Regulation of protein phosphatase 2A by ARPP-16 and MAST3 kinase in striatum
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Cellline culture: HEK 293-T cells were grown on un-coated plates in DMEM (Invitrogen), supplemented with 10% F8s.

GST pull-downs: His-ARPP-16 was immobilized onto 80 pl/sample (of 50/50 slurry) Talon et affinity resin Clontech Laboratory
Inc, Mountain View, CA). Increasing amounts of purified PP2A-A (0, 20 ng, 40 ng, 200 ng, or 400 ng) were added to the beads
and samples were incubated for 1 hr at 4° C with rotation. As a control, 40 ng PP2A-A was added to beads with no His-ARPP-16
immobilized.

Plasmids and Transfection: MAST3-HA, ARPP-16-HA, Balfa-FLAG, BSGS-FLAG and PR72-FLAG constructs were transfected in
HEK293 cells with Lipofectamine 2000 (Invitrogen) in Opti-MEM media (Invitrogen) an. Protein expression was assayed at least
20 hr later

ARPP-16 in vitro phosphorylation: Recombinant ARPP-16 fused to 6xHis tag was expressed in Escherichia coli (BL21) and
purified using Ni-NTA Agarose (Qiagen). Purified 6xHis-ARPP-L6 (1 M) has been resuspended in 100 yl of phopshorylation
buffer (50 mM Hepses pH 7.4, 10 mM Mg C12) in presence of 200 uM ATP (Sigma) or 1 mM thio-1-ATP (Roche) and incubated at
37°C for different time with immunoprecipitated MAST3 kinase

Immunoprecipitation and Malachite green Phosphatase assay: Lysates of transfected cells were incubated with 50 pl (50%
slurry) of anti-FLAG conjugated agarose beads for 2 h at 4 * C. Immunocomplexes were washed three times in lysis buffer
without phosphatase inhibitors and two times in PP2A reaction buffer (50 mM Tris-HCI, pH 7, 100 M CaCly). Immunocompleves
for B-av, B56-3- or PR72- PP2A trimers or purfied PP2A-AC dimer (0.01 U/, Millipore) were resuspended in 100 il of PP2A
reaction buffer and incubated with or without ARPP-16 o thio-(-phosphorylated ARPP-16 (50 nM, 100 nM, 1 uM) for 10 min at
37' Cin presence of 500 M Threonine phosphopeptide (K-R-p-T-I-R-R). The phosphatase activity was measured by malachite
green assay kit (Milipore)

'DARPP-32 in vitro phosphorylation and PP2A activity assay: recombinat purified DARPP-32 (200 ug) was phosphorylated by
CDK1at30" Cfor 1 hour, in buffer containing 50 mM Tris-HC, pH 7.1, 150 mM KCI, 10 mM magnesium acetate and 200 M [y-
22p] ATP. Proteins were precipitated in 100% Trichloroacetic acid (TCA) and after extensive washing the pellet was resuspended
and dialyzed in 20 mM Tris-HCI pH 7.6, 5 mM B-mercapto-ethanol. For the PP2A assay, different PP2A heterotrimer were
incubated with or without ARPP-16 or thio-y-phosphorylated ARPP-16 (200 nM) in presence of 75 g of [*P|-DARPP-32 for 10
minutes at 30 C. Free [%P] level was measured by scintilation after precipitation of (2Pl-phosphoproteins with cold TCA.
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Figure 5: PKA/Ser88-ARPP-16 phosphorylation attenuates MAST3 ability
to phosphorylate Ser46-ARPP-16 and viceversa
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a. Recombinant purified ARPP-16 (1uM) or P-S88-ARPP-16 were incubated with ATP-y-2P and
MAST3 Kinase in HEK293 cells, for various times (as indicated); the

protein were separated by SDS-PAGE and phosphorylation of Ser46 was measured by authoradiography

b. Recombinant purified ARPP-16 (11M) or P-S46-ARPP-16 were incubated with ATP-y-2P and commercial

purified PKA , for various times (as indicated); the protein were separated by SDS-PAGE and

phosphorylation of Serd6-ARPP-16 was measured by authoradiography . Results shown represent the

average from three experiments

Figure 6: MAST3 is phosphorylated by PKA in vitro and this event inhibits MAST3
activity, eg ability to phosphorylate ARPP-16
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MAST3 Kinase, in HEK293 cells, was incubated with ATP-y-2P and commercial purified PKA for

indicated); the protein were separated by SDS-PAGE and phosphorylation of MAST3 was measured by

b. The activity of phopshorylated MAST3 Kinase was measured as ability to phosphorylate ARPP-16 in comparison with normal MAST3,

ARPP-16 (141M) was incubated wi

P-MAST3 ( previously phosphorylated by PKA) or MAST3 in presence of ATP-y-i2P, for various times

(as indicated); the protein were separated by SDS-PAGE and phosphorylation of Serd6-ARPP-16 was measured by authoradiography
Results shown represent the average from three experiments
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CONCLUSIONS

* ARPP-16 negatively regulates PP2A activity and
phosphorylation on Ser46 increases PP2A inhibition,

* Three heterotrimers of PP2A are inhibited by p-
Ser46-ARPP16, but to varying extent,

*  Pphospho-ARPP-16 inhibits PP2A ' s ability to
dephosphorylate specific substrates in striatum — eg
DARPP-32 on Thr75,

* Phosphorylation on Ser88 —ARPP-16 does not affect
PP2A activity,

* Phosphorylation of ARPP-16 by PKA or MAST
mutually attenuate each others ability to
phosphorylate ARPP-16,

* PKA phosphorylates MAST and decreases its activity




