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Abstract. Routine incidentmalaria casedata havebecomeapillar ofmalaria surveillance in sub-SaharanAfrica. These
dataprovidegranular, timely information to trackmalaria burden.However, incidencedata are sensitive to changes in care
seeking rates, rates of testingof suspect cases, and reporting completeness. Basedonaset of assumptions,wederived a
simple algebraic formula to convert crude incidence rates to a corrected estimation of incidence, adjusting for biases in
variable and suboptimal rates of care seeking, testing of suspect cases, and reporting completeness. We applied the
correction to routine incidencedata fromGuineaandMozambique, andaggregate data for sub-SaharanAfrican countries
from theWorldMalaria Report.We calculated continent-wide needs formalaria tests and treatments, assuming universal
testing but current care seeking rates. Countries in southern and eastern Africa reporting recent increases in malaria
incidence generally had lower overall corrected incidence than countries in Central and West Africa. Under current care
seeking rates, the unmet need formalaria testswas estimated tobe 160million (M) (interquartile range [IQR]: 139–188) and
for malaria treatments to be 37 M (IQR: 29–51). Maps of corrected incidence were more consistent with maps of
community survey prevalence thanwas crude incidence inGuinea andMozambique. Crudemalaria incidence rates need
tobe interpreted in the context of suboptimal testing andcare seeking rates,which vary over space and time. Adjusting for
these factors can provide insight into the spatiotemporal trends of malaria burden.

INTRODUCTION

Since 2000, with the increasing availability of funds and
new tools, many sub-Saharan African countries have dra-
matically scaled upmalaria control interventions, resulting in
high coverage with vector control tools such as insecticide-
treated nets, increasing access to high-quality diagnosis at
point of care with rapid diagnostic tests (RDTs), and highly
effective treatment with artemisinin-based combination
therapy (ACT).1 As a result, parasite prevalence (asmeasured
by large-scale, cross-sectional, community-based surveys)
has fallen inmany countries, in some cases to levels so low that
continuing to follow trends using parasite prevalence is chal-
lenging. There is increasing interest in using alternate metrics
formeasuring intervention effectiveness and assessingmalaria
burden, particularly by tracking the incidence of confirmed
malaria infection, reported by health facilities through routine
data collection systems.
Accurately measuring malaria incidence is not straightfor-

ward. It requires adequate health facility (and/or community
health worker) infrastructure to enable access to the health-
care sector, conditions that foster care seeking behavior,
adequate supplies and training to ensure testing of patients
with febrile illness, documentation of patients with positive
tests, and accurate reporting into a functional database.
Currently, most countries annually report the aggregate
number of incident cases detected through routine systems to
the World Health Organization (WHO). However, with the ex-
ception of a few low-incidence countries where routine data
are used, WHO uses a mathematical model to estimate the
incidence for most sub-Saharan African countries.1 TheWHO

approach models incidence based on prevalence data from
household surveys, metadata such as climate data, and ad-
ministrative data on intervention coverage. Like other meth-
ods using statistical approaches such as time series analysis,
thesemethods aredifficult to reproduce, aredependent on the
availability of additional metadata, require advanced statisti-
cal skills, and are in general not readily suited for routine useby
endemic country programs.
National Malaria Control Programs (NMCPs) increasingly

track and report the number of confirmed malaria cases, typi-
cally calculating the incidence of confirmed cases per 1,000
population by dividing the number of reported confirmed cases
by the population of each catchment area and multiplying by
1,000. With the increase in malaria donor support and sub-
sequent scale-up of malaria control interventions, there is often
great pressure to demonstrate a decrease in incidence. How-
ever, incidence of confirmed cases is an indicator that needs to
be interpreted with care because of several sources of potential
bias. It is highly sensitive to a number of factors, including
suboptimal care seeking, testing practices, and completeness
of reporting, which are not uniform in space and time, but all of
which tend to decrease reported incidence. Completeness of
data, both in terms of proportion of structures reporting and in
terms of inclusion of all cases diagnosed, plays a major role in
the number of cases reported. As the number of health facilities
and community health workers reporting increases, the number
ofconfirmedcases reported is likely to increase, andasefforts to
improve reporting quality ensure more complete reporting of
patients seen at individual facilities, this is also likely to increase
numbers of cases reported. As ministries of health make efforts
to improve access to and quality of care, and care seeking in-
creases, many malaria cases that would have gone undetected
are now diagnosed, treated, and counted. Finally, as RDTs are
increasingly accepted and available and testing patients with
febrile illness at point of care is increasingly normalized, the
number of patients with suspected malaria who receive testing
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and a confirmed diagnosis also increases. Many NMCPs that
previously reported decreases in incidence are now seeing re-
ported increases.1Manyof thesearealsomakinggreat efforts to
improve health services, including data quality and complete-
ness of reporting, access to and quality of care, and increasing
testing of suspected malaria cases, complicating efforts to de-
termine whether the observed increases in incidence are real.
Amore accurate and less biasedmeasure of incidence is of

crucial importance to NMCPs and their partners. It would
allow for characterization of short- and long-term trends in
malaria transmission, which in turnwould permit programs to
track the impact of interventions, and to identify areas that
require more focused interventions. In addition, a more ac-
curate measure of the number of incident malaria cases is
critical for decisions around procurement of malaria com-
modities, particularly in the context of striving to reach uni-
versal testing and treatment.
As routine health facility data improve in quality and avail-

ability in endemic countries, there arises the potential to capi-
talize on those data to provide a robust estimator of malaria
incidence based on routine data. Here, we introduce a method
for adjusting routinely reportedmalaria incidence to account for
biases in healthcare seeking and testing rates. We apply the
method to routine data from Guinea and Mozambique as case
studies in the potential utility of the indicator. Finally, we apply
the method to aggregate country data on incident cases from
the WHO World Malaria Report to obtain a more accurate es-
timate for the number of incident malaria cases seen by health
systems and the subsequent needs for RDTs and ACTs.

METHODS

We developed a simple algebraic method to calculate a
corrected incidence that could be used by NMCPs and their
partners, without a background in modeling or statistical soft-
ware, to interpret routinely reported surveillance data, adjusting
for testing practices, care seeking behavior, and reporting
completeness. The overall objective was to develop a robust
estimator of incidence that would allow comparison of in-
cidence of symptomatic malaria infection between districts or
regions and evaluation of trends over time.
Derivation of estimator. We developed a framework to es-

timate community incidence of symptomatic (febrile) malaria
infection, based on four routinely reported data elements: pop-
ulation, numberof all-causeacutecareconsultations, numberof
patients tested for malaria, and number of patients with con-
firmedmalaria infection. In agivencommunity over thecourseof
a year, a certain number of individuals will develop febrile ill-
nesses, and a certain proportion of these febrile illnesses will be
associated with symptomatic malaria infection (Figure 1A). This
approach is designed to estimate the approximate number of
these febrile malaria episodes. By contrast, the health surveil-
lance system typically reports population of the catchment area,
all-cause acute care consultations, patients tested, andpatients
who test positive (Figure 1B). If case management was ideal (all
people seeking care with fever and malaria infection received a
diagnostic test formalaria), it would be relatively straightforward
to estimate the community incidence of febrile malaria infection
by adjusting for care seeking (Figure 1C).
Unfortunately, data from both health facility–based and

community surveys have demonstrated that a substantial

FIGURE 1. Schematic of process of inferring truemalaria burden from routine data, showing the true universe ofmalaria cases (A), the subset that
are reported through data information systems (B), what would be reported under ideal casemanagement practices (C), andwhat is reported under
actual case management practices (D).
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proportion of those seeking care for febrile illness does not
receive a diagnostic test. Of patients with febrile illness, some
will have malaria infection and some will not. Among those
withmalaria infection, somewill be tested (andmost likely test
positive) and others will not be tested. Among febrile patients
without malaria infection, some will be tested (and most will
test negative) and some will not (Figure 1D). For the purposes
of this analysis, we assume that those without febrile illness
are not tested.
From the routine surveillance data, the number of patients

who were tested and received a positive test result (A), the
number of patients who were tested and received a negative
test result (B), and the number of patients not tested (C) are
readily reported or calculated and are available. Among those
not tested are those with febrile illness and malaria infection
(A*), thosewith febrile illness andwithoutmalaria infection (B*),
and those without febrile illness (D). Whereas A, B, and C are
known, A*, B*, and D are unknown. These unknown variables
can be imputed following two assumptions related to testing
practices (Box 1).
To translate the results reported by the surveillance system

to reflect community incidence (and thereby account for those
not reflected in the data, whether through lack of care seeking
or through care seeking, i.e., not being counted and reported),
two further assumptions are needed: the incidence of non-
malaria fevers in the population and how the test positivity rate
among those who seek care for fever compares with the test
positivity rate among those who do not seek care or are oth-
erwise not reflected in the data (Box 1).
To solve for the unknowns and understand how to translate

this incidence to community febrile malaria infection in-
cidence, we need to make a number of assumptions, as de-
tailed previously. Although the values for these assumptions
have been drawn from the literature, and are described in the
following paragraphs, if country-specific values for these as-
sumptions become available, it would be appropriate for a
country to use those values in its calculations.
For parameterizing assumption 1,we relied on high-quality

health facility surveys in which all patients are screened for

febrile illness and those with febrile illness are tested for
malaria (N. Bayoh et al., unpublished data).2–14 β in this
scenario is calculated as follows: (number of patients who
test negative)/(number of patients who test negative +
number of patients with nonfebrile illness). Although the
number of published health facility surveys in which this was
carried out is limited, a literature search found that β was
approximately 0.73 (n = 14, range: 0.56–0.94, interquartile
range [IQR]: 0.65–0.84) for children aged < 5 years and 0.57
(n = 10, range: 0.42–0.75, IQR: 0.49–0.61) for patients aged
³ 5 years2 (Table 1; Supplemental Figure S1). Alternately, if
such a health facility survey exists for a given country,βcould
be calculated and used for corrected incidence for that
country.
For assumption 2, data to calculate α, the ratio of the test

positivity rate among patientswhomhealthcareworkers do
not test to the test positivity rate among those whom
healthcare workers test, are available from the health fa-
cility surveys in which exit interviews are conducted, test
results among those tested by the healthcare provider are
recorded, and tests are offered to patients identified as
having a febrile illness but not tested. Supplemental Table
S1 provides values of α calculated from health facility
surveys in three countries,13–15 although country-specific
values could be used if there has been a recent health fa-
cility survey in which malaria testing is offered to all pa-
tients with febrile illness at an exit interview. In most
settings, healthcare providers do not test all patients with
febrile illness but factor in clinical judgment to decide
whom to test. If clinical judgment was perfect (no patients
with malaria infection untested), α would be zero. The
higher the α, the higher the test positivity rate among pa-
tients with febrile illness not tested compared to the test
positivity rate among patients with febrile illness tested. If
α = 100%, the test positivity rate among patients with fe-
brile illness not tested would be equal to the test positivity
rate among patients with febrile illness tested.
Few published data are available to estimate γ, the es-

timated annual incidence per person of nonmalaria fevers

BOX 1
Description of model variables, parameters, and assumptions

Variable/
parameter Definition Source Assumptions

A Patients who tested positive Routine data Assumption 1 The proportion of nonmalaria
consults that are for febrile
illness (β) is constant

A* Patients with febrile illness and malaria
infection, but not tested

Estimated using Equation (2)

B Patients who tested negative Routine data
B* Patients with febrile illness and nomalaria

infection, but not tested
Estimated using Equation (1)

C Patients not tested Routine data Assumption 2 The ratio of the test positivity rate
among febrile individuals not
tested for malaria is proportional
to the test positivity rate among
febrile individuals tested for
malaria (at a constant ratio α)

D Patients without febrile illness Estimated using Equation (3)
α Ratio of test positivity rate amongpatients

with febrile illness not tested to those
tested Ap

Ap+Bp=
A

A+B

Estimated from health facility
surveys with systematic fever
screening and re-testing

β Proportion of fever among nonmalaria
consults B+Bp=B+Bp +D

Estimated from health facility
surveys with systematic fever
screening and re-testing

Assumption 3 There is a constant mean number of
nonmalaria fevers per person per
year (γ)

γ Mean number of nonmalaria fevers per
person per year

Estimated from population-based
longitudinal cohorts

Assumption 4 The test positivity rate in those with
febrile malaria infection who do
not seek care is proportional to
the test positivity rate in those
who seek care

λ Malaria-attributable fraction among test-
positive patients

Estimated by comparing antigen
concentration in febrile and
afebrile patients
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per year (assumption 3). In Dielmo and Ndiop, Senegal, a
population-based longitudinal cohort was followed weekly
with fever screening and malaria testing since 1990,
allowing reporting of annual incidence of malarial and
nonmalarial fevers.16 Of note, the investigators defined
malarial fevers as those with parasite density above the
estimated pyrogenic threshold, which was calculated an-
nually; thus, some fevers with low-densitymalaria infection
were categorized as nonmalarial fever. Whereas the annual
incidence of symptomatic malaria infection per person
decreased from 2.76 in 1990 to 0.05 in 2012 among chil-
dren, and from 0.39 in 1990 to 0.05 in 2012 among adults,
nonmalaria fever incidence was relatively more stable. Al-
though nonmalaria fever incidence per person fluctuated
(up to 3.67 among children and up to 2.83 among adults)
with other infectious disease trends, it remained consis-
tently above 2.0 for children and 1.0 for adults. To ensure
that periods of high incidence of nonmalarial febrile illness
do not artificially elevate the estimates, we used γ = 2 for
children younger than 5 years and γ = 1 for those aged 5
years and older.
To parameterize assumption 4, we used the results of a

meta-analysis of Malaria Indicator Surveys and De-
mographic and Health Surveys from 2003 to 2015 to esti-
mate the test positivity rate among patients who do not seek
care compared with the test positivity rate among patients
who seek care.17 During these household surveys, care-
givers of children younger than 6–59 months were asked
whether the child had fever in the last 2 weeks and whether
care was sought with a trained provider. These children
were also all tested for malaria as part of the survey. For
each survey, RDT positivity among children for whom care
was not sought was plotted against RDT positivity among
children for whom care was sought. The ratio of the test
positivity rate among children with reported febrile illness
for whom care was not sought to the test positivity among
children with reported febrile illness for whom care was
sought was equal to or slightly greater than 1. Data were not
available for those aged 5 years and older. For the purposes
of this analysis, we assumed that the test positivity rate of
individuals with febrile illness who are not represented in the
reported surveillance data (whether through not seeking
care or through data incompleteness) is equal to the test
positivity rate of those represented in the surveillance data.
The first two equations (Equations (1) and (2)) were solved to

provide estimates for B*, A*, and D:

β¼ BþBp

BþBp þD
Bp ¼

C�A
1�β
β

1� β
β

þ α
A

AþB

.�
1�α

A
AþB

�
þ 1

, (1)

Ap

Ap þBp
¼α

A
AþB

Ap ¼
α

A
AþB�

1� α
A

AþB

� Bp, (2)

Ap þBp þD¼C D¼C�Ap �Bp: (3)

To adjust for febrile illnesseswithmalaria infection that are not
captured in the surveillance data, we scale by the incidence
per person of nonmalarial fever (as this is assumed to be in-
dependent of malaria transmission intensity).
To adjust for incident parasitemia/antigenemia in febrile

patients, the number of febrile illness of nonmalaria etiology is
a sum of patients without malaria infection and a certain pro-
portion of febrile test-positive patients ([1−λ] [A + A*]), where λ
is the malaria-attributable fraction among test-positive pa-
tients. We modeled λ to be 1 when the test positivity rate was
0, decreasing linearly to a minimum ðλminÞ of 0.75 (range:
0.5–0.95) when the test positivity rate reached 1.18

λ¼ 1þ AþAp

AþAp þBþBp
ðλmin � 1Þ: (4)

The number of episodes of febrile malaria illnesses among
patients seeking care imputed from the surveillance data is
A+A*. Assuming the test positivity rate among those reflected
in the data is similar to those not reflected in the data (as-
sumption 4), the incidence of febrile illness with malaria in-
fection at the community level can be estimated bymultiplying
the incidence of malaria per person as calculated from the
surveillance data by the correction factor:

AþAp

population
� γ
BþBpþð1�λÞðAþApÞ

pop

¼γ
AþAp

BþBpþð1�λÞðAþApÞ:

(5)

Incidenceper 1,000 can be calculated bymultiplying by 1,000.
For all results presented, we report malaria incidence

counting all malaria feverswithmalaria infection, regardless of
the attribution of fever etiology.
Case study 1: Estimating RDT and ACT needs for sub-

SaharanAfrica.Weabstracted the followingdataelements from
routine health information data submitted by malaria-endemic

TABLE 1
Estimates for parameters for correction of routine health facility data to account for under-testing, derived fromempirical distributions of parameters
from health facility surveys with systematic fever screening and retesting

Median (Interquartile range)

Age < 5 years Age ³ 5 years All ages

Proportion of fever among nonmalaria
consults (β)

0.73 (0.65–0.84) 0.57 (0.49–0.61) 0.59 (0.54–0.66)

Ratio of malaria test positivity in untested
vs. tested febrile patients (α)

– – 0.48 (0.42–0.55)

Number of febrile illnesses of
nonmalaria etiology calculated
from surveillance data

B + B* + (1−λ) (A + A*)

Incidence per person of nonmalarial
febrile illness who sought care and
were reported in surveillance data

(B + B* + [1−λ] [A + A*])/
population

Adjustment factor, based on
incidence of nonmalarial fever

γ
ðB+Bp=populationÞ
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sub-Saharan African countries to the 2016 World Malaria
Report: population at risk, total number of all-cause consul-
tations, number of patients tested for malaria, and confirmed
malaria cases. We then applied Equations (1)–(3) to estimate
the expected number of fever cases and true malaria cases
seeking care. To estimate the full community-level burden, we
usedEquation 5 to calculate the expectednumber of fever and
true incident malaria fevers, assuming universal access and
healthcare seeking.
We calculated the median and IQR for the α and β param-

eters from our literature search for studies for which the pa-
rameters could be estimated (Table 1). Because the World
Malaria Report data are not stratified by age, we used the all-
agesestimates.Weusedaconservative rate of 1.5 nonmalaria
fevers per year (range: 1–2).
Wecompared the relative ranking ofmalaria-endemic sub-

Saharan African countries when considering the reported
(crude) malaria incidence and the corrected malaria in-
cidence. We calculated the expected number of malaria
tests and treatments needed to attain universal testing of
fever cases and treatment of all confirmed cases under two
scenarios: 1) current rates of care seeking (using total patient
encounters reported by the countries, Equations (1)–(3) and
2) universal access and complete care seeking, representing
the scenario in which all community cases of fever are tested
and treated if positive for malaria (additionally applying
Equation (5)). We estimated the needs using the median
values of α and β. We calculated lower and upper bounds on
the estimates by applying the first and third quartiles of the
empirical distributions of these parameters (Table 1). By
subtracting the number of tested and confirmed cases that
were reported from the estimated needs for tests and treat-
ments, we estimated country-level gaps formalaria tests and
treatments.
Case study 2: Analyzing spatiotemporal trends in

GuineaandMozambique.Weexported data from theGuinea
malaria-specific Routine Malaria Information System and the
Mozambique integrated Health Management Information
System on the number of all-cause consults, patients tested
for malaria, and confirmed malaria cases. The time period in-
cluded in the analysis was 2012–2017 for Guinea and
2017–2018 for Mozambique. Data from Mozambique were
stratified for children aged < 5 years and children and adults
aged ³ 5 years, whereas data from Guinea were aggregated
across all ages.
We applied Equations (1)–(5) to estimate the corrected an-

nualized malaria incidence by month by district/province. We
used themedian forα andβ for all ages forGuinea (Table 1) but
usedcountry-specificestimates forα (0.443 in <5 years, 0.603
in ³ 5 years) and β (0.783 in < 5 years, 0.544 in ³ 5 years) for
Mozambique because of the availability of a recent health
facility surveywith systematic fever screening and retesting of
patients during exit interviews.13

Because the parameters and assumptions are independent
of seasonality, assuming relatively stable rates of nonmalarial
fever over the course of a year, the results were not adjusted
for high versus low transmission period.
We plotted the crude and corrected incidence for the most

recent year by district/province for each country. For illustra-
tive examples, we plotted the monthly crude and corrected
incidence over time for Labé Region in Guinea and Zambézia
Province in Mozambique. Both represent zones that in recent

years have received intensive malaria case management in-
terventions, including supervision and training of healthcare
workers and expansions of the community healthcare worker
program.

RESULTS

Case study 1. The median country-level corrected in-
cidence for sub-Saharan Africa was 901 cases/1,000 pop-
ulation, ranging from 16/1,000 (Comoros) to 2,107/1,000
(Burkina Faso) (Figure 2). This was several fold higher than
the reported crude incidence, which ranged from 2/1,000
(Comoros) to 462/1,000 (Burundi), with a median of 79/
1,000.
Whereas the crude incidence was generally highest in

countries along the southern and western branches of the Rift
Valley (Mozambique, Malawi, Zambia, Burundi, and Rwanda),
with a second cluster of high incidence in West Africa, the
corrected incidence map showed different patterns. The
corrected incidence estimates showed very high incidence in
central Africa, as well as throughout West Africa. The Rift
Valley countries that ranked highly in the crude reported in-
cidence generally fell in the corrected incidence rankings
(Supplemental Figure S2), and these countries typically had a
lower ratio of corrected tocrude incidence, suggestinga larger
proportion of true cases being detected and reported
(Supplemental Figure S3).
We estimated that of the 471million (M) reported outpatient

consults, 329 M (70%) were for patients with fever, repre-
senting the true need for malaria tests under current rates of
care seeking (Table 2, Supplemental Figure S4). Countries
reported testing only 170 M patients, thus representing a gap
of 160 M (IQR: 139–188) malaria tests across sub-Saharan
Africa. We estimated that 126 M (IQR: 117–139) of these tests
were for febrile patients with malaria (Table 2, Supplemental
Figure S5). Against a total of 89 M reported cases, this left a
37M (IQR: 29–51) gap inmalaria treatments under current care
seeking rates. When considering the true, community-level
incidence of fever and malaria cases, we estimated a total
need for 2.283 billion (IQR: 1.4–3.1) malaria tests and 871 M
(IQR: 515–1,339) malaria treatments per year across the
continent.
Case study 2. In Guinea, the health district-level crude in-

cidence showed a different pattern than the corrected in-
cidence (Figure 3A and B). The crude incidence was generally
lower in the holoendemic southeast of the country, which is
highly forested and has the highest prevalence as measured
during the most recent household survey19 (Figure 3C),
compared with the Sahelian north of the country, where
prevalence is substantially lower. By contrast, the corrected
incidence showed a pattern more consistent with the preva-
lence data, with the lowest incidence in the north of the
country. In Guinea’s Labé region, the crude incidence was
reported to be consistently increasing since 2014, at a rate of
11% per year (Figure 4A). After correction, the incidence
showed an overall annual decrease of −7.1% per year.
In Mozambique, the crude incidence was highest in the

southern provinces (excluding Maputo) (Figure 3D). By con-
trast, the corrected incidencewashighest in thenorth,with the
exception of Inhambane Province (Figure 3D), more closely
matching data from the most recent household survey20

(Figure 3E).
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In Zambézia Province located in central Mozambique, the
crude and corrected incidence showed different trends over
the last 2 years. Whereas the crude incidence increased at an
annual rate of 16% over that time period, the corrected in-
cidence showed a −1.8% decrease (Figure 4B). The pattern
held separately for children < 5 years and older children and
adults (Supplemental Figure S6).

DISCUSSION

Our analysis of routinely reported health data show large
and variable discrepancies between crude (reported) in-
cidence and our corrected incidence measure, which corre-
sponds more closely with other metrics of malaria burden
(e.g., prevalence). These discrepancies reinforce the notion

that crude incidence data should be interpreted in the context
of several key biases. Our method for addressing two impor-
tant biases—uneven rates of access/care seeking and under-
testing of fever cases—can provide NMCPs with a simple
method for capitalizing on routine health system data for
making timely, granular, evidence-based decisions, while
minimizing the biases inherent in routine data.
Thismethodcomesat a timewhen themalaria community is

moving away from periodic surveys toward real-time analysis
of routine data. As the prevalence of malaria decreases, ren-
dering parasite prevalence less useful as a metric of malaria
burden, the incidence ofmalaria has been increasingly used to
understand trends in burden, monitor effectiveness of inter-
ventions, and target interventions. During the last decade, as
ministries of health have moved to increase access to health

TABLE 2
Estimates for malaria tests and treatments under universal testing of fever policy after correction for under-testing and incomplete reporting as
estimated from routine health information data submitted by sub-Saharan African countries to the World Malaria Report, 2016

Current care seeking rates Universal access scenario

Reported (M) True need (M), median (IQR) Gap (M), median (IQR) True need (M), median (IQR) Gap (M), median (IQR)

All-cause consults 471 – – – –

Malaria tests 170 329 (308–358) 160 (139–188) 2,173 (1,383–3,075) 2,002 (1,212–2,905)
Malaria treatments 89 126 (117–139) 37 (29–51) 871 (515–1,339) 782 (426–1,251)
IQR = interquartile range; M = million.

FIGURE 2. Crude (A) and corrected (B) malaria incidence rates, as reported and estimated from routine health information data submitted by
countries to the World Malaria Report, 2016. (C andD) show the lower and upper bounds of the corrected estimates. Note the difference in scales
between crude and corrected maps.
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care and malaria control programs have scaled up the use of
RDTs at point of care, reported incidence has been increasing,
often in zones in which malaria control activities have most
intensified, leading to consternation among malaria control
programs.
Although there have beenmanymodel-based approaches

to understanding incidence of malaria, the approach re-
ported here relies on an accessible, simple algebraic formula
applied to routine health information system data, based on
several simple assumptions to account for differences in
testing and in care seeking or data reporting. This approach
allows NMCP managers without a background in modeling
or training to easily calculate a corrected incidence that ac-
counts for difference in data completeness, care seeking,
and testing, and allows them to better understand trends in
malaria incidence.
The estimates presented here for corrected incidence

define any febrile patient with a positive malaria test as a
malaria case. A certain proportion of these will have a coin-
fection with another infectious agent, and for some of these,
malaria might not be the etiologic agent of the current febrile
illness. Accounting for themalaria attributable fractionwould
likely result in estimates of malaria-attributable fever in-
cidence more in line with the prevalence-to-incidencemodel
results typically reported by WHO. Nevertheless, pro-
grammatically, inferring etiology of a fever is of secondary
importance, and the more important indicator to follow for

programs is the corrected incidence of malaria-positive
fevers. Because all malaria-positive fevers should be treated
to clear parasitemia, for the purposes of commodity quantifi-
cation, programs should rely on the incidence of malaria-
positive fevers. Moreover, because population-level inference
of fever etiology is inherently noisy and imprecise, incidence of
malaria-positive fever cases is a more appropriate indicator for
programs to track.
There are inherent limitations and uncertainties tied to any

approach attempting to estimate community incidence from
routine data. First, this approach assumes that the key data
elements—number of all-cause acute care consultations,
number of patients tested formalaria, and number of patients
with confirmed malaria infection—are reported in an un-
biased manner. Any systematic misclassification of these,
for example, systematic underreporting of negative RDT re-
sults or reporting of negative RDTs as positive, will impact
the validity of the model. Moreover, the model was param-
eterized based on data available from a limited number of
studies and from a limited number of countries. As such, the
precision, accuracy, and generalizability of the parameter
estimates used here may be limited. More health facility
surveys with rigorous fever screening from different settings
will add to the evidence baseandwill improve the precision of
the methodology, as well as allow a proper assessment of its
uncertainties. Therefore, the incidence estimates presented
here should be interpreted in the context of the uncertainties

FIGURE 3. Crude (A andD) and corrected (B and E) malaria incidence rates, as reported and estimated from routine health information data from
Guinea and Mozambique. (C and F) show the parasite prevalence in children younger than 5 years for the most recent household survey in each
country.19,20 Note the difference in axis scales between the crude and corrected incidence and difference in aggregation level for Guinea, where
incidence data are by health district and prevalence data are by region.
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of the key parameters, and the results of relative compari-
sons (across time and space) are likely more robust than the
absolute estimates. Validation of the approach, for example,
with incidence directly calculated from demographic and
health surveillance cohort data and testing parameters cal-
culated from health facility surveys, is recommended to
calibrate the model assumptions.
Strengths of the approach outlined here include its sim-

plicity and transparency, as well as its flexibility in parameters
being tailored to specific countries using available country-
specific data. The second step of the adjustment (translating
health facility incidence to community incidence) is agnostic
as to the reason for under-reporting, whether it is through low
access to health care or incomplete recording and reporting.
As a result, longitudinal data with temporal differences in
reporting and testing can still be analyzed for trends in in-
cidence. Nevertheless, the validity of our approach is tied to
the validity of the assumptions. Although there is substantial
evidence to suggest a high background rate of fever among

outpatients (assumption 1) and a similar rate of test positivity
regardless of care seeking, at least for children aged < 5 years
(assumption 4), more research is needed to expand the evi-
dence base around expected rates of positivity among un-
tested fever patients (assumption 2) and the annual rate of
nonmalaria fevers in the community (assumption 3).
Our results underscore the importance of accounting for

biases in crude incidence. Faced with limited resources,
NMCPs often have to choose high-priority areas for certain
interventions. This is particularly relevant in the context of
indoor residual spraying, where NMCPs often have the re-
sources to spray only a small percentage of the country’s
structures and choosing the appropriate areas to have
the maximum impact on transmission is an important pro-
grammatic decision. Here, our case studies fromGuinea and
Mozambique show that administrative areas that report low
crude incidence and ostensibly are not good candidates for
targeted interventions might in actuality have higher in-
cidence than areas that have higher reported incidence

FIGURE 4. Longitudinal trends in crude (black) and corrected (red) malaria incidence in Labé Region, Guinea, (A) and Zambézia Province,
Mozambique (B). Note the difference in axis scales between the crude and corrected incidence. This figure appears in color at www.ajtmh.org.
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because of higher access to care and higher testing rates.
Risk stratification in these countries changes substantially
when considering the corrected incidence rather than the
crude incidence, with the corrected incidence figures more
closely matching prevalence patterns from household
surveys.
In addition to facilitating more accurate interpretation of

incidence data, this approach (particularly the first three
equations, using current levels of care seeking) may help im-
prove the accuracy of RDT and ACT needs quantification.
When RDT procurement is based on the historical use, if less
than 50% of patients with febrile illness have historically
benefitted from an RDT, needs will be underestimated, and
care providers will be unable to test all patients with febrile
illness. ProcuringRDTs andACTsbased on the assumption of
universal testing of patients seeking care for febrile illness will
necessitate a substantial increase in ACT and RDT pro-
curement across the continent. Current gaps in RDT and ACT
needs, even under current care seeking rates, are substantial,
with estimates in the 37 M ACT and 160 M RDT range.
When applied to national-level data reported to the WHO,

even using conservative assumptions, corrected incidence
was often an order of magnitude or more higher than re-
ported incidence. However, this was not uniform. Countries
in which malaria control programs have rapidly scaled-up
access to malaria case management or countries nearing
elimination had corrected malaria incidence closer to re-
ported incidence. Similarly, countries that have shown os-
tensible increases in malaria incidence in recent years
(particularly along the western and southern branches of the
Rift Valley), triggering worries of true increases in malaria
transmission, generally also had a smaller ratio of corrected
incidence to crude incidence, suggesting that the trends are
likely due at least in part to increasing healthcare access and
better testing. Our estimates of the community burden of
malaria suggest that Central and West Africa represent the
highest burden areas of the continent. Similarly, when ap-
plied to longitudinal data from Mozambique and Guinea,
regions that had increases in crude incidence in the context
of scale-up of case management interventions had de-
creases in corrected incidence.
There is strong evidence of heterogeneity in terms of how

well countries across the continent are capturing incident
malaria cases, reflected in the large variance in the correction
factor (Supplemental Figure S3). Although all countries are
reporting fewer cases than estimated through our model, the
magnitude of the variation in this under-detection and under-
reporting points to substantial differences in the perfor-
mance of malaria control programs related to care seeking,
testing, and reporting completeness. In general, more ma-
ture malaria control programs would be expected to detect
and report a larger proportion of their true malaria burden,
and the observed variability across the continent likely re-
flects different stages of effectiveness of the malaria control
programs.

CONCLUSION

Reporting of and decision-making based on malaria in-
cidence is becoming increasingly important in this era of
malaria control. Applying a simple algebraic formula, using
several simple assumptions, to routinely reported incidence

data accounts for inherent biases and renders it more useful
for intervention targeting and monitoring progress, as well as
estimating needs for RDTs and ACTs. Moreover, this simple
tool can be used by individuals without a background in
modeling or access to sophisticated software. Although not
an exact measure, these corrections allow a closer un-
derstanding of the real magnitude and distribution of malaria
burden and their trends over time.
To develop more robust and country-specific values for the

assumptions, health facility surveys for malaria should in-
corporate screening of all patients for fever and offer tests to
those who did not receive testing from health facility pro-
viders. As malaria burden decreases and children aged < 5
years are no longer at highest risk for parasite carriage,
community-based surveys should also assess care seeking
and parasite carriage among those aged 5 years and older.
Finally, longitudinal, all-cause fever surveillance would help
translate incidence measured at the health facility level to the
community. Although the values used for these assumptions
need to be confirmed and refined, the conservative estimates
used here demonstrate that community-level incidence of
malaria infection with fever is an order of magnitude higher
thanwhat is reported through health facilities. However, many
countries are making much progress in improving access to
diagnosis and treatment, and increases in reported incidence
must be interpreted in the light of increased care seeking,
testing, and reporting.
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