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Load in the Liver and Kidney
Reetika Chauraisa1, Aryeh Salovey1, Xiaojia Guo2, Gary Desir2 and Joseph M. Vinetz1*

1 Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT,
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The molecular and cellular pathogenesis of leptospirosis remains poorly understood.
Based on comparative bacterial genomics data, we recently identified the hypothetical
PF07598 gene family as encoding secreted exotoxins (VM proteins) that mediate
cytotoxicity in vitro. To address whether VM proteins mediate in vivo leptospirosis
pathogenesis, we tested the hypothesis that VM protein immunization of mice would
protect against lethal challenge infection and reduce bacterial load in key target organs.
C3H/HeJ mice were immunized with recombinant E. coli-produced, endotoxin-free,
leptospiral VM proteins (derived from L. interrogans serovar Lai) in combination with the
human-compatible adjuvant, glucopyranoside lipid A/squalene oil-in-water. Mice
receiving full length recombinant VM proteins were protected from lethal challenge
infection by L. interrogans serovar Canicola and had a 3-4 log10 reduction in bacterial
load in the liver and kidney. These experiments show that immunization with recombinant
VM proteins prevents leptospirosis clinical pathogenesis and leads to markedly reduced
key target organ infection in this animal model. These data support the role of leptospiral
VM proteins as virulence factors and suggest the possibility that a VM protein-based,
serovar-independent, pan-leptospirosis vaccine may be feasible.
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INTRODUCTION

The discoveries of the etiological agent of leptospirosis and the
rodent reservoir of transmission were first reported in 1915 and
1917, respectively, and even then, was recognized as a disease of
global importance (Inada et al., 1916; Noguchi, 1917). The most
recent estimate of the global burden of leptospirosis
conservatively estimates that this disease annually affects more
than one million people, causing at least 60,000 deaths annually.
Despite effective antibiotic treatment, leptospirosis still has a 5-
20% case fatality rate (Costa et al., 2015; Torgerson et al., 2015;
Rudd et al., 2020). There is no safe and effective vaccine generally
approved for humans (Bharti et al., 2003; Brown et al., 2003;
Balakrishnan and Roy, 2014; Bouvet et al., 2020; Martin et al.,
2014). The lack of a human vaccine is due to several factors
including reactogenicity of current bacterin-based vaccines,
current concepts regarding limitations of serovar coverage, and
most importantly, a lack of knowledge regarding specific vaccine
antigens targeting conserved pathogenetic mechanisms
(Palaniappan et al., 2007; Dellagostin et al., 2017; Bashiru and
Bahaman, 2018; Felix et al., 2020).

Previous work with live (Fish and Kingscote, 1973), bacterin
(Stringfellow et al., 1983; Bolin et al., 1991; Adler, 2015),
lipopolysaccharide (Jost et al., 1986; Jost et al., 1989; Midwinter
et al., 1990; Wang et al., 2007), recombinant proteins vaccines
(Haake et al., 1999; Branger et al., 2001; Faisal et al., 2009;
Grassmann et al., 2012; Llanos Salinas et al., 2020), recombinant
subunit vaccine [LigA7-13, LigB0-7 (Evangelista et al., 2017),
LigB131-645 (Conrad et al., 2017), and LigA DNA (Faisal et al.,
2008)] in animals has not led to definitive vaccine candidates.
Most recently an attenuated live Leptospira vaccine and fcpA-

mutant confer cross-protective immunity against heterologous
leptospiral serovars affecting humans (Murray et al., 2018;
Wunder et al., 2021).

We have recently identified a family of conserved paralogous
proteins encoded by the PF07598 gene family that encode
virulence factors potentially involved in the pathogenesis of
leptospirosis. PF07598-encoded proteins, denominated
virulence modifying (VM) proteins are found only in Group 1
pathogenic Leptospira (Lehmann et al., 2013; Fouts et al., 2016),
are secreted exotoxins with bona fideN-terminal ricin B domains
and a C-terminal toxin domain; and their expression is variably
upregulated in vivo in a hamster model of acute infection
(Lehmann et al., 2013; Lehmann et al., 2014). After cell-surface
binding, mCherry-labeled VM protein LA3490 localizes to the
nucleus and mediates cytotoxicity because of potent DNase
activity (Chaurasia et al., 2022).

Given these observations, we tested the hypothesis that the
Leptospira interrogans VM proteins (encoded by the PF07598
gene family) mediate severe disease in an animal model. Targeted
gene knockout is not feasible to interrupt the 12+ L. interrogans
PF07598 paralogs to evaluate the role of individual VM proteins
in mediating leptospirosis pathogenesis. Previous transposon
mutagenesis experiments in which individual VM family
members were disrupted did not yield informative phenotypes
of disease-induction or tissue colonization (Murray et al., 2009;
Marcsisin et al., 2013).
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Therefore, we took an immunological approach to determine
whether leptospiral VM proteins might be protective vaccine
antigens in preventing severe leptospirosis in a susceptible
murine model (Viriyakosol et al., 2006). We immunized mice
with VM proteins identified in the L. interrogans serovar Lai
genome: a ricin B domain (RBL-1, called t3490 here) from one
VM protein (LA3490), or combinations of full length
recombinant VM proteins [LA3490 (UniProt ID: Q8F0K3),
LA0620 (Q8F8D7), LA1402 (Q8F6A7), LA1400 (Q8F6A9), and
LA0591 (a VM protein with a similar C-terminal domain but
lacking ricin B domains at the amino terminus, (Q8F8G6)],
chosen according to their variable upregulation in the blood,
liver, and kidney in vivo (Lehmann et al., 2013). After
lethal challenge infection with a different serovar of L.
interrogans, Canicola, we determined the effect of heterologous
VM protein vaccination on the protection of mice from severe
clinical disease.
RESULTS

Conservation of PF07598 Protein
Family and Their Orthologs in
Pathogenic Leptospira
The PF07598-encoded VM paralogous protein family has an
expanded repertoire within L. interrogans, with at least 12
distinct paralogs in serovars Lai, Copenhageni, and Canicola.
Orthologs have >90% amino acid amino acid identity (Table 1).
Most VM proteins are comprised of ~640 amino acids with an
AB domain architecture comprised of two tandemly arrayed b-
trefoil, N-terminal ricin B-like lectin domains, and a C-terminal
toxin domain that has DNase activity (Supplementary Figure 1).
L. interrogans serovars also encode a single unique ortholog that
lacks a N-terminal ricin B-like domain (typified by LA0591,
of ~313 aa) but which contains a signal sequence (Table 1 and
Supplementary Figure 1).

Immunization With Full Length VM
Proteins Prevented Severe Leptospirosis
in Mice
Full length recombinant VM proteins LA3490, LA0620, LA1402,
LA1400, and LA0591 (following L. interrogans serovar Lai
nomenclature) were expressed in E. coli as N-terminal fusions
with thioredoxin (TRX)-His6 affinity tags to facilitate solubility
and affinity purification, and C-terminal fusions with mCherry-
His6 to facilitate affinity purification and fluorescence microscopy
visualization of the protein, respectively (Figure 1A, B). The
homogeneity of recombinant VM proteins was verified by SDS-
PAGE and Western immunoblot (Figure 1C).

Mice were injected intramuscularly with recombinant
proteins or PBS control mixed with glucopyranosyl lipid A/
squalene oil-in-water (GLA-SE) adjuvant (schematically
depicted in Figure 2). This adjuvant was chosen for the
present experiments because it is compatible for human use,
hence useful to test in animal models towards eventual vaccine
development for humans. The GLA component (a synthetic,
June 2022 | Volume 12 | Article 926994
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TABLE 1 | Orthologs and percentage amino acid similarity of PF07598 gene family members in Group I pathogenic Leptospira.

L. interrogans serogroup Icteroha
emorrha giae serovar Lai strain
56601

L. interrogans serovar Copenha
geni str. Fiocruz L1 -130

L. interrogans serovar % Amino acid similarity
Canicola

Gene
Locus

Uniprot
ID

Amino
Acid

Gene
Locus

Uniprot
ID

Amino
Acid

Uniprot
ID

Amino
Acid

Lai/
Copenhageni

Lai/
Canicola

Copenhageni/
Canicola

LA3388 Q8F0V3 631 LIC10778 Q72U83 631 A0A1R0JPK7 631 99.2 95.0 95.0
LA0835 Q8F7V7 631 LIC12791 Q72NP1 631 A0A1R0JQR7 631 99.5 92.3 91.8
LA0591 Q8F8G6 313 LIC12985 Q72N53 313 A0A1R0JVU7 313 99 97.9 99.0
LA0589 Q8F8G8 632 LIC12986 Q72N52 632 A0A1R0JW11 632 99.7 93.8 93.8
LA1402 Q8F6A7 641 LIC12339 Q72PX8 663 A0A1R0JPH9 641 100 92.3 92.3
LA1400 Q8F6A9 573 LIC12340 Q72PX7 627 A0A1R0JPC8 672 96.5 92.3 94.5
LA3271 Q8FI66 636 LIC10870 Q72TZ4 636 A0A1R0JLC7 636 98.7 95.6 95.6
LA0934 Q8F7LO 638 LIC12715 Q72NW3 638 A0A1R0JN38 638 99.8 94.5 94.6
LA0769 Q8F820 602 LIC12844 Q72NJ0 639 A0A1R0JKX7 635 98.5 96.7 97.9
LA2628 Q8F2Y3 638 LIC11358 Q72SM1 638 A0A1R0JPS3 638 99.8 99.5 99.7
Not Available LIC10639 Q72UL8 640 A0A1R0JSB6 638 NA NA 98.7
LA0620 Q8F8D7 637 LIC12963 Q72N74 637 A0A1R0JW34 637 99.7 97.6 97.6
LA3490 Q8FOK3 639 LIC10695 Q72UG2 639 A0A1R0JS78 634 99.7 93.6 93.6
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B

C

FIGURE 1 | DeepMind AlphaFold algorithm derived structure, strategy for cloning, purification, and antigenicity of recombinant His-tagged VM proteins. (A) Artificial
intelligence-based high-resolution structural modeling of (LA3490, LA0620, LA1402, LA1400 and LA0591) using AlphaFold algorithm [Callaway, E. (2020)]. (B)
Schematic diagram depicting the organization of the recombinant mCherry (mC) fusion VM proteins used in the current study; t3490, amino acid positions 40 aa
-147 aa (minus signal sequence); LA3490 (19 aa – 639 aa), LA0620 (32 aa – 637 aa), LA1402 (28 aa - 641 aa), LA1400 (1 aa - 573 aa), and LA0591 (23 aa – 313
aa). The clones were designed without signal sequences. LA1400 naturally lack signal sequence. Recombinant fusions include a glycine-serine (Gly4S)3 linker (for
flexibility), N-and C-terminal His6 tag (purification), and N-terminal thioredoxin. (C) AKTA purified soluble His-tagged VM proteins (LA3490, t3490, LA0620, LA1402,
LA0591, and LA1400) were analyzed by 4 ± 12% SDS-PAGE followed by Coomassie staining. A replicate gel was run for immunoblot analysis. The proteins were
transferred to a nitrocellulose membrane and the blot was probed with mouse anti-His monoclonal-ALP conjugate (1:2,000 dilution; Santa Cruz Biotechnology, USA).
M represents molecular weight marker.
2 | Article 926994
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non-toxic moiety with six acyl chains on a disaccharide backbone
and a single phosphate group (Pantel et al., 2012) would not be
expected to have a TLR4 agonist immunostimulatory effect in
C3H/HeJ mice, which are genetically hyporesponsive to lipid A
due to a mutation in the gene encoding a functional Toll-like
receptor (TLR4) (Beutler and Poltorak, 2000).

The primary outcome of this immunization study was whether
mice developed severe manifestations of leptospirosis after lethal
challenge infection (105 organisms of a low passage (P3) with L.
interrogans serovar Canicola strain LOCaS46 strain, which has a
median lethal dose LD50 <100 (Llanos Salinas et al., 2020). Mice
were euthanized and considered having arrived at a severe disease
endpoint if they developed severe manifestations after a challenge
infection as defined by weight loss of >15% from the beginning of
the experiment or if they were unable to groom, eat, drink, or
developed severe lassitude/hunching. The secondary outcomes
were 1) quantitative bacterial load in the liver and kidney as
measured by quantitative real time PCR, and 2) antibody
responses measured by ELISA and Western immunoblots.

No mouse developed severe disease after the immunization
protocol. Mouse groups receiving PBS (G-I) plus adjuvant or the
ricin B-domain RBL1 [t3490, (G-II)] plus adjuvant showed a
modest decrease body weight after challenge infection but had to
be euthanized on days 6 and 5, respectively, because of severe
illness manifested by lethargy and inability to feed/drink.
Vaccination with Full length VM proteins, either a mix of 5
(G-III) or a mix of 2 (G-IV), prevented all observable clinical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
illness (Figure 3A). This observation indicates that protection
from severe leptospirosis required full length VM proteins.

Immunization With rVM Proteins
Significantly Reduced Bacterial Load in
the Liver and Kidney
The leptospiral load of Leptospira in the liver and kidney in the
four experimental groups was quantified by qPCR. After
challenge infection, the three groups immunized with
recombinant proteins plus adjuvant (G-II, G-III and G-III) had
~103-104 -fold fewer genome equivalents (Geq) per gram of
tissue in the liver and kidney (Kruskal-Wallis test, ANOVA
result: liver p < 0.0001, kidney p = 0.0003) compared to the PBS
control group (G-I) (Figures 3B, C). Dunn’s multiple
comparisons statistical test with control group PBS (G-I), VM
mix (G-III) p = 0.0054, and VM unlabeled protein (G-IV) p <
0.0001 confirmed this statistically significant difference.

Immunization With t3490 Led to Severe
Disease Caused by Pro-Inflammatory
Cytokines Despite Significantly Reducing
Bacterial Load in the Liver and Kidney
To determine whether immunization with the first highly
conserved ricin B-like domain (RBL1) would confer protection
from lethal challenge and as a control for the Full length VM
protein LA3490, E. coli-produced recombinant RBL1 domain
FIGURE 2 | Mouse immunization schedule and sample collection. C3H/HeJ mice were immunized with 25 mg of total antigen along with adjuvant (5 µg GLA–squalene–oil-
in-water emulsion) on days 0, 21 and 42 respectively by intramuscular route. They were pre-bled prior to each immunization and prior to challenge infection and blood was
obtained on day of necropsy. Control mice were immunized with PBS buffer plus adjuvant. Following immunization on day 52, mice were infected with live L. interrogans
serovar Canicola (~1x105 leptospires, LD50 <100) by the intraperitoneal route. Blood and organs were collected after subsequent infection.* represent Adjuvant: GLA-SE,
Glucopyranosyl lipid adjuvant–stable emulsion.
June 2022 | Volume 12 | Article 926994
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(truncated 3490, t3490) was produced and purified using
identical procedures as for full length LA3490, and used for
the immunization study. Surprisingly, mice (G-2) immunized
with t3490 developed accelerated clinical disease after challenge
infection, yet had decreased bacterial load in the liver and kidney
(Figures 3B, C). Disease enhancement in G-2 was associated
with high levels of TNF-a, IFN-g, IL-6, IL-10, and the chemokine
KC/GRO compared to the PBS and Full length protein recipient
groups (Figure 3D).

Antibody Profile and Cross-Reactivity of
Mice Response to PF07598 (VM) Proteins
Pre – and Post– Challenge
To determine whether mice immunized with VM proteins
developed an IgG antibody response, sera from pre-and post-
immunized mice were collected and antibody profiles were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
examined by ELISA using all 6 antigens used in the study
(Figure 4A). Control group (G-I) and pre-immunized sera did
not show detectable IgG antibody against any of the VM
antigens. The antibody response against t3490 antigens was
observed in sera from t3490 immunized mice (G-II) and cross-
reactivity was seen with LA3490 (p = 0.0010) and LA1402 (p =
0.0010) antigens.

Sera from the VM mix-immunized mice (G-III) reacted with
all VM antigens tested [t3490, LA3490, LA0620, LA1402, LA1400,
and LA0591, (p < 0.0001)]; highest titers were seen against LA3490
and LA1402 antigens. The antibody responses against each
antigen in the VM mix antigen group [t3490 (p = 0.0015),
LA3490 (p < 0.0001), LA0620 (p = 0.0004), LA1402 (p <
0.0001), LA1400 (p = 0.0003), LA0591 (p < 0.0001)] were
observed with sera from VM unlabeled group (G-IV) and
highest titer was detected with LA1400, LA0591, and LA0620
A B

DC

FIGURE 3 | Body weight change, bacterial load, and pro-inflammatory cytokine response of mice challenged with L. interrogans serovar Canicola. (A) Mouse body
weight (% change) was recorded from 0 day to 13 days upon infection; concurrent assessment of clinical status (grooming, eating, drinking, energy level) was also
observed. G-I and G-II mice were sacrificed at 6th and 5th day (‡ and †,). Statistical analysis was performed to determine statistical significance in body weight
between the PBS control and vaccinated groups using two-tailed unpaired, Mann-Whitney T-Test. p values: VM mix vs PBS, p - 0.0152 *: VM unlabeled vs PBS, p –

0.0005*: VM unlabeled vs VM mix, p < 0.0001 ****: t3490 vs PBS, p - 0.3869, ns. Error bars indicate the standard error. Total genomic DNA was extracted from the
kidney (B) and liver (C) and analyzed by qPCR performed in duplicates with lipL32 primers and SYBER Green probes to quantify leptospiral tissue load. Statistical
analysis was performed using the Kruskal–Wallis test and Dunn’s multiple comparisons test. p < 0.0001 was considered significant. (D) Pro-inflammatory cytokine
response in pooled serum samples from each group: G-I (PBS control), G-II (t3490), G-III (mix of 5 VM proteins), and G-IV mice (mix of 2 VM proteins) pre-challenge
and post-challenge were used to measure the levels of TNF-a, IL-6, IL10, KC/GRO, IFN-g and IL-1b by V-PLEX Proinflammatory Panel 1 Mouse Kit (Meso Scale
Discovery, MD, USA), an immunoassay based on electrochemiluminescence. PIB denotes pre-immunized bleed. *p < 0.05, **p < 0.001, ****p < 0.0001.
June 2022 | Volume 12 | Article 926994
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antigens. Antibody responses against t3490, LA3490, and LA1402
antigens were also observed in post-immunized, pre-challenge
mice. Pre-challenge antibody titers to LA1400, LA0591, and
LA0620 were lower than post-infection titers after challenge
with live L. interrogans serovar Canicola. Further experimental
investigation of the direct effect of VM proteins and their immune
profiling in vivo is warranted. Despite having >90% amino acid
similarity, each VM proteins showed unique reactivity with pre-
and post-challenge sera and may well have different in vivo
function. The differences in the reactivity of VM proteins
indicates differences in immunogenicity and because of high
level of amino acid similarity, they cross-react with pre-and
post-challenge sera. Generation of VM protein-specific
monoclonal antibodies and identification of protective epitopes
would help to distinguish the roles of, and mechanisms by, which
different VM proteins contribute to leptospirosis pathogenesis.

Cross-reactivity was confirmed by Western immunoblot
analysis, probing recombinant VM proteins immobilized on
nitrocellulose membrane with pooled sera from immunized
animals (Figure 4B). The pre-bleed sera and PBS control (G-
1) group did not show reactivity with a cocktail of VM mix and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
VM unlabeled recombinant antigens (5 and 2 proteins,
respectively). Sera from t3490 immunized mice showed
significant antibody titers against t3490 antigens (not shown)
and cross-reacted with Full length VM proteins but faintly with
LA1400, and no reactivity with LA0591, which lacks N-terminal,
ricin B-domain, and suggests that t3490 only cross reacts with
the epitope shared at N-terminal region of VM proteins. Sera
from the VM mix group (G-III) cross-reacted with all five
antigens and the reactivity pattern was consistent with each.
The reactivity of LA1400 with sera from the VM unlabeled group
(G-IV) was highest among all the VM proteins and in the same
cocktail lot of VM antigens immunized to G-III and G-IV mice.
The finding that high titer antibodies against the LA1400 antigen
(as determined by both ELISA and Western blot) were induced
in the VM unlabeled group sera (G-IV) suggests that LA1400
elicits the strongest humoral immune response in mice
compared to other VM proteins and may be responsible
mediating protective immunity. These data do provide strong
confidence, however, that one or more of these VM proteins
mediate the pathogenesis in this animal model. Future
optimization of which VM proteins should be used for
A

B

FIGURE 4 | IgG responses to recombinant VM protein immunization. (A) Antibody titers were measured in each study group pre-and post-challenge against
individual VM proteins in triplicate using ELISA. Each data line represents the average IgG response of each animal (n-10). Box and whiskers plots represent the
antibody titers against t3490, LA3490, LA0620, LA1402, LA1400, and LA0591, respectively. The four-study groups include G-I: PBS, G-II: t3490, G-III: VM mix
and G-IV: VM unlabeled. The box boundaries indicate the median and interquartile ranges and the whiskers denote the maximum and minimum values.
Statistical analysis was performed by t-test and the non-parametric, unpaired, two tailed Mann Whitney test p < 0.0001 values were considered significant. (B)
Aliquot from immunized recombinant purified VM proteins were run in 4 ± 12% SDS-PAGE then transferred to nitrocellulose membrane for Western blot
analysis. The membrane was probed with 1:100 pooled sera collected post-challenge. PIB denotes pre-immunized bleed, served as control. VM proteins were
recognized by sera from G-II, G-III, and G-IV. Lane 1 shows VM mix protein (LA3490, LA0620, LA1402, LA1400 and LA0591) and Lane 2 shows VM unlabeled
proteins (LA1400 and LA0591). Arrows shows expected size of VM proteins. M represents molecular weight markers. **p < 0.05, ***p < 0.001, ****p < 0.0001.
June 2022 | Volume 12 | Article 926994
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vaccination based on these observations is supported by
these data.

VM Protein Expression in In Vitro and In
Vivo and Cross-Reaction Among
Pathogenic Serovars
Protein extracts from L. interrogans serovar Lai, Canicola,
Copenhageni, and non-pathogenic strain L. biflexa serovar
Patoc induced with and without 120 mM NaCl were probed
on Western blots using polyclonal anti-LA3490 antibodies.
Native VM protein expression was seen at the expected size
of ~70 kDa molecular weight by pathogenic serovars Lai,
Canicola, and Copenhageni but not with serovar Patoc (a
negative control given the absence of PF07598 gene family
members in this saprophytic species) (Figure 5A).

To determine whether immunization with a limited set of VM
proteins leads to broadly cross-reactive anti-VM protein
antibodies, in vivo VM protein expression and cross-reactive
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
serovar immune profiles was inferred by Western immunoblot
analysis using cell-free protein extracts from Leptospira
interrogans serovar Canicola and the non-infectious saprophyte
L. biflexa serovar Patoc. Antibodies from the immunized groups
showed antibodies against serovar Canicola recognized the
predicted size of VM proteins (~70 kDa), suggesting in vivo
VM protein expression during challenge infection. This antibody
reactivity also reacted with post-challenge G-III and G-IV sera.
However, reactivity was not seen with the negative control,
serovar Patoc cell-free lysate (Figure 5B). We observed lower
molecular weight reactive proteins detected with sera from G-III
and G-IV, suggesting the possibility that VM proteins undergo
proteolytic processing (Figure 5B). Further study is warranted to
determine whether these low molecular weight proteins play a
role in leptospiral pathogenesis.

We quantified IgG antibody profiles against homologous and
heterologous VM proteins. Cell-free protein extracts from L.
interrogans serovar Canicola and the non-pathogenic strain L.
A B

C

FIGURE 5 | In vitro and in vivo recognition of VM proteins in Leptospira cell free lysate by sera from immunized mouse groups. Pathogenic L. interrogans serovars Canicola,
Lai, Copenhagni, and non-pathogenic L. biflexa serovar Patoc were grown in conditional EMJH medium which was induced with 120 mM NaCl for 4 h in log phase and
unconditional EMJH medium and cells were harvested. Cell-free lysates were analyzed by 4-12% SDS-PAGE, then transferred to a nitrocellulose membrane for Western blot
analysis. (A) The membrane was probed with polyclonal LA3490 antibodies (1:2,000 dilution) and LipL32 monoclonal antibody (1:10,000) which was served as loading control.
(B) The other set of membrane were probed with pooled sera (1:100 dilution) collected before immunization (pre-bleed) and after challenge Group I (PBS+ adjuvant), Group II
(t3490), Group III (VM Mix) and Group IV (VM Unlabeled. (A, B) Leptospira grown in EMJH medium without addition of NaCl, represented by minus (–), and Leptospira grown
in EMJH medium to log phase, at which time 120 nM NaCl was added, represented by plus (+). Arrows indicate the expression of 70.29 kDa native VM proteins. (C) Anti-
Leptospira immunoglobulins generated against with serovars Canicola after experimental infection of C3H/HeJ suspectable mice. Whole cell IgG ELISA were performed with
pre-bleed and sera from immunized mice post-challenge. Serovar Patoc served as negative control. ***p < 0.001, ****p < 0.0001.
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biflexa serovar Patoc were used as solid phase antigen adsorbed
to ELISA plates. ELISA confirmed reactivity of serovar Canicola
with sera from the VM mix (G-III) and VM unlabeled (G-IV)
post-challenge mouse groups. L. interrogans serovar Lai-encoded
VM proteins that were used to immunize the G-III and G-IV
groups cross-reacted with lysates of serovar Canicola. Notably,
orthologs of VM protein are highly conserved in L. interrogans
serovars and consistent with this observed cross reactivity. Non-
pathogenic serovar Patoc did not cross-react with sera from
control group and immunized mouse group mice either pre- or
post-challenge (Figure 5C).
DISCUSSION

Mechanisms by which pathogenic Leptospira cause severe
disease has remained elusive ever since the initial description
of the etiology of leptospirosis (Inada et al., 1915; Noguchi,
1917). Although historically, the nomenclature of Leptospira has
been confusing, recent genomic and molecular approaches have
clarified the relationships among species and serovars. Of high
importance is the discovery that the PF07598 gene family is
present only in pathogenic, Group 1, Leptospira and expanded in
the most pathogenic species, L. interrogans, as well as in L.
kirschneri and L. noguchii. Severe human disease is primarily
attributed to infection by serovars belonging to L. interrogans;
such data are limited because of insufficient isolates obtained
from cases of severe leptospirosis that enable definitive
identification of infecting Leptospira. Because current gene
knockout approaches to Leptospira remain limited, especially
as applied to multi-gene families, we used an immunological
approach to demonstrate whether the leptospiral PF07598 gene
family-encoded VM proteins might be virulence factors
contributing to severe leptospirosis disease manifestations in a
mouse model. The data presented here support the hypothesis
that VM proteins have central importance as virulence factors in
the pathogenesis of severe leptospirosis.

Vaccination of C3H/HeJ mice with as few as two L.
interrogans serovar Lai VM proteins (G-IV, LA1400 and
LA0591) but as many as five (G-III, LA1400, LA0591, LA3490,
LA0620, and LA1402) protected mice from any clinical
manifestations of disease and led to ~3-4 log10 reduction in
bacterial load in the liver and kidney, two key organs in
pathogenesis of leptospirosis and transmission of Leptospira,
respectively. Previous data indicate that all PF07598 gene
family members are variably upregulated in the hamster model
of acute, severe leptospirosis (Lehmann et al., 2013). We chose
the specific VM protein antigens for groups G-III and G-IV
based on previously data describing those with the highest and
lowest expression in vivo (Lehmann et al., 2013). The present
findings suggest that VM protein vaccination with a minimum
complement of cross-reactive VM proteins might confer
protective immunity but, as of yet, we do not know whether
LA1400 and LA0591 are both needed as immunogens. Curiously,
we found that post-immunization/pre-challenge sera from G-IV
heterologously cross-reacted with highest titers against with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
LA1402 and LA3490 despite low titers against their
homologous proteins. LA1400, an ancestral VM protein in
Group 1 pathogenic Leptospira belonging to cluster A (Fouts
et al., 2016), has 2 N-terminal, tandemly repeated ricin B-like
lectin domains (RBLs), and a C-terminal toxin domain (CTD).
LA0591 has a CTD but lacks RBLs. These domains might a priori
be expected to cross react most strongly with homologous
VM proteins but the experimental data indicate that
heterologous cross-reactivity was instead found to be strongest.
Further experiments are in progress to determine further
whether immunization with either of these proteins alone,
concatenated, or isolated subdomains of various VM proteins,
or even one more full length VM proteins such as LA1402 and
LA3490, might confer pan-leptospiral immunity. A likely
scenario is that the general cross-reactivity to VM proteins
induced by vaccination with LA1400 and LA0591 mediates
protection against lethal challenge infection and tissue
colonization. This possibility is suggested by bioinformatic
analysis indicating that VM proteins are highly conserved at
the amino acid level within L. interrogans and is supported
experimentally (Supplementary Figure 1) (Chaurasia
et al., 2022).

While immunization of leptospirosis disease-susceptible
C3H/HeJ mice (Viriyakosol et al., 2006) with Full length
leptospiral VM proteins protected against severe disease,
vaccination with an isolated RBL, t3490, and a recombinant
protein containing only the N-terminal ricin B domain (G-II),
led to disease enhancement while simultaneously reducing the
bacterial load in the liver and kidney. Multiplex cytokine analysis
on serum showed that Group II mice had unique elevations in
pro-inflammatory cytokine markers (IL-ß, IL-6, IL-10, IFN-g,
TNF-a and KC/GRO (Wolpe et al., 1989) (neutrophil
chemoattractant related to IL-8 in rodents) which suggest that
this cytokine storm might lead to mice death (Figure 3D). The
mechanism by which RBD-domain-induced immune
enhancement leads to severe disease is unclear. We speculate
that one potential mechanism by which t3490 immunization led
to disease enhancement could be the induction of antibodies to
the N-terminus RBLs of Leptospira-secreted VM proteins that, in
vivo, carry the Full length protein to the pro-inflammatory
pathway in Fc receptor-containing cells but this hypothesis
requires experimental testing. Nonetheless, cross-reactive
antibody generated against RBD in G-II immunized mice did
not protect against severe disease. These observations suggest
that the N-terminal RBD alone should not be used for a VM
protein-based leptospirosis vaccine studies. Further work to
study RBD-mediated immune enhancement is needed.

In the present study, ELISA andWestern blot analysis of post-
vaccination sera on using recombinant VM proteins and
osmolarity-induced in vitro cultivated L. interrogans serovar
Lai indicates that vaccination results in both homologous and
heterologous VM protein recognition associated with protective
immunity. These experimental results confirm bioinformatic
predictions of cross-reactivity of polyclonal antisera for VM
proteins within the genus L. interrogans. Further work to
confirm protection against challenge infection in rodent
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Chauraisa et al. Leptospira VM Protein Vaccination
models by other L. interrogans serovars is essential. Cross-species
protection experiments after VM protein vaccination against
challenge with virulent isolates of closely related L. kirschneri and
L. noguchii, the other group 1 highly pathogenic Leptospira
species (Fouts et al., 2012; Lehmann et al., 2013) are planned.
Cross-species protection experiments after homologous, or
heterologous VM protein vaccination followed by challenge
infection with virulent isolates of other group 1 pathogens
such as L. borgpetersenii, which have few PF07598 paralogs in
their genomes, will contribute to determining which VM
proteins might be appropriate for further development into a
pan-leptospirosis vaccine.

A serovar-independent pan-leptospirosis vaccine that confers
protection against leptospirosis is a major priority in the
leptospirosis field (Ko et al., 2009; Wunder et al., 2021).
Various inactivated whole bacterial cell-based vaccines
(bacterins) are serovar-specific and limited to animal use,
where this legacy technology remains incompletely effective.
Subunit vaccines, and more recently a spontaneously-arising
attenuation mutant of L. interrogans serovar Copenhageni
(Wunder et al., 2021) have been proposed amidst the search
for pan-leptospirosis vaccine candidates (Govindan et al 2021.;
Haake et al., 1999; Coutinho et al., 2011; Conrad et al., 2017;
Techawiwattanaboon et al., 2019; Haake and Matsunaga, 2020;
Teixeira et al., 2020; Phoka et al., 2021; Rodrigues de Oliveira
et al., 2021). Bacterins are limited from wider use because of
adverse effects and suboptimal efficacy, including the lack of
durable protective and sterilizing immunity (Levett, 2001;
Techawiwattanaboon et al., 2019; Felix et al., 2020; Zaugg and
Ottiger, 2021).

The present study has several limitations. First, the clinical
endpoints were visual and for ethical reasons did not use death as
an endpoint. Second, the current experiments did not include
histopathological analysis, nor did we attempt to isolate viable
Leptospira from the different vaccine groups. Third, while
challenge infection used a leptospiral serovar (L. interrogans
serovar Canicola serogroup Canicola) from a different serogroup
that the one from which the VM protein sequences were derived
(L. interrogans serovar Lai, serogroup Icterohaemorrhagiae
(Masuzawa et al., 1988), challenge infections using other
serovars/species were not performed. This gap limits
generalizability at this time but will be addressed in pending
experiments. Fourth, vaccine dosing regimens—indeed the
minimal set of protective VM protein antigens—have yet to be
optimized. Finally, challenge infections were performed using the
intraperitoneal route which is not the natural route of infection
(Coutinho et al., 2014). While protective immunity in the present
experiments is presumed to be mediated by antibody against
Leptospira-secreted VM proteins, further experiments, including
passive immunization and mapping of protective epitopes
requiring monoclonal antibodies or putative epitope-specific
polyclonal sera are needed. Nonetheless, the present report
provides a strong basis for such experiments given the protective
immunity induced by vaccination with a subset of L. interrogans
VM proteins against lethal challenge infection. The immunization
strategy to induce anti-VM protein antibodies validates the VM
protein role in mediating leptospirosis pathogenesis.
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METHODS

Bacterial Cultures
Leptospira interrogans serovar Canicola strain LOCaS46 were
grown at 30°C in liquid Ellinghausen-McCullough-Johnson-
Harris (EMJH, BD Biosciences, USA) (Ellinghausen and
McCullough, 1965). Leptospira were grown under conditions
mimicking the in vivo host environment known to induce
virulence gene expression in vitro (Matsunaga et al., 2005).
Briefly, mid-logarithmic cultures in unmodified EMJH medium
were harvested by centrifugation at 18,514 g. Pelleted cells were
washed twice with 1X phosphate buffered saline, resuspended in
liquid EMJH medium supplemented with 120 mM NaCl, and
then incubated at 37°C for 4 h (Sigma Aldrich, USA). The LD50

of LOCaS46 strain has a median lethal dose LD50 <100 (Llanos
Salinas et al., 2020).

Chemically competent E. coli strain DH5a (New England
Biolabs, USA) was used for gene cloning, and strain SHuffle®T7
competent E. coli cells (New England Biolabs, USA) was used for
protein expression and purification. E. coli were grown in Luria-
Bertani (LB) medium (BD Biosciences, USA) supplemented with
100 mg/mL ampicillin (Sigma-Aldrich, USA).

Preparation of Leptospiral Whole
Cell Lysate
The L. interrogans serovars Lai, Canicola, Copenhageni, and the
non-pathogenic serovar L. biflexa serovar Patoc were grown in
liquid EMJHmedium and harvested by centrifugation at 18,514 g
for 10 mins. Cells were washed twice with 1X PBS pH 7.4 and
pellets were resuspended in 5 mL/gram of BugBuster® Protein
Extraction Reagent (Sigma-Aldrich, USA) containing “Protease
Inhibitor Cocktail with EDTA” (Roche, USA). Cell lysates
were incubated on a rotating mixer for 15 minutes at room
temperature. Insoluble cell debris was removed by centrifugation
at 18,514 g for 20 minutes at 4°C. Supernatant were stored at -20°
C until analysis.

Computational Biology
N-and C-terminal amino acid sequences (LA3490, LA0620,
LA1402, LA1400, and LA0591) of the PF07598 family were
aligned using MAFFT (Multiple Alignment using Fast Fourier
Transform) with using L-INS-i (accuracy-oriented) and
visualized in Jalview v2.11.5 (https://www.jalview.org). The
originally deposited LA1400 sequence was found to be
incomplete in that it lacked sequence encoding the first 54
amino acids of the complete encoded protein. This conclusion
was based on the use of clustal analysis to compare the amino
acid sequences of L. interrogans serovar Lai LA1400 to LIC12340,
the LA1400 ortholog in L. interrogans serovar Copenhageni
strain FioCruz L1-130 (Supplementary Figure 2). The
recombinant protein referred to in the present work as LA1400
is comprised of amino acids 31 to 54 derived from LIC12340,
then LA1400-derived amino acids from position 55 to the end.

Animals and Ethics Statement
All the animal experiments performed in this study
were approved by the institutional Animal Care and Use
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Committee at Yale University (Protocol 2022-20243). All animal
experiments were performed under Animal Biosafety Level
(ABSL-2) conditions. All animals were under the supervision
of an attending veterinarian and procedures were used to reduce
pain and distress.

Three-week-old, specific pathogen-free, female C3H/HeJ mice
were purchased from the Jackson Laboratories (ME, USA) and
were maintained in a specific-pathogen-free environment at Yale
Animal Resources Center. The mice were housed in individually
ventilated microisolator cages with sterile, absorbent beddings
changed twice weekly. The animals were fed and watered
throughout the course of the experiment. Following L.
interrogans serovar Canicola challenge, mice were weighed and
monitored twice daily until the final endpoint. They were observed
for loss of appetite, severe lassitude, difficulty in breathing,
prostration, ruffled fur, and weight loss of 10%. Mice with these
manifestations were euthanized by CO2 according to AAALAC/
AVMA-approved procedures and considered to have met the
endpoint of severe/lethal leptospirosis.

Plasmid Constructs and Cloning
Synthetic E. coli codon-optimized genes were constructed by
Gene Universal (https://www.geneuniversal.com) consisting of
either the complete PF07598 genes encoding NCBI locus tag
LA3490 (Uniprot: Q8F0K3), LA0620 (Q8F8D7), and LA1402
(Q8F6A7) from serovar Lai, and locus tag LIC12340 (Q72PX7)
(Lai ortholog: LA1400), and LIC12985 (Q72N53) (Lai ortholog:
LA0591) from serovar Copenhageni. Coding sequence, minus
the predicted signal peptide or truncated 3490, an N-terminal
domain, was synthesized and cloned into pET32b (+) (Gene
Universal Inc., USA). LA3490, LA0620, LA1402, and t3490 were
linked to mCherry (AST15061.1) via a glycine-serine hinge
(Gly4Ser)3 and cloned into pET32b (+) (Gene Universal Inc.,
USA) between enterokinase cleavage sites for convenient
removal of the mCherry fluorescent tag. Full-length LA1400
and LA0591 constructs were made without the mCherry fusion
(Figure 1B, C). Prior to use, the sequence and the orientation of
the genes in the constructs were verified by restriction digestion
and sequencing.

Expression and Purification of Recombinant Soluble
PF07598 Antigens
Recombinant PF07598 protein constructs were expressed in
SHuffle®T7 competent E. coli cells (New England Biolabs,
USA). Transformants were sub-cultured into Luria-Bertani
(LB) medium containing 100 µg/mL ampicillin. Expression of
PF07598 proteins were induced at OD of 0.6 via addition of 1
mM isopropyl-b-D-thiogalactoside (IPTG; Sigma-Aldrich, USA)
and allowed to incubate at 16°C and 250 rpm for 24 h. Upon
induction, cells were harvested and pellets were lysed in
CelLytic™ B (Cell Lysis Reagent; Sigma-Aldrich, USA)
containing 50 units benzonase nuclease (Sigma-Aldrich, USA),
0.2 µg/mL lysozyme, non-EDTA protease inhibitor cocktail
(Roche, USA) plus100 mM PMSF (Sigma-Aldrich, USA) for 30
minutes at 37°C. Supernatants and pellets were separated and
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then analyzed by 4-12% bis-tris sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Protein
concentrations were determined by BCA assay (Bio-Rad, USA).

Recombinant PF07598 fusion and without fusion proteins
were purified using a 5 mL pre-packed Ni-Sepharose AKTA Hi-
TRAP column (GE Healthcare, USA) pre-equilibrated with a
buffer containing 100 mM NaH2PO4, 10 mM Tris-HCl, 25 mM
imidazole, and pH 8.0. PF07598 proteins bound to Hi-TRAP
column were then eluted in the presence of 500 mM imidazole,
and pH 8.0. Eluates were pooled, concentrated via a 10 kDa
Amicon® Ultra centrifugal filter, and further dialyzed overnight
against 1X PBS (pH 7.4) with gentle stirring (350 rpm) at 4°C (10
kDa cutoff, Slide-A-Lyzer, Thermo Scientific™, USA). Purified
recombinant PF07598 proteins were resolved in SDS-PAGE,
verified by immunoblotting with mouse anti-His monoclonal-
ALP conjugate (1:2,000 dilution; Santa Cruz Biotechnology,
USA). Aliquot for boosters and SDS-PAGE were prepared
from the single preparation and stored at −80°C to prevent
repeated freeze-thawing.

Animal Immunization, Leptospira
Challenge and Sample Collection
C3H/HeJ mice were immunized via intramuscular (IM) route
with recombinant PF07598 proteins (Viriyakosol et al., 2006).
GLA–squalene–oil-in-water emulsion adjuvants (0.25 mg/mL)
were procured from Infectious Disease Research Institute (IDRI),
Seattle, WA, USA (http://www.idri.org). Immediately before
injections, adjuvant was added to the recombinant protein or
PBS to a final volume of 100 mL and mixed by brief vortexing
(Patra et al., 2015).

Mice were divided into four groups; G-I served as negative
control and was injected with 1X phosphate buffer saline (PBS)
mixed with adjuvant (EM082; 5 µg GLA–squalene– oil-in-water
emulsion). Similarly, G-II (t3490), G-III [VM mix, (LA3490,
LA0620, LA1400, LA1402 and LA0591] and G-IV [VM
unlabeled, (LA1400 and LA0591] were immunized with 25 mg
total antigen in equimolar ratio along with adjuvant (5 µg GLA–
squalene–oil-in-water emulsion) followed by two injections of 25
mg of total antigen at 3-week intervals (Figure 2). Immunized
mice were bled two weeks after the final immunization and to
smooth out individual differences with groups, serum samples
were pooled and measured for anti-VM antibodies in a serum
known as pre-challenged bleed. All the groups were
experimentally infected by intraperitoneal (IP) injection with
1x105 organisms of a virulent, low passage isolate of L.
interrogans serovar Canicola, strain LOCaS46, kindly provided
by Dr. Alejandro de la Peña Moctezuma. Mice that survived
infection were euthanized 13 days after infectious challenge.
Blood was collected by terminal cardiac puncture and serum
was isolated from whole blood. Serum was allowed to clot at
room temperature and stored overnight at 4°C. Samples were
then centrifuged at 11, 292 g for 15 minutes at 4°C. Serum was
collected and stored at -80°C. Organs were collected and stored
in RNALater at 4°C. Kidney and liver tissues were used for
quantification of L. interrogans by quantitative PCR (qPCR).
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Evaluation of PF07598 Proteins-Induced Immunity
by ELISA
Serum antibody responses to recombinant PF07598 proteins in
immunized groups were quantified by ELISA (Chaurasia et al.,
2018). Briefly, PF07598 antigens (LA3490, LA0620, LA1402,
LA1400, and LA0598, respectively) in 100 mL of bicarbonate/
carbonate coating buffer were coated (250 ng) in 96-well
microtiter ELISA plate (Corning, USA) and incubated at 4°C
for overnight. Each set of antigens were incubated with pre–and
post–immunized serum group (Group I–IV, 1:1000) for 1 h
followed by goat anti-mouse IgG (Fc specific)–alkaline
phosphatase conjugate (1:5000; KPL, USA) for 1 h, washed
thrice with TBST and developed with p-Nitrophenyl phosphate
(1-Step™ PNPP Substrate Solution; KPL, USA). The reaction
was stopped with 2 M NaOH, and absorbance was read at 405
nm using a SpectraMax® M2e Microplate Reader (Molecular
Devices, USA). For whole cell ELISA, plate was coated with 500
ng/well cell free lysates. The controls included pre-bleed, pre-
immunized serum samples, and antigen and antibody blanks.

Sodium Dodecyl Sulfate-Polyacrylamide
Gel Electrophoresis (SDS-PAGE) and
Western Immunoblot Analysis
SDS-PAGE was done according to the method of Laemmli
(1970). Immunoblot analysis was performed to determine
whether sera from immunized animals recognize recombinant
or native leptospiral PF07598 proteins. Purified recombinant
PF07598 proteins or leptospiral whole cell lysate (120 mM NaCl
induced and without induced) were transferred to nitrocellulose
membranes and blocked for 2 h with 5% nonfat dry milk
dissolved in 1X TBST buffer (AmericanBio, USA). The
membrane was incubated with pooled sera from immunized
groups (Group I–IV, 1:100) and controlled as pre-bleed and pre-
immunize bleed for overnight at 4°C on rocker. They were
probed with goat anti-mouse IgG (Fc specific)–alkaline
phosphatase conjugate (1:5,000; KPL, USA) for 2.5 h, washed
thrice with TBST, and developed with p-Nitrophenyl phosphate
(1-Step™ PNPP Substrate Solution; KPL, USA). Monoclonal
LipL32 antibody served as loading control (1:10,000 dilution).

Quantitative PCR
DNA was extracted by dicing 40 ± 50 mg of kidney and liver
tissues and suspending in 500 mL of 1X PBS and all work was
done under positive pressure in a location separate from the
handling of Leptospira and PCR products in order to reduce risk
of cross-contamination. Following tissue homogenization, total
genomic DNA was extracted from the equivalent of 25 mg tissue
using the DNeasy Blood and Tissue Kit (Qiagen, USA) per
manufacturer’s instructions and eluted in 50 mL of elution
buffer. L. interrogans serovar Canicola at a density of 2x107

leptospires/mL grown in 5 mL of EMJH culture medium. Cells
were harvested and DNA was extracted for standard curves using
the same DNeasy Blood and Tissue Kit (Qiagen, USA).

The concentration of eluted DNA was determined using a
NanoDrop Spectrophotometer ND-1000 (NanoDrop
Technologies, USA). All DNA samples were kept at -80°C
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until use. Serial dilution (1x10° to 1x107 genomic equivalents
(GEq)/5 mL) of DNA was prepared and L. interrogans Serovar
Canicola genome was quantified by qPCR using 2X iQ5 SYBR
Green supermix (Bio-Rad, CA, USA) with 5 pmol forward (5’-
TCT GTG ATC AAC TAT. TAC GGA TAC-3’) and reverse (5’-
ATC CAA GTA TCA AAC CAA TGT GG -3’) LipL32 primer.
Four microliters of standard or sample DNA was added to 10 mL
PCR mix and the reaction was subjected to amplification in the
CFX96 Real-time PCR Detection System (Bio-Rad, USA) using
the following program: 3 min at 95°C, 0.10 min at 95°C, 0.30 min
at 62°C, followed by 44 cycles at 1.00 min at 72°C then final
extension 7 min at 72°C. A standard curve was generated using
Bio-Rad iQCycler5 software and the number of GEq was
extrapolated from the threshold cycle (CT) values. A negative
result was assigned where no amplification occurred or if the CT
value was greater than 3 SD+Ct. Data are presented as the
number of L. interrogans GEq per gram of tissue.

Statistical Analysis
All experiments were performed in triplicate and repeated twice.
The Kruskal-Wallis test was used to determine significant
differences in the number of bacteria in the kidney or liver
among the survivors from different immunization groups. The
results were analyzed by the non-parametric Mann–Whitney test
to determine significant differences between individual groups
and were considered as statistically significant when p < 0.05, p <
0.001 p < 0.0001 p < 0.05, p < 0.001 and p < 0.0001. All analyses
and graphs were generated using Graph Prism version 8
(GraphPad Software, Inc., USA).
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