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Highlights
For controlling STH infections, millions
of single doses of albendazole and
mebendazole are distributed yearly in
the framework of PC.

Although PC caused a drop in the
number of moderate and heavy STH
infections, its overall impact is highly
disputed.

The STH burden has steadily declined
with time but still more than one billion
people are infected globally.

Albendazole and mebendazole do not
Soil-transmitted helminths (STHs) are endemic in more than half of the world’s
countries. The World Health Organization has advocated targeted preventive
chemotherapy (PC) to control STH infections by distributing albendazole or
mebendazole to at-risk populations. While the overall impact and sustainability
of this strategy is disputed, a decrease in moderate and heavy STH infections
can be largely attributed to a scale-up of drug distribution. Two factors might
jeopardise the success of PC programs. First, the benzimidazoles possess
unsatisfactory efficacy against Trichuris trichiura infections. Second, increased
drug distributions might trigger anthelmintic resistance. This review presents
an overview of the burden of STH infections, the evolution of PC along with its
success and challenges, recent estimates of the efficacy of recommended
drugs, and alternative treatment options.
have high efficacy against all STH
infections when used in single oral
doses – for example, mebendazole
lacks efficacy against hookworm;
neither drug has high efficacy against
T. trichiura.

Resistance against both drugs has
been observed in the veterinary field
but has not yet been confirmed in
human medicine.

A few drugs with anthelmintic activity –

as well as potential drug combinations
with enhanced efficacy profiles – have
been identified but they need further
evaluation to better treat infections
with all STHs.
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The Burden of Soil-Transmitted Helminthiasis
Global Epidemiology and Pathology of STH Infections
Soil-transmitted helminthiasis belongs to the neglected tropical diseases (NTDs) and is caused by
infections with the roundworm Ascaris lumbricoides, hookworms (Necator americanus,
Ancylostoma duodenale and Ancylostoma ceylanicum) or the whipworm T. trichiura. Helminth
eggs or larvae are transmitted through contaminated food or soil, or active skin penetration [1].
Once the hatched larvae reach the intestine they mature into adult worms, which shed eggs that
are excreted with the feces. Under optimal conditions (high humidity and warm temperature) eggs
embryonate within several days in the environment and develop into the infective stages [2].

Among all NTDs, soil-transmitted helminthiasis affects the largest number of people, with an
estimated 1.5 billion infected individuals, and it causes the highest disease burden (see
Glossary) [3,4]. Although the global STH prevalence has decreased after almost two decades of
helminth control activities, there are still more than 100 countries in need of control programs
(i.e., infection prevalence >20%) [4,5]. Morbidity is particularly related to moderate- and
heavy-intensity infections causing short-term acute manifestations such as diarrhea, severe
dysentery, eosinophilic pneumonia or intestinal, hepatobiliary, or pancreatic obstruction [1,5].
Mid-term consequences triggered by the diseases include chronic inflammation and nutritional
impairment (e.g., micronutrient deficiencies) from mechanical damage, blood loss, competition
for nutrients, and reduced food intake [1,5]. Untreated STH infections are associated with
disabilities such as growth retardation and impaired mental development, decreased function-
ing of the immune system, and reduced school and work performance [6]. Furthermore,
morbidity due to STH infections is species-specific and does not affect all age- or risk-groups
equally, which is explained by the different nature of the clinical impairment, the infection
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Glossary
Anthelmintic: a drug that can kill or
paralyse parasitic worms (helminths).
Albendazole and mebendazole are
most commonly used to treat soil-
transmitted helminth infections.
Community-based treatment:
anthelmintic treatment is distributed
in regular intervals to the entire
community, irrespective of the
individual infection status.
Cure rates (CRs): the percentage of
patients who are egg-negative after
treatment.
Disability-adjusted life years
(DALYs): the number of years of
healthy life lost attributable to a
disease (or group of diseases). It is
defined as the sum of healthy years
of life lost and years lived with
disability. DALYs are used as a
measure of disease burden and
provide a comparative indication of
the relative importance of the disease
to public health [5].
Disease burden: the burden of
disease is described as the health
loss due to disease or condition, and
is most often expressed as disability-
adjusted life years.
Drug efficacy: a description of how
well a drug is able to decrease the
worm burden. Efficacy is usually
assessed by measuring egg counts
before and a few weeks after
treatment, and is expressed as cure
and egg-reduction rates.
Drug resistance: for anthelmintics,
resistance is currently defined as the
decrease in ability to reduce the
worm burden and clear infections.
Egg-reduction rates (ERRs): the
relative reduction in counts of eggs
after treatment.
Years of life lost (YLLs): years of
healthy life lost due to premature
mortality in the population caused by
a disease or condition.
Intensity of infection: the number
of helminths infecting an individual
(also known as the worm burden). It
can be measured by counting
expelled worms after anthelmintic
treatment, or by counting helminth
eggs excreted in feces (expressed as
eggs per gram). WHO classifies STH
infections as light, moderate, and
heavy, according to the number of
helminth eggs excreted in human
feces [5].
Morbidity: the clinical consequences
of infections and diseases that
occurrence, and the vulnerability of the respective groups. While hookworm infection and
related anemia may be more relevant in pregnant women, young children are more affected by
A. lumbricoides infection [5,7]. However, many clinical signs are not STH-specific and may be
attributed to other comorbidities in burden of disease estimations [8].

This review gives an overview of STH burden estimates and intertwined criticism, and presents
the evolvement of targeted preventive chemotherapy (PC) guidelines. The controversial
discussion about the actual impact of PC and recent estimates on the efficacy of anthelmintic
drugs are summarized. Finally, alternative treatment options and state-of-the-art reports on
drug resistance are presented.

Burden Estimates and Dynamics over the Past Two Decades
Disability-adjusted life years (DALYs), the most widely used metric to determine burden
figures, estimates disease burden based on years lived with disability (YLDs) combined with
healthy years of life lost (YLLs), thus taking into account health loss due to both morbidity and
mortality [9]. Figure 1 illustrates the soil-transmitted helminthiasis burden changes between 2000
(shortly before the World Health Assembly (WHA54.19) resolution) and 2016 and how dynamics
varied by region. Overall, STH infections were estimated to contribute to 3.3 million DALYs lost in
2016, which is significantly lower than the estimated 4.6 million DALYs in 2000 [10]. This decrease
is, however, mainly associated with decreasing prevalence in the regions of Southeast Asia, East
Asia and Australia (36.0% prevalence in 2000; 22.3% in 2016) [10–13]. This regional decline is
related to different country-specific achievements, including high treatment coverage rates within
deworming programs (e.g., Bhutan, Cambodia, Lao PDR, Myanmar, Nepal) eventually accom-
panied by socioeconomic development (e.g., Sri Lanka and Thailand) [14] and integration of
water, sanitation, and hygiene (WASH) interventions (e.g., China, The Philippines, Timor-
Leste) [11]. STH infections rarely lead to death [15], so most of the estimated burden is attributed to
YLDs. The majority of STH-related mortality is associated with sub-Saharan Africa whereof a large
part may be attributable to intestinal and hepatobiliary obstruction from A. lumbricoides in young
children [1,5,10,16,17]. While estimated deaths caused by STH infections were cut down by half
within the respective period (from �10 000to less than 5000,Figure 1), a steadydownwards trend
is observed for YLDs and the overall DALYs [18].

Debate on the ‘True’ Burden
Since burden estimates are key information for cost-effectiveness analyses of intervention
strategies and are used to set priorities within the health agenda by local, national, and
international stakeholders, they are often debated [19,20]. STH infections are more of a chronic
nature, and thus their burden refers mainly to morbidity and disability, which is often argued to
be underestimated [15,19,21]. Main points of criticism are (i) lack of acknowledgment of
economic burden in the context of the affected population [15,22], (ii) not taking into account
frequent coinfections and comorbidities that may show potential additive effects on detrimental
health outcomes [15,19,22], (iii) biased ‘western’ determination of disability weights that are
used for calculation of DALYs [23], (iv) omission of patient self-reported illness impact and
quality of life [19,22], (v) lack of inclusion of less acute sequelae referring to subtle morbidity
(e.g., impaired cognitive development due to STH) [17,22] and acknowledgment of long-term
outcomes [19]. To address these criticisms, the global burden of disease-assessment tools
have been further adapted and refined over the past decades. More infection-related morbidity
sequelae were included (e.g., hookworm-related anemia) [17,24], and an attempt was made to
evaluate disability-weights by a more culturally diverse sample of respondents [9]. Neverthe-
less, concerns remain on the accuracy of current burden estimates. Thus, the application of
new estimation procedures are warranted to acknowledge the chronic nature and the context
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adversely affect human health.
Morbidity from STH infections is
usually subtle and a result from
chronic infection (for example,
anemia, malabsorption, stunted
growth) rather than presenting acute
life-threatening manifestations, and is
proportional to the number of worms
infecting an individual. The STH
infections that cause morbidity are
primarily those of moderate or heavy
intensity [5].
Targeted preventive
chemotherapy (PC): specific risk
groups in the population, defined by
age, sex, or other social
characteristics such as occupation,
are given anthelmintic medicines at
regular intervals, irrespective of the
individual infection status [5].
Water, sanitation, and hygiene
(WASH): intervention approach
tackling access to, and use of, water
and sanitation facilities, often
including a health-education aspect
aiming at behavior change.
Years lived with disability (YLDs):
years lost due to disability for people
living with the health condition or
disease.
in which STH infections affect populations together with the inclusion of more accurate
prevalence estimates from intensified efforts to map NTDs at national levels [12,25].

Strategy for Achieving Global Targets: The Evolution of Preventive
Chemotherapy
In 1987, the first report on an expert meeting at the World Health Organization (WHO)
‘Prevention and Control of Intestinal Parasitic Infections’ was published, becoming the cor-
nerstone for global STH control programs [26]. At this early stage, little scientific information on
the treatment of human soil-transmitted helminthiasis was available. Thus, STH prevention and
control focused mainly on hygiene and education. However, clearly defined programs and
targets did not yet exist [26]. In 1998, the first guideline with information on treatment strategy
depending on STH prevalence was reported (Figure 2) [27] and finally, the 54th World Health
Assembly (WHA) in 2001 endorsed the reduction of mortality and morbidity caused by STH
infections by regular treatment of high-risk groups (school-aged children, SAC) besides
promoting access to basic sanitation and safe water (Figure 2) [28]. In more detail, member
states were urged to implement regular PC (treatment of at-risk populations without pre-
diagnosis) to reach 75% coverage of SAC in endemic areas by 2010. This goal was not
achieved, but success stories were reported from countries where persistent treatment and
economic development successfully eliminated STH as a public health problem (e.g., Japan,
Taiwan, Korea, Caribbean) [29–31]. However, in countries with a lack of sanitary infrastructure
and low educational coverage, elimination is not possible due to high reinfection rates [32] so
that PC is still the most effective strategy for reducing the burden and prevalence of STH
infections. To increase the success of PC, WHO’s recommendations on STH treatment have
evolved over time (1987–2017) into defined standards for PC programs providing guidance on
treatment doses, frequency, and type depending on STH prevalence (key guidelines from
2002, 2006, 2012, and 2017; Figure 2) [5,33,34,35]. The primary focus was set on SAC only,
but the strategy broadened in 2012 by including preschool-aged children (PSAC), and since
2017 all populations at (high) risk are considered [5,34,36]. In the latest guideline, periodic
single-drug treatment (annual or biannual) of populations at-risk in endemic areas (PSAC, SAC,
women of childbearing age, pregnant women) is recommended irrespective of individual
infection state. The goal is to achieve a minimum coverage of 75% of the most affected
groups, PSAC and SAC, by 2020 (estimated at 836 million in 2016) to eliminate morbidity
caused by mainly moderate and heavy STH infections [4,5]. WHO guidelines on PC planning,
implementation and monitoring support health care professionals and managers [5,37]. Infants
<12 months, breastfeeding and pregnant women (first trimester) (Figure 2) are excluded due to
a lack of safety evidence [5]. Additionally, men and the elderly are currently not included in PC
programs [5]. Besides PC, there has been wide discussion of community-based treatment
in which entire populations (not only populations at-risk) in endemic areas are treated to
diminish the likelihood of reinfection while reducing the worm burden [38]. Most likely, a higher
fraction of low or no infections are treated in the framework of community-based treatment,
resulting in increasing drug pressure. Thus, this strategy is preferable only in settings with high
hookworm endemicity that show main worm burden reservoirs in adulthood or in settings with
low prevalence moving towards elimination. Either way, the question is: is it reasonable to treat
entire populations, including uninfected people and people with low-infection intensities who
would not profit or who would profit minimally? The eligibility of PC is supported by the good
safety profile of anthelmintic drugs, and their low cost, which outweighs the advantages of
mass prediagnosis and individual treatment [39,40].

School-based PC is currently most commonly performed in addition to treatment as part of
health care programs such as prenatal care, or vaccination campaigns to reach SAC, PSAC,
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Figure 1. Dynamics of Burden (A) and Mortality (B) due to Soil-Transmitted Helminth (STH) Infections between 2000 and 2016, and by World Region (C)
according to the Latest Estimates of the Global Burden ofDiseaseResults Tool [10]. Burden measures: YLLs: years of life lost due to premature mortality; YLDs:
years of life lived with any short-term or long-term health loss; DALYs: disability-adjusted life years defined as the sum of YLLs and YLDs. World regions: LA & C, Latin
America and Caribbean; NA & ME, North Africa and Middle East; SA, South Asia; SEA, EA & O, Southeast Asia, East Asia, and Oceania, SSA, sub-Saharan Africa.
and women of childbearing age [41]. In 2016, over 50.5 and 68% of affected PSAC and SAC,
respectively, were reached with PC, but its continued success strongly depends on the
member states’ willingness for its implementation in national health programs and by the
availability of drugs [4,5]. Systematic realisation of PC was enforced with sustainable drug
donations that started in 2006 for STH and increased significantly in 2012 with the London
Declaration on NTDs [18,42,43].

Impact of Preventive Chemotherapy – A Controversy
PC aims to decrease the burden of STH by reducing the number of moderate and heavy
infections; consequently seeking improved state of health. Monitoring PC to evaluate its success
and pitfalls, both globally and nationally, and defining research needs is essential [44]. In the
recent past, several meta-analyses and reviews evaluated the impact of STH PC on weight,
height, hemoglobin levels, anemia and other health parameters [45–51]. The conclusions of the
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Year

1987

2001

2002

1998

2006

2008

2012

2012

2011

2012

2013

2017

Report (�tle) Strategy and aims

Preven�on and control
of intes�nal parasi�c
infec�ons [26]

Schistosomiasis and STH 
infec�ons WHA54.19 [28]

PC in human
helminthiasis [34]

Popula�ons considered for PC Popula�ons not considered for PC

PSAC
(12–59 months)

SAC
(5–12 years)

Pregnant women, adolescent girls
and WCA (overall 10–49 years)

STH prevalence >20% >50% >20%2 and
>40% anemia

Treatment Annual Bi-annual A�er 1st trimester

Infants (<12 months), breas�eeding and
pregnant women (first trimester), men, elderly

Lack of safety
evidence

Not men�oned

Albendazole (400 mg**) or Mebendazole (500 mg)
**half dose of albendazole for children <24 months

STH PC guidelines/documents with detailed informa�on on targeted groups, treatment frequency and specified aims
Guidelines/documents primarily focusing on monitoring, planning and implemen�ng STH PC and/or drug efficacy

Ascariasis: individual medical care, community mass treatment and PC for SAC
Hookworm infec�on: standard case management, community mass treatment
No recommenda�on for trichuriasis

>50% STH prevalence, ≥ 10% heavy infec�ons: annual community mass treatment
50% STH prevalence, <10% heavy infec�ons: annual PC for PSAC, SAC and WCA
<50% STH prevalence, <10% heavy infec�ons: selec�ve treatment

PC in endemic countries aiming for 75% SAC treated un�l 2010

20–50% STH prevalence: annual PC of SAC
>50% STH prevalence: bi-annual PC of SAC
Treatment of other popula�ons1 when at high-risk

≥70% STH prevalence or  ≥10% h/m infec�ons: 2–3 PC yearly for SAC and *
50–70% STH prevalence and <10% h/m infec�ons: annual PC od SAC and *
<50% STH prevalence and <10% h/m infec�ons: selec�ve treatment
*systema�c treatment of PSAC and WCA

Elimina�ng STH as a
public health problem
in children [35]

Monitoring anthelmin�c efficacy for STH [44]

London declara�on
on NTDs [42]

PC to control STH
infec�ons in at-risk
popula�on groups [5]

Helminth control in SAC [37]

Preven�on and control
of schistosomiasis and
STH [33]

Guidelines for the
evalua�on of STH and
schistosomiasis at
community level [27]

2015: PC for 50% of PSAC and SAC,z affected countries have a plan of ac�on
2020: PC for 75% of PSAC and SAC to reduce prevalence of heavy STH below 1%

Sustainment/expansion of drug access programs, increase of drug dona�ons
2020: morbidity of STH controlled

Accelera�ng work to overcome the globe impact of NTDs [6]

Assessing the efficacy of anthelmin�c drugs against schistosomiasis and STH [56]                              

(See figure legend on the bottom of the next page.)
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analyses differ, even though the approaches were equivalent or similar – starting a controversial
discussion about the actual impact of PC [12]. Overall, data show that PC reduces the
prevalence of STH, but the mid- and longer-term impact on health outcomes is either unclear
or challenging to assess. It might be worth highlighting that STH infections of low intensity are
generally asymptomatic, but that moderate to heavy intensities can lead to, for example,
intestinal manifestations, malnutrition, impaired growth and physical development [34]. More-
over, the prevalence of moderate and heavy STH infection is lower than that of light infections
and depends on the endemicity [12]. Nevertheless, many clinical trials, especially early ones, did
not confirm infection intensities, yet these studies are included in most meta-analyses evaluating
the impact of PC on morbidity. Since low STH infection intensities do not cause high morbidity,
pooling the results of all individuals – and not distinguishing between infection intensities or even
infection status – is misleading and might dilute the real effect of PC [52]. Therefore, meta-
analyses evaluating the impact of PC should include clinical studies with identified STH intensi-
ties, and following WHO’s guidelines: for example, trials in which annual or biannual PC is
performed with at-risk populations (defined by the prevalence of STH). Studies that are designed
differently (e.g., performed in an area with low STH prevalence where WHO does not recom-
mend PC) should be considered as not eligible for the evaluation of the impact on morbidity
measures. Moreover, WHO recommends performing PC for 5 years, aiming for a decrease in
heavy infection prevalence below 1% [6]. Although it is possible to observe a benefit of treatment
at an earlier time point, it is estimated that the full impact of PC can be fully understood only after
5 years with several successful rounds of PC. Here, the outcome is very complex to assess
because trials mostly do not have such long follow-up periods, and it would be unethical to
include a placebo group in a trial lasting for so long. Conclusively, the impact of PC on the
number of moderate/heavy infection rates in well designed studies, and its correlation to
morbidity measures, has not been addressed in most of the reviews so far. Moreover, the
impact of PC on health outcomes, such as weight gain or anemia, is, in general, multifactorial,
and thus complex to evaluate (e.g., coinfection and nutritional status also play major roles). It
might be worth highlighting that Marocco and colleagues developed a more accurate approach
which focused on the reduction of STH prevalence taking the infection intensities into account
[45]. However, the analysis did not evaluate the impact on morbidity measures. Overall, the
conflicting findings of the reviews that evaluated the impact of PC underline that methodological
methods differ substantially, and that available data are not sufficient to draw a clear conclusion.

Performance of Recommended Treatment
Four drugs are listed on WHO’s list of essential medicines to treat STH infections, whereas only
two, namely mebendazole and albendazole, are commonly distributed in PC. The remaining two,
levamisole and pyrantel pamoate, are less attractive due to lower efficacy, the weight-dependent
dosing, and the lack of donation [53]. The efficacy of the two benzimidazoles against STH
infections was analysed in three studies in 2017 [5,54,55]. A comparison of the findings is
presented in Table 1. Anthelmintic drug efficacy is measured qualitatively by cure rates
(CRs) or quantitatively by egg-reduction rates (reduction of egg counts; ERRs). Mrus et al.
estimated the average ERRs from all as well as only from placebo-controlled studies on meben-
dazole [54], while WHO calculated the average ERRs of albendazole and mebendazole of
epidemiological and clinical studies and in a subgroup, ERRs from studies following the recom-
mendedWHO methodology [5,44]. Both studies applied a simple pooling approach to summarise
Figure 2. The Evolution of Preventive Chemotherapy specified by the World Health Organization (WHO) to Control Soil-Transmitted Helminth (STH)
Infections. Guidelines of WHO, the World Health Assembly (2001), and the London Declaration (2012) and their treatment targets are illustrated over time. The strategy
of 2017 is demonstrated in detail as a cartoon. PC, targeted preventive chemotherapy; STH, soil-transmitted helminths/helminthiasis; SAC, school-aged children;
PSAC, preschool-aged children; WCA, women of childbearing age (15–49 years); NTDs, neglected tropical diseases. h/m infections: heavy/moderate infections
1PSAC, WCA, lactating, pregnant women (after 1st trimester) and adults at high risk (e.g., tea pickers). 2Accounts only for hookworm and Trichuris trichiura.
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Table 1. Comparison of Albendazole and Mebendazole Egg-Reduction Rate (ERR) Estimates [%]

Mrus 2017 [54] Moser 2017 [55] WHO 2017 [5]

All studies Placebo- controlled All studies WHO methodology

Ascaris lumbricoides

Albendazole 98.5 98.7 99.9

Mebendazole 97.9 98.1 98.0 98.3 97.6

Hookworm

Albendazole 89.6 89.8 92.4

Mebendazole 72.0 61.2 61.0 68.2 76.5

Trichuris trichiura

Albendazole 49.9 60.7 64.4

Mebendazole 72.5 86.8 66.0 69.0 69.3
the ERRs regardless of whether geometric or arithmetic mean was provided without any precision
estimates [5,54,56]. On thecontrary, Moser etal. applieda networkmeta-analysis, considered the
measure of central tendency for estimating the ERRs (i.e., arithmetic, geometric, or unknown) and
presented precision estimates for the CRs and ERRs [55].

Similar high ERRs were estimated for mebendazole and albendazole treating A. lumbricoides
infections (>98%, Table 1) [54–56]. The reported ERRs of mebendazole against hookworm
vary (61–77%) and are 7–16% higher in the WHO report, depending on the included studies.
On the contrary, ERRs of albendazole treatment against hookworm were estimated similarly
(�90%). The opposite trend was observed for T. trichiura, where the estimates for mebenda-
zole revealed similar ERRs (�70%), but the efficacy of albendazole varied (50–64%). Here, the
WHO analysis reported an almost 10–15% higher efficacy compared to the low ERR of 50%
estimated by Moser et al. [55]. Regarding the deviation of ERRs, the advanced statistical
methods applied by Moser and colleagues might have led to more credible estimates com-
pared to the statistically weaker method used for the analysis by Mrus et al. and WHO.

Reference efficacy data for albendazole and mebendazole was published by WHO in 2013 [56].
The reference threshold was identified at >95% ERR for both drugs against A. lumbricoides, 90
and 70% ERR for albendazole and mebendazole, respectively, against hookworm, and >50%
ERR for both drugs against T. trichiura [56–58]. Thus, the conclusion of WHO that ERRs of the
drugs are well above the reference threshold [5,56] should be taken with caution; for example
the ERRs of albendazole against T. trichiura are considerably lower following the more rigorous
analysis by Moser et al. Moreover, CR estimates are not available from WHO, but mebenda-
zole’s CRs were analysed by the remaining two groups with, again, varying results
[A. lumbricoides (96 and 93%), hookworm (33 and 26%), and T. trichiura (42 and 28%)] [54,55].

A single meta-analysis recently evaluated the efficacy of levamisole and pyrantel pamoate on
STH [55]. While both drugs show high CRs (>93%) and ERRs (>94%) against A. lumbricoides,
lower CRs (10 and 50%, respectively) and ERRs (62 and 72%, respectively) were determined
for hookworm and T. trichiura (CRs <30%, ERRs 28 and 48%, respectively).

Alternative Anthelmintics
Despite the depleted anthelmintic drug pipeline, a few drugs marketed for other diseases have
been tested in humans for their anthelmintic activity; this could complement the small drug
596 Trends in Parasitology, July 2018, Vol. 34, No. 7



armamentarium for STH infections. Ivermectin is a broad-spectrum antiparasitic drug which is
marketed for the treatment of onchocerciasis; in combination with albendazole, it is in use
against lymphatic filariasis. Several trials evaluated ivermectin’s efficacy against STH in children
(�5 years, 200 mg/kg) and reported high CRs (94–100%) and ERRs (94–100%) against
A. lumbricoides, but only low to moderate CRs (2.4–44%) and ERRs (54–87%) against
T. trichiura [59–62]. Only one of the trials included hookworm-infected patients; it revealed
a CR of 65% [62]. Additionally, a clinical study was performed with pregnant women infected
with hookworm, in which ivermectin resulted in a CR of 29% [63]. Wimmersberger et al. recently
performed a dose-finding study in two populations, SAC and PSAC. Unfortunately, the highest
doses tested (600 and 200 mg/kg, respectively) did not lead to attractive efficacy against
T. trichiura (CRs <21% and ERRs <79%), with results similar to the placebo arms [60].
Additional studies with ivermectin have been performed in STH-infected adults but their results
are not discussed here due to the low number of included participants (�18) [64,65].

In 2004, tribendimidine was approved for use in human medicine in China for treating STH and
Enterobius vermicularis infections, and its clinical data were thoroughly reviewed by Xiao et al. in
2013 [66]. Tribendimidine is believed to act as a prodrug as it rapidly breaks down into the
active deacylated amidantel (dADT), which is further metabolised to acetylated dADT [66]. The
review presents high CRs and ERRs against A. lumbricoides (>90 and >99%, respectively),
moderate efficacy against hookworm (52–89% and >94%, respectively), and variable CRs for
T. trichiura (24–77%). Only a sole randomised, controlled trial was published to date on the
efficacy of tribendimidine outside of Asia. In this study, in two African settings, CRs of 99, 54,
and 8%, and ERRs of 99, 97, and 53% were documented for A. lumbricoides, hookworm, and
T. trichiura, respectively [67]. An extensive development program has been initiated to support
a successful registration at the Food and Drug Administration (FDA) in the USA.

Oxantel pamoate is an old anthelmintic [68,69] which is not marketed any longer. Recent
randomised, controlled trials revealed low CRs (<33%) against A. lumbricoides and hookworm,
but a comparably moderate CR against T. trichiura (26–50%) [70,71]. ERRs ranged from 93 to
98% against T. trichiura. A dose-finding study further evaluated 25 mg/kg as the most effective
dose for treating T. trichiura, and suggested a weight-independent dose of 500 mg for children
of the age range 7–14 years [70].

Another veterinary drug that was tested for its anthelmintic activity in humans is moxidectin. A
dose of 8 mg was administered to 118 adolescents (12–18 years) in a randomised, controlled
trial conducted recently on Pemba island; it yielded CRs of 75, 34, and 14%, and ERRs of
99.9%, 87, and 83% against A. lumbricoides, hookworm, and T. trichiura, respectively [72].
Moxidectin will soon be registered as a treatment against onchocerciasis and should be further
evaluated as a potential treatment for STH.

Obviously, the ideal drug candidate would reveal high activity against all STH species, but
remains to be discovered and developed. The anthelmintic drug-discovery pipeline is depleted,
with only a handful of compounds currently under investigation (e.g., emodepside, oxfenda-
zole, and CRY5B); however, their efficacy profiles against human STH remain unknown
[73–77]. Alternative treatment options include drugs with high activity against hookworm or
A. lumbricoides but acting with a different mode of action (e.g., tribendimdine). Additionally,
drugs with higher efficacy against T. trichiura than the available drugs are of high interest as long
as they can be safely coadministered with drugs against other STHs. Promising efficacy against
T. trichiura has been so far only reported for oxantel pamoate, which is no longer produced by
the pharmaceutical industry [70,78,79]. Unfortunately, the barriers to introduce or reintroduce
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human anthelmintics to the market are high due to high costs and nonprofitability (drugs have to
be donated) [80]. Here, strong collaborations between pharmaceutical companies, organiza-
tions (WHO and others), research institutions, states, and funding authorities will help to
overcome these barriers.

In STH PC guidelines, as described above, so far only single-dose and single-drug adminis-
tration is considered. On the other hand, in nonendemic countries, individual treatment
following diagnosis often includes treatment over several days. However, it is worth stressing
that PC in endemic countries currently aims for STH burden reduction, whereas individual
treatment targets full cure. Additionally, the single-drug/dose treatment strategy is most
feasible regarding costs and logistics in PC programs. Nonetheless, improved treatment
regimens – including drug combinations to yield higher drug efficacy – have recently gained
importance for treating STH infections. Numerous drug combinations have been tested in
clinical settings for treating STH infections [67,71,78,81]. Moreover, in 2017, albendazole–
ivermectin was added to the list of essential medicines by WHO for the treatment of STH
infections, but this combination has not yet been integrated into PC guidelines [82,83].

Resistance
Anthelmintic drug resistance is of major concern in human medicine since its wide occurrence
in the veterinary field [84–87]. Resistance can develop due to a variety of circumstances such as
the use of single-drug regimens, under-dosing, or mass treatment within the context of small
refugia. Indeed, the upscaling of PC for STH infections, and the availability of few drugs, raises
the likelihood that drug resistance will develop. So far, well established resistance markers for
human STH infections do not exist, as, to date, no phenotypic benzimidazole-resistant human
STH strain has been identified. In veterinary medicine, benzimidazole resistance in Haemon-
chus contortus was associated with a single nucleotide polymorphism (SNP) in the b-tubulin
gene at each of three positions (i.e., codons 200, 167, and 198) [88]. Studies investigating the
same SNPs in human STHs reported the finding of a single SNP in each STH species [89,90].
After treatment with albendazole an increased frequency of codon 200 SNPs in T. trichiura was
observed, but no association with reduced efficacy could be confirmed [91]. In-depth studies
have to be launched using next-generation sequencing technologies to reliably identify resis-
tance – which might be multifactorial rather than caused by only a single SNP. Therefore,
currently, only the change in efficacy (ERRs) can help to estimate the development of drug
resistance. As mentioned earlier, reference ERRs for the benzimidazoles were published by
WHO in 2013; these were based on two multicountry studies, and are presented in Table 2
[55–58,87]. The comparison of efficacy estimates (ERRs) for 1995 and 2015, put forth by the
meta-analysis of Moser et al., illustrate that neither albendazole nor mebendazole have
changed significantly and are almost equal, or above, the reference level for treating
A. lumbricoides (Table 2) [55]. The ERRs against hookworm indicated a significant decrease
over time (albendazole: 95–77%, mebendazole: 69–52%) and are now below WHO’s reference
value (90 and 70%, respectively). For T. trichiura, the albendazole estimates dropped from 73 to
43%, and are thus below the reference threshold of �50%, while mebendazole decreased from
91 to 55%.

This analysis gives an overview of the drugs’ efficacy development over time, but accounts for
only their overall efficacy and not individual impact, which could differ depending on location
and population. Generally, results need to be interpreted with caution as study design and
quality, baseline infection intensity, or length of follow-up period differ between trials, possibly
leading to confounded results. Thus, the change in ERRs cannot serve as an absolute indicator
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Table 2. Development of Efficacy of Albendazole and Mebendazole over Time, Showing Egg-Reduction
Rate (ERR) and 95%-Cl

Albendazole Mebendazole

ERR [%] 95%-Cl [%] ERR [%] 95%-Cl [%]

A. lumbricoides

WHO reference efficacya � 95 �95

1995b 99.5 94.7–100 99.7 93.3–100

2015b 95.4 88.2–100 94.8 87.3–100

Hookworm

WHO reference efficacya �90 �70

1995b 95.6 85.3–100 69.4 54.3–84.6

2015b 77.1 62.5–91.7 51.8 35.3–68.2

Trichuris trichiura

WHO reference efficacya �50 �50

1995b 72.6 53.7–91.5 91.4 72.9–100

2015b 43.4 23.5–63.3 54.7 34.6–74.8

a[56].
b[55].

Outstanding Questions
Are the available anthelmintic drugs,
albendazole and mebendazole, able
to reduce moderate and heavy STH
infections to a level below 1% by
2020 and ultimately achieve elimina-
tion? Or do we need alternative anthel-
mintics or drug combinations?

Is PC sufficient to reach this goal by
2020, or is its combination with alter-
native strategies (e.g., improved sani-
tation, hygiene, health education) the
only way to eliminate STH infections as
a public health problem? If the goal is
reached, how can we proceed to elim-
inate STH infections?

What are the correct indicators to
measure the impact of PC? How can
we appropriately assess the short- or
long-term morbidity associated with
STH infections? How can STH-related
morbidity be adequately evaluated to
correctly estimate the disability-
adjusted life years?

How can we foster research and
development on novel anthelmintic
drugs? How can the development
and approval of oxantel pamoate at
a stringent regulatory authority be pro-
moted so that the drug can be used
widely in PC programs? Is the combi-
nation of two or more drugs – with
different efficacy profiles and modes
of action – the most efficient option
for treating STH infections?

Anthelmintic drug resistance is a well
known problem in veterinary medicine;
will it also become an issue for human
STH control? What is benzimidazole’s
mode of action in human STH infec-
tions, and how does anthelmintic drug
resistance develop? Are SNPs respon-
sible for resistance, or is resistance
rather multifactorial? Which resistance
markers could be used to prove the
existence of, and monitor, anthelmintic
drug resistance?
for drug resistance, but new tools need to be developed for this purpose. However, WHO might
consider a refinement of their reference ERRs.

Concluding Remarks
Global burden estimates of STH infections steadily decreased due to the upscaling of helminth-
control efforts – particularly through PC in combination with WASH and educational inter-
ventions. The importance of PC programs is greatest in countries with low hygiene and
unsatisfactory educational coverage. Monitoring PC is essential, but its impact should be
evaluated primarily by the decrease in moderate and heavy infections, which cause the highest
disease burden (see Outstanding Questions). In addition, it is important to assess the effect of
PC on health outcomes – such as weight gain or improved physical and cognitive development
– but here, multiple confounding factors must be considered, such as coinfections and poor
dietary intake. Control programs are limited by the number of available drugs. Only four drugs
are recommended for STH infections, of which only two are widely used, resulting in high drug
pressure. These drugs are characterised by insufficient efficacy, particularly against T. trichiura.
Therefore, drug-screening efforts should be strengthened to identify alternative broad-spec-
trum anthelmintic drug candidates. In parallel, a review of oxantel pamoate’s dossier and
subsequent preclinical and clinical studies should be launched with the ultimate goal of
approving the drug by a stringent authority as the drug exhibits by far the highest efficacy
against T. trichiura. In the meantime, drug combinations should be further evaluated for
potentially enhanced efficacy. Finally, in-depth research on the mode of action of existing
drugs and pharmacokinetic/pharmacodynamic relationships in humans, as well as on their
resistance mechanism, is necessary to fill knowledge gaps helping to fight STH infections.
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