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BRIEF REPORT

Abstract: Interest in implementation science and recent calls for 
consequentialist epidemiology urge epidemiologists to produce 
work more immediately applicable to public health practice. A clear 
vocabulary for such approaches is lacking. Here, we present a poten-
tial taxonomy of causal effects, distinguishing between “exposure 
effects” more relevant to patients and individuals; and “population 
intervention effects” more relevant to public health policy. We discuss 
this range of effects using figures and a simple numerical example.
(Epidemiology 2017;28: 525–528)

Recent years have seen a marked increase in interest around 
the translation of research findings into public health 

policy and practice, often discussed under the heading of 
“implementation” or “program” science.1–5 Although most 
discussions of translating research into practice regard epide-
miology as critical to that process, to date the role of epidemi-
ology has been left largely implicit, with some exceptions.6–10 
In this age of calls for more consequentialist epidemiol-
ogy,11,12 it is vital to have common vocabulary with which to 
discuss different types of effect estimates, and their relevance 
to clinical practice on one hand and intervention planning on 

another. Here, we synthesize work by numerous authors6,13–16 
to describe a range of contrasts that can be produced by epi-
demiologic analysis. For conceptual clarity, here we consider 
causal effects in a closed population with a binary, time-fixed, 
harmful exposure (equivalently, treatment); a dichotomous, 
time-fixed outcome which can be summarized as a risk17; and 
no competing risks.15,17 Further, we largely concentrate on 
issues of internal validity, ignoring issues of generalizability 
and transportability.15,18 Finally, the main text is conceptual; 
formal definitions of effects are proposed in the Technical 
eAppendix (http://links.lww.com/EDE/B181).

SELECTED EPIDEMIOLOGIC EFFECTS
The Figure shows several possible contrasts in a single 

population under real and hypothetical exposure distributions; 
this Figure owes a debt of influence to Figures 1.1 and 4.1 in 
Hernán and Robins.13

Figure part A shows an observed population as a circle 
in which a minority of individuals are exposed (shaded) and 
the remainder are unexposed (unshaded); the risk of the out-
come is not indicated in the Figure.

In Figure part B, we show what is sometimes called a 
population average causal effect19 (alternately, average causal 
effect,13 average treatment effect,20–22 and other names20,23). 
The two contrasting exposure distributions in Figure B (all-
exposed; none-exposed) are both counterfactual in the literal 
sense of not corresponding to the factual exposure distribu-
tion in the observed sample (Figure A). In part because neither 
exposure distribution in Figure B coincides with a population 
in the real world, all/none comparisons may not be directly 
applicable in setting policy.14,24

In Figure part C, we show a population attributable aver-
age causal effect (hereafter population attributable effect), 
which compares disease risk in the observed population (with 
the observed level of an exposure) with the risk that would 
be observed in the same population under a counterfactual 
exposure distribution in which 100% of the exposure was 
removed.25–29 The best known population attributable effect is 
the population attributable fraction15,30; closely related quan-
tities have been referred to by other names elsewhere.15,23,31 
In passing we note that Greenland and Robins30 distinguished 
between the excess and etiologic fractions; here we are inter-
ested in their “excess” usage.30,32
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In contrast to population average causal effects 
( Figure B), population attributable effects require only a single 
counterfactual exposure distribution, as one of the two groups 
being compared is the observed population (Figure part A). 
Population attributable effects may therefore be more read-
ily applicable to questions of population interventions, which 
seek to alter the (observed, factual) exposure distribution of 
the world to improve population health.14 Unlike the popu-
lation average causal effect, however, population attributable 
effects depend on the population prevalence of the exposure,14 
which may be a particular consideration in transporting a pop-
ulation attributable effect to an external target population.14,15

The Figure (D) shows a generalized intervention aver-
age causal effect (hereafter, generalized intervention effect) 
which compares observed exposure distribution (again identi-
cal to the observed exposure in Figure part A) to a counterfac-
tual in which there is less exposure. Because “no exposure” 
is a special case of “less exposure,” the population attribut-
able effect (Figure part C) is a special case of the generalized 
intervention effect (Figure part D). Generalized impact (or 
attributable) fractions were described by several authors33–35 
in the 1980s; the estimation of the quantity in complex data 
was explored by Greenland and Drescher,36 and can proceed 
either stochastically10,37 or deterministically.33

A generalized intervention effect assumes that the 
intervention removes exposure with an equal probability 
among all participants (homogenously with respect to par-
ticipant characteristics). This is frequently not true: an inter-
vention may incidentally succeed at removing a harmful 
exposure at a higher rate in one group (e.g., younger people) 
than another (older people), or may be deliberately targeted 
at a higher-risk group. In such a situation, the dynamic inter-
vention average causal effect (hereafter, dynamic interven-
tion effect) may be useful: the dynamic intervention effect 
compares the observed exposure distribution (Figure part 
A) to a counterfactual in which there are fewer exposed par-
ticipants, allowing for heterogeneity in amount of exposure 
removed by the intervention within covariate-defined sub-
populations.10  Figure part E shows a dynamic intervention 
effect: heterogeneity in the study sample is shown with the 
dotted line, and different amounts of exposure are removed 
on each side of the line. In general, for a fixed percentage of 
exposure removed (e.g., 20%) and a fixed intervention the 
generalized and dynamic intervention effects can be expected 
to differ if (i) there is heterogeneity of the causal effect of the 
exposure on the outcome by some set of covariates Z, and (ii) 
the effectiveness of the intervention at removing the harm-
ful exposure differs by Z, either by design or happenstance 
(see Numerical eAppendix; http://links.lww.com/EDE/B182 
for an example.) The generalized intervention effect can 
thus be thought of as a special case of the dynamic interven-
tion effect, under at least one homogeneity assumption (or 
in which the set of covariates Z is empty). Similar methods 
and concepts under varying names have been described and 

FIGURE. Several possible contrasts in real and hypothetic 
populations. A, An observed population, showing two levels 
of an exposure as shaded/unshaded. B, Population average 
causal effect, comparing “entirely exposed” and “entirely 
unexposed.” C, Population attributable effect, comparing 
those observed to be exposed to a population in which no 
one was exposed. D, Generalized intervention effect, compar-
ing those observed to be exposed to a population in which 
fewer individuals were exposed. E, Dynamic intervention 
effect, comparing those observed to be exposed to a popula-
tion in which fewer individuals were exposed at different lev-
els with heterogeneity by the value of an additional variable 
(above and below the dotted line). Broadly we refer to B as an 
“exposure effect,” and C, D, and E as “population interven-
tion effects.”

http://links.lww.com/EDE/B182
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applied elsewhere6–8,16,38,39 (see Technical eAppendix; http://
links.lww.com/EDE/B181 for discussion).

REMARKS
We remind the reader that for didactic purposes we are 

focusing on a binary, time-fixed, harmful exposure. With such 
an exposure, the population average causal effect (contrasting 
an entire population under all-exposed, all-unexposed con-
ditions) is the default target of estimation in the bulk of the 
population health literature. Such a contrast was of primary 
interest to Neyman,40 and is estimated by the vast majority 
of randomized trials.41,42 In particular, an intention-to-treat 
analysis of a randomized trial with a dichotomous exposure 
frequently estimates this contrast for treatment assignment, 
while compliance-corrected (or as-treated) analysis estimates 
this contrast for treatment received. Such “all/none” effects 
are typically what are estimated in observational analysis as 
well, using the default tools: standard regression approaches 
estimate covariate-conditional population average causal 
effects, while inverse probability weighting generally esti-
mates marginal population average causal effects in a manner 
equivalent to total population standardization.43,44

The fact that population average causal effects are the 
result of a contrast in two counterfactual exposure distribu-
tions may mean that they have less immediate and direct 
applicability to questions of setting policy at the population 
level,14,22 differing from measures which compare the fac-
tual exposure distribution with a counterfactual one. In broad 
terms, we therefore consider the population attributable, and 
generalized and dynamic intervention effects to be popula-
tion intervention effects6,14 (in that they are tied to potential 
interventions on real-world exposure distributions), while we 
might think of the population average causal effect as an expo-
sure effect (in that it contrasts all-exposed to none-exposed). 
These designations have fuzzy boundaries, and may coincide 
in certain settings: a smoking cessation intervention (which 
naturally targets only smokers) is an intervention in a popu-
lation with 100% exposure prevalence (and thus the popula-
tion average causal effect might coincide with the population 
attributable effect). Such measures may also coincide in com-
munity randomized trials of realistic interventions that may be 
immediately deployed on a large scale. This fuzziness aside, 
population intervention effects, especially when explicitly tied 
to real-world interventions,15 may better reflect real-world 
impacts than exposure effects; thus, population intervention 
effects may be of relatively higher utility to cost-effectiveness 
modelers and policy planners trying to understand how a par-
ticular intervention may affect total population health.

All contrasts discussed here will be interpretable as causal 
effects only under the usual causal identifiability assumptions 
or equivalents. A sufficient set includes exchangeability or con-
ditional exchangeability44 with positivity,45 no versions of treat-
ment or treatment variation irrelevance46 or an alternative,47 and 
correct model specification including attention to dependent 

happenings.48 The interpretation of population intervention 
effects as causal may require additional assumptions (or refine-
ments in thinking about those assumptions). One key issue is 
the correct modeling of all consequences of an intervention, 
including (critically) assumptions about size of the population 
at risk (15 and 49 (p. 297)). Careful articulation of identifiabil-
ity conditions for population intervention effects is a subject 
for future work, as are discussions of methods for estimation of 
such effects (although interested readers should see 10,25,29).

Here we have reviewed two broad categories (and sev-
eral subtypes) of epidemiologic effect estimates: exposure 
effects and population intervention effects. While there is 
room for refinement, improvement, and expansion of this cat-
egorization, we believe that this vocabulary will help clarify 
discussions of causal effect estimation in epidemiology. This 
work may also help answer recent calls to focus on more “con-
sequentialist” epidemiology,50 which looks beyond individual 
causes of disease to interventions which improve population 
health, building bridges from exposures to population inter-
ventions, and thereby from patients to policy.
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