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Published Genome-Wide Associations through 12/2010,
1212 published GWA at p<5x10-8for 210 traits

NHGRI GWA Catalog
www.genome.gov/GWAStudies -
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@ Abdominal acrtic aneurysm
O Acute lymphoblastic leukemia
@ Adhesion molecules

(O Adverse response to carbamapezine
@ Adiponectin levels

© Age-related macular degeneration
(O AIDS progression

QO Alcohol dependence

@ Alopecia areata

QO Alzheimer disease

© Amyloid A levels

O Amyotrophic lateral sclerosis
QO Angiotensin-converting enzyme activity
@ Ankylosing spondylitis

@ Arterial stiffness

@ Asparagus anosmia

@ Asthma

@ Atherosclerosis in HIV

Q@ Atrial fibrillation

@  Attention deficit hyperactiviy disorder
QO Autism

@ Basal cell cancer

@© Behcet's disease

Q@ Bipolar disorder

@ Biliary atresia

@ Bilirubin

@ Bitter taste response

O Birth weight

@ Bladder cancer

@ Bleomycin sensitivity

@ Blond or brown hair

Q© Blood pressure

@ Blue or green eyes

© BMI, waist circumference
QO Bone density

© Breast cancer

@ C-reactive protein

@ Calcium levels

@ Cardiac structure/function
@ carnitine levels

Q@ Carotenoiditocopherol levels
QO Celiac disease

Q© Cerebral atrophy measures

@ Chronic lymphocytic leukemia

QO Cleft liplpalate

@ Cognitive function

QO Conduct disorder

@ Colorectal cancer

QO Comneal thickness

QO Coronary disease

@ Creutzfeldt-Jakob disease
@ Crohn’s disease

@ Cutaneous nevi

@ Dermatitis

@ Drug-induced liver injury
@ Endometriosis

@ Eosinophil count

@ Eosinophilic esophagitis
@ Erecile dysfunction and prostate cancer treatment
@ Erythrocyte parameters
Q© Esophageal cancer

© Essential tremor

Q© Exfoliation glaucoma
© Eye color traits

© F cell distribution

QO Fibrinogen levels

@ Folate pathway vitamins
O Follicular lymphoma
© Fuch’s comneal dystrophy
O Freckles and burning
QO Gallstones

O Gastric cancer

@ Glioma

© Glycemic traits

QO Hair color

O Hair morphology

@ Handedness in dyslexia
O HDL cholesterol

O Heart failure

O Heart rate

O Height

O Hemostasis parameters
o Hepatic steatosis

O Hepatitis

@ Hepatocellular carcinoma
@) Hirschsprung's disease
O HIV-1 control

O Hodgkin’s lymphoma

@O Homocysteine levels

QO Hypospadias

@ |Idiopathic pulmonary fibrosis
@ IgA levels

@ IgE levels

© Inflammatory bowel disease
@ Intracranial aneurysm

@ Iris color

@ Iron status markers

@ Ischemic stroke

QO Juvenile idiopathic arthritis
@ Keloid

@ Kidney stones

@ LDL cholesterol

QO Leprosy

Q© Leptin receptor levels

@ Liver enzymes

@ Longevity

@ LP(a)levels

QO LpPLA(2) activity and mass
@ Lung cancer

© Magnesium levels

@ Major mood disorders

@ Malaria

QO Male pattern baldness

@ Matrix metalloproteinase levels
O McP-1

© Melanoma

O Menarche & menopause
O Meningococeal disease
O Metabolic syndrome

QO Migraine

@ Moyamoya disease

@ Multiple sclerosis

QO Myeloproliferative neoplasms
@ N-glycan levels

QO Narcolepsy

O Nasopharyngeal cancer
QO Neuroblastoma

@ Nicotine dependence

Q@ Obesity

@ Open angle glaucoma

@ Open personality

QO oOptic disc parameters

@ Osteoarthritis

O Osteoporosis
Otosclerosis

Other metabolic traits
Ovarian cancer
Pancreatic cancer

Pain

Paget's disease

Panic disorder
Parkinson's disease
Periodontitis

Peripheral arterial disease
Phosphatidylcholine levels
Phosphorus levels

Photic sneeze

Phytosterol levels

Platelet count

Polycystic ovary syndrome
Primary biliary cirrhosis
Primary sclerosing cholangitis
PR interval

Progranulin levels
Prostate cancer

Protein levels

PSA levels

Psoriasis

Psoriatic arthritis
Pulmonary funct. COPD
QRS interval

QT interval

Quantitative traits
Recombination rate

Red vs.non-red hair
Refractive error

Renal cell carcinoma
Renal function

Response to antidepressants
@ Response fo antipsychotic therapy
@ Response to hepatitis C treat
@ Response to metaformin

O Response to statin therapy
QO Restless legs syndrome
O Retinal vascular caliber
(O Rheumatoid arthritis

0000000000000 000C00000000000C00000C0e

Ribavirin-induced anemia
Schizophrenia

Serum metabolites

Skin pigmentation
Smoking behavior
Speech perception
Sphingolipid levels
Statin-induced myopathy
Stroke

Systemic lupus erythematosus
Systemic sclerosis

T-tau levels

Tau AB1-42 levels
Telomere length

QO Testicular germ cell tumor
@ Thyroid cancer

@ Tooth development

@ Total cholesterol
Triglycerides
Tuberculosis

Type 1 diabetes

Type 2 diabetes
Ulcerative colitis

Urate

Venous thromboembolism
Ventricular conduction
Vertical cup-disc ratio
Vitamin B12 levels
Vitamin D insuffiency
Vitiligo

Warfarin dose

Weight

White cell count

YKL-40 levels

0000000000000

0000000000000 00



Challenges =

The identified markers or genes
explained a small fraction of the diseases

More markers & GxG?

Environment variables & GxE?
Incorporation of biologic knowledge?
Better characterization and use of traits?
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Classic Modeling vs Gé}e
Association Analy5|s

In classic statistical modeling, we tend to have an
adequate sample size for estimating parameters of
Interest. Often, we have hundreds or thousands of
observations for the inference on a few parameters.
We can try to settle an “optimal” model.

In genomic studies, we have more and more
variables (gene based) but the access to the number
of study subjects remains the same. One model can
no longer provide an adequate summary of the
Information.

The Collaborative Center for Statistics in Science




Outline

eMethods
e Trees and Forests
e Forest Size
e Feature Importance
e Uncertainties in Predictors
e Interactions
e Acknowledgement
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Complex Trai

Diseases that do not follow Mendelian Inheritance
Pattern

Genetic factors, Environment factors, G-G and G-E
Interactions

Interactions: effects that deviate from the additive
effects of single effects

The Collaborative Center for Statistics in Science
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SNP and Complex Traits-\ o




Regression Approach-=—
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Recursive Partiti . =

A technique to identify heterogeneity in the data
and fit a simple model (such as constant or linear)
locally, and this avoids pre-specifying a
systematic component.

!
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Leukemia Data-

Source: http://www-genome.wi.mit.edu/cancer

Contents:

» 25 mMRNA - acute myeloid leukemia (AML)

« 38 - B-cell acute lymphoblastic leukemia (B-ALL)
9 - T-cell acute lymphoblastic leukemia (T-ALL)

e 7,129 genes

Question: are the microarray data useful in
classifying different types of leukemia?

The Collaborative Center for Statistics in Science
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Tree Structun <

Node 4 Node 6
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Forests

Random forests have emerged as one of

the most commonly used nonparametric
statistical methods in many scientific areas,
particularly in analysis of high throughput
genomic data.

To identify a constellation of models that
collectively help us understand the data.
For example, in GWAS, we can select and
rank the genes that may be highly
associated with a trait.

The Collaborative Center for Statistics in Science
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A Random Forest
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How Big a Forest?. —==, ~_

* A general practice in using random forests is
to generate a sufficiently large number of

trees, although it is subjective as to how large
is sufficient.

 Furthermore, random forests are viewed as a
“black-box” because of its sheer size.

The Collaborative Center for Statistics in Science



Forest Size? o o
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* Explore whether it is possible to find a
common ground between a forest and
a single tree

— retain the easy interpretability of the
tree-based methods

— avoid the problems that the tree-based
methods suffer from.
* Does a forest have to be large, or how
small can a forest be?

The Collaborative Center for Statistics in Science
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Shrink a Forest.

* Shrink the forest with two objectives

— maintain a similar (or even better) level
of prediction accuracy

— reduce the number of the trees in the
forest to a manageable level

The Collaborative Center for Statistics in Science



Criteria”

e Two measures are considered to
determine the importance of a
tree in a forest
— by prediction
— by similarity

The Collaborative Center for Statistics in Science




Prediction Based Cr; -

e “by prediction” method
— focuses on the prediction

— A tree can be removed if its removal from
the forest has the minimal impact on the
overall prediction accuracy.

The Collaborative Center for Statistics in Science



Prediction Based Cr-, &

e “by prediction” method

— For tree T in forest F, calculate the prediction
accuracy of forest F ;, that excludes T.

— A 5 represents the difference in prediction
accuracy between Fand F ;.

— The tree with the smallest A, is the least
important one and hence subject to removal.

The Collaborative Center for Statistics in Science




Similarity Based Criterioh=, ==

* “by similarity” method
— is based on the similarity between two trees.

— A tree can be removed if it is “similar” to
other trees in the forest.

The Collaborative Center for Statistics in Science



Similarity Based Criterioh=, =
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e “by similarity” method

— The correlation of the predicted outcomes by
two trees gives rise to a similarity between
the two trees.

— For tree T, the average of its similarities with
all trees in F ., denoted by p,, reflects the
overall similarity between Tand F ;.

— The tree with the highest p; is the most
similar to the trees in F ;, and hence subject
to removal.

The Collaborative Center for Statistics in Science



Critical Pom‘t““

e Select the optimal size sub-forest

— Let h(i), i=1,...N-1, denote the performance
trajectory of a sub-forest of i trees
* Nis the size of the original random forest.

— If we have only one realization of h(i), we select the
optimal size sub-forest by maximizing h(i) over
i=1,...Ny1.

— If we have multiple realizations of h(i), we select
the optimal size sub-forest by using the 1-se rule.

* The size of this smallest sub-forest is called the

critical point of the performance trajectory.

The Collaborative Center for Statistics in Science
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Simulation Designs

 Simulation Designs
— For each data set, we generated 500 observations, each of
which has one response variable and 30 predictors from
Bernoulli distribution with success probability of 0.5.
— Chose v of the 30 variables to determine the response
variable.

1 if Y X, Iv+o>05

=1
0 Otherwise.
 Where o is a random variable following the normal distribution
with mean zero and variance .
— Considered two choices for v (5 and 10) and two choices of o

(0.1 and 0.3).

The Collaborative Center for Statistics in Science



Simulation Desighs. . == =
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* To perform an unbiased comparison of the
three tree removal measures, we simulated
three independent data sets

— The training set is used to train the initial random
forest

— The execution set is used to delete trees from the
initial forest to produce sub-forests

— The evaluation set is used to evaluate the
prediction performance of the sub-forests

* The generation and use of these three data
sets constituted one run of simulation, and we
replicated 100 times.

The Collaborative Center for Statistics in Science



Simulation Resmﬁ - —
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« Randomly selected one run of simulation and
presented the stepwise change in the
prediction performance in Figure 1.

* The “by prediction” method is preferable

— |t can identify a critical point during the
tree removal process in which the
performance of the sub-forest deteriorates

very rapidly.
 The performance of the sub-forests may
begin to improve before the critical point.

The Collaborative Center for Statistics in Science
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Simulation Designs™
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* |n practice, we generally have one data
set only.

* May not have the execution and
evaluation data sets as in previous
simulation.

* How do we select the optimal sub-forest
with only one data set?

The Collaborative Center for Statistics in Science
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—

¢ After constructing an initial forest using the
whole data set as the training data set

— use one bootstrap data set for execution and the
out-of-bag (oob) samples for evaluation.

— use the oob samples for both execution and
evaluation.

— use the bootstrap samples for both execution and
evaluation.

— re-draw bootstrap samples for execution and re-
draw bootstrap samples for evaluation.

The Collaborative Center for Statistics in Science
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Simulation Results...

S—__a

 The performance trajectories of the four
bootstrap-based approaches may not
overlap with the “golden” standard.

* For the selection of the optimal sub-
forest, the similarity among the
trajectories is most relevant, because it
could lead to the same or similar sub-
forest.

The Collaborative Center for Statistics in Science



Simulation Results.

e Using the bootstrap samples for
execution and the oob samples for
evaluation is an effective sample-reuse
approach to selecting the optimal sub-

forest.

The Collaborative Center for Statistics in Science



Application =i

e Dataset

— the microarray data set of a cohort of 295
young patients with breast cancer,

containing expression profiles from 70
previously selected genes.

— previously studied by van de Vijver et al.

 The responses of all patients are defined
by whether the patients remained

disease-free five years after their initial
diagnoses or not.

The Collaborative Center for Statistics in Science



e Method used

— The “by prediction” measure

— The original data set to construct an initial forest
— A bootstrap data set for execution

— The oob samples for evaluation.

 The procedure is replicated for a total of 100 times.

— The oob error rate is used to compare the performance of
the initial random forest and the optimal sub-forest.

— The sizes of the optimal sub-forests fall in a relatively
narrow range, of which the 1st quartile, the median, and
the 3rd quartile are 13, 26 and 61, respectively.

The Collaborative Center for Statistics in Science
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Application™ &
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 The smallest optimal sub-forest in
the 100 repetitions with the size of
7 is selected.

* As a benchmark, we used the 70-
gene classifier proposed by Vijver, et
al.

The Collaborative Center for Statistics in Science



Applicatio

* Next table presents the misclassification
rates based on the oob samples.

— The initial forest and the optimal sub-forest
achieve almost the same level of
performance accuracy.

— The 70-gene classifier has an out-of-bag
error rate which is much higher than those of
the forests.

The Collaborative Center for Statistics in Science
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Comparison be prediction performance of the |n|t|aj;a?1
the optimal sub-forest, and a previously established 70- gene

cx
ng

classifier
Method Error rate True | Good Poor
Predicted
Random Forest | 26.0% Good 141 17
Poor 53 58
Sub-forest 26.0% Good 146 29
Poor 48 53
70-gene 35.3% Good 103 4
Classifier
Poor 91 71

The Collaborative Center for Statistics in Science




CEGP1(-0.660)
PRC1(-0.200)
CEGP1(-0.660)

R
Contig63649_RC(0.123)
LOC51203(0.084)
PRC1(-0.104)
ORC6L(-0.237)

IGFBP5(0.097) FGF18(-0.425)
Contig24252_RC(-0.089) Contig63649_RC(0.281)
NMU(0.074) PRC1(-0.199)
Contig48328_RC(-0.385) IGFBP5(-0.113)
PECI(-0.252) LOC57110(-0.002)
MP1(0.142) Contig55377_RC(0.112)
LOC51203(0.083) PECI(0.300)
Contig32125_RC(-0.137) - PRC1(0.166) PRC1(-0.054)
Contigd6223_RC(0.202) FLT1(0.032) L2DTL(0.079) CCNE2(0.119)
LOC57110(0.119) COL4A2(-0.025) TGFB3(0.065) NMU(0.053)
IGFBP5(0.309) MMP9(0.042) DKFZP564D0462(0.061) GNAZ(-0.004)
AKAP2(-0.092) L2DTL(0.226) RFC4(0.020) Contig24252_RC(0.374)
Contig63649_RC(-0.405) - AF052162(0.327) LOC57110(-0.172)
CFFM4(-0.431) - Contigd0831_RC(-0.209) -

The top three layers of the optimal sub-forest
consisting of seven trees

The Collaborative Center for Statistics in Science



 Itis possible to construct a highly accurate
random forest consisting of a manageable
number of trees.

— the size of the optimal sub-forest is in the range
of tens

— some sub-forests can even over-perform the
original forest in terms of prediction accuracy
* The key advantage
— the ability to examine and present the forests.

e The limitation

— future samples and studies are needed to
evaluate the performance of the forest-based

classifiers.

The Collaborative Center for Statistics in Science




Interpretation from Forest
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Variable Importarref;-n

Permutation importance (Breiman): For each
tree in the forest, we count the number of votes
cast for the correct class. Then, we randomly
permute the values of variable k in the oob
cases and recount the number of votes cast for
the correct class in the oob cases with the
permuted values of variable k. The permutation
importance is the average of the differences
between the number of votes for the correct
class in the variable-k-permuted oob data from
the number of votes for the correct class in the
original oob data, over all trees in the forest.

The Collaborative Center for Statistics in Science



Permutation Impori

* Not necessarily positive

* Unbounded

* The magnitudes and relative rankings can be
unstable when the number, p, of predictors is
large relative to the sample size.

* The magnitudes and relative rankings vary
according to the number of trees in the forest
and the number, q, of variables that are
randomly selected to split a node

The Collaborative Center for Statistics in Science
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Maximal conditionat chi-square™
(mcc)

Wang et al.(2010) introduced a
maximal conditional chi-square (MCC)
importance by taking the maximum
chi-square statistic resulting from all
splits in the forest that use the same
predictor

The Collaborative Center for Statistics in Science
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Chen et al. (2007): Whenever node t is
split based on variable k, let L(t) be the
depth of the node and S(k,t) be the chi-
square test statistic from the variable,
then 271 S(k,t) is added up for variable
k over all trees in the forest.

The Collaborative Center for Statistics in Science
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Haplotype Certainty =, "

SNPs Haplotypes
v" Directly observed X Inferred from SNPs
v No uncertainty X Uncertain
X Less informative v More informative
“*Tree approaches ¢+ Forest approaches

The Collaborative Center for Statistics in Science



Forest Forming Sch

Unphased
data

Reconstructed
phased data 1

v

Reconstructed
phased data 2

A 4

R

==

Estimated
haplotype
frequencies

Reconstructed
phased data 3

A 4

Tree 2

|\

Reconstructed
phased data 4

A 4

Tree 3

Reconstructed
phased data n

A 4

Tree 4

A 4

Tree n

Importance
index for
haplotype 1

Importance
index for
haplotype 2

Importance
index for
haplotype 3

Importance

X index for

haplotype k
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Inference from the F |

Importance of haplotypehintreeT
Vh = Z 2_L{ th ’

teT ,tissplitby h
where L, is the depth of nodet and y is the
value of the y~° - test statistic of independence.

The Collaborative Center for Statistics in Science



Significance

Distribution of the maximum haplotype importance
under null hypothesis is determined by permutation.

First, disease status is permuted among study
subjects while keeping the genome intact for all
Individuals.

Then, each of the permuted data set is treated in the
same way as the original data.

The Collaborative Center for Statistics in Science



Simulation Studies’{2 taci) .

» 300 cases and 300 controls

e Each region has 3 SNPs

e 12 interaction models from Knapp et. al. (1994)

and Becker et. al. (2005)

o 2 additive models with background penetrance

e 3 scenarios
 Neither region is in LD with the disease allele
* One of the regions is in LD (D’ = 0.5) with the
disease allele
e Both regions are in LD (D’ = 0.5) with the
disease allele

The Collaborative Center for Statistics in Science
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Result for Scenarld:%;h =

Ep-1 Ep-2 Ep-3 Ep-4 Ep-5 Ep-6 Het-1

[ Identify the correct
haplotype (Forest)

M Identify an incorrect
haplotype (Forest)

[1ldentify SNPs in the
correct region
(FAMHAP)

[1ldentify SNPs in the
neutral region
(FAMHAP)
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Power

Result for Scena

—— »-
.\;g

Ep-1 Ep-2 Ep-3 Ep-4

Ep-5 Ep-6 Het-1

rio-lh-==

@ Identify at least
one haplotype
(Forest)

M Identify both
haplotypes
(Forest)

[1ldentify SNPs in at
least one region
(FAMPHAP)

O Identify SNPs in
both regions
(FAMHAP)

(1%
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Real Case Std‘@ =

Age-related macular degeneration (AMD)
Leading cause of vision loss in elderly
Affects more than 1.75 million individuals in
the United States
Projected to about 3 million by 2020

Klein et al. (2005)

Case-control (96 AMD cases, 50 controls)
~100,000 SNPs for each individual
CFH gene identified

The Collaborative Center for Statistics in Science
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Analysis Proced»%ez-"f

Willows program
Each SNP is used as one covariate
Two SNPs identified as potentially
associated with AMD (rs1329428 on
chromosome 1 and rs10272438 on
chromosome 7)

Hapview program: LD block construction
6-SNP block for rs1329428
11-SNP block for rs10272438

The Collaborative Center for Statistics in Science



Result

Two haplotypes are identified
Most significant: ACTCCG in region 1
(p-value = 2e-6)
Identical to Klein et. al. (2005)
Located in CFH gene
Another significant haplotype:
TCTGGACGACA, in region 2 (p-value =
0.0024)
Not reported before
Protective
Located in BBS9 gene

The Collaborative Center for Statistics in Science



Expected Frequencies-==, -

Haplotype 1 Haplotype 2
o o
— (Case — (Case
g ------- Zontrol g ------- Zontrol
x> o x g
o o
g g
5 . s .
LS LS
o o
L] L]
o o
L] L]
| | | | | | | | | |
0.0 05 1.0 15 20 0.0 05 1.0 15 20

expected number of interested haplotype expected number of interested haplotype
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