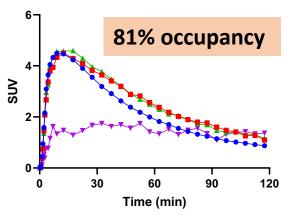

- 120 min scan time on a Focus 220 scanner
- Baseline and GluN2B blockade scans
- Plasma profile analysis & modeling
- Sigma-1 blockade scans

(R)- & (S)- 18 F-OF-NB1: PET Imaging in Rhesus Monkeys


(S)-18F-OF-NB1: Plasma Profile



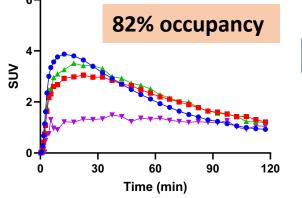
• Free fraction: 0.15


Parent fraction @30 min: 0.31

(S)-18F-OF-NB1: High receptor occupancy & Selectivity



GluN2B Blockade_(S)-18F-OF-NB1



- GluN2B blocker:
 - Co-101244 (0.25 mg/kg)
- Sigma-1 blocker:
 - FTC-146 (0.125 mg/kg, high dose)
- GluN2B + Sigma-1 blockers:
 - -(0.25 mg/kg + 0.125 mg/kg)

Sigma-1 Blockade_(S)-18F-OF-NB1

GluN2B + Sigma-1 Blockade_(S)-18F-OF-NB1

No additional binding reduction

(S)-18F-OF-NB1: Kinetic Modeling Results

	V_T (mL/cm ³)		$\frac{BP_{ND}}{(V_{T}/V_{ND}-1)}$
Region of interest	Baseline	GluN2B blockade (0.25 mg/kg Co101,244)	
	Monkey #1 (#2)	Monkey #1 (#2)	Monkey #1 (#2)
Thalamus	24.6 (23.3)	10.4 (10.2)	1.64 (2.20)
Cerebellum	27.3 (25.5)	10.8 (10.2)	1.93 (2.50)
Cingulate cortex	38.8 (32.3)	12.6 (12.1)	3.16 (3.44)
Frontal cortex	31.1 (28.9)	11.0 (10.7)	2.34 (2.97)
Hippocampus	32.1 (26.3)	11.5 (10.6)	2.44 (2.61)
Semiovale	20.3 (16.9)	10.6 (9.0)	1.18 (1.32)

-Monkey#1 V_{ND} = 9.32 mL/cm³

-Monkey#2 V_{ND} = 7.28 mL/cm³

Summary & Future Perspectives

- Tissue kinetics is slow for (R)-18F-OF-NB1 and fast for (S)-18F-OF-NB1.
- (S)- 18 F-OF-NB1 has high plasma free fraction ($^{\sim}15\%$); parent fraction was 31% at 30 min.
- Receptor occupancy of 81-90% using a GluN2B antagonist; 48-49% with a sigma-1 antagonist at two different doses.
- No additional blocking achieved with a sigma-1 antagonist that was sequentially administered after a GluN2B antagonist.
 - Possible effects of sigma-1 drugs on GluN2B binding site?
- $BP_{\rm ND}$ ranges from 1.18 (semiovale) to 3.44 (cingulate cortex) for (S)- 18 F-OF-NB1, indicating high levels of specific binding.
- (S)-18F-OF-NB1 appears to be a specific PET radioligand for the GluN2B subunit of NMDA receptor with appropriate tissue kinetics in rhesus monkey and warrants further investigation.

Acknowledgements

