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Abstract. X-ray microCT (computed tomography) has become a valu-
able tool in the analysis of vascular architecture in small animals. Because
of its high resolution, a detailed assessment of blood vessel physiology
and pathology is possible. Vascular measurement from noninvasive imag-
ing is important for the study and quantification of vessel disease and
can aid in diagnosis, as well as measure disease progression and response
to therapy. The analysis of tracked vessel trajectories enables the deriva-
tion of vessel connectivity information, lengths between vessel junctions
as well as level of ramification, contributing to a quantitative analysis
of vessel architecture. In this paper, we introduce a new vessel tracking
methodology based on wave propagation in oriented domains. Vessel ori-
entation and vessel likelihood are estimated based on an eigenanalysis of
gray-level Hessian matrices computed at multiple scales. An anisotropic
wavefront then propagates through this vector field with a speed mod-
ulated by the maximum vesselness response at each location. Putative
vessel trajectories can be found by tracing the characteristics of the prop-
agation solution between different points. We present preliminary results
from both synthetic and mouse microCT image data.

1 Introduction

Methods for the quantification of vascular structure are crucial in a number of
domains. While 3D localization and visualization are important, the power of
vascular imaging methods lies in quantitative analysis including characterizing
and measuring connectivity, level of ramification, segment length as well as cross-
sectional area and volume. A particularly important application is the study of
changes that occur in response to angiogenic therapy which has tremendous
potential for treatment in vessel disease and would benefit from non-invasive
methods for quantitative evaluation of vasculature growth and remodeling.

X-ray microCT imaging combined with perfused contrast agents provides
a robust methodology for evaluation of intact vascular networks [4]. However,
the ability to extract and quantify vessels, especially those of smaller diameter,
is limited by noise, contrast and extraneous features, such as bone. In CT us-
ing contrast agents, vessels appear as relatively bright; in magnetic resonance
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angiography (MRA), they may be dark or bright depending on the technique.
They are curved structures of varying width with greatest width at the aorta,
generally decreasing in diameter with branching and greater distance from the
aorta. The geometry is quite complex making 3D imaging a necessity (2D serial
section analysis is only of limited use).

Techniques for filtering curved structures have been applied to vessel images
[15,9,6,11], especially using multiscale techniques. In these methods, the Hessian
of the gray level intensities is computed at multiple scales. The eigenstructure
of the Hessian is determined in order to characterize the local structure (linear,
planar or no structure) and if linear, the orientation of the vessel. Methods have
been developed for vessel segmentation using thresholding [15], active contours
[11], model-based methods [9,8], expectation maximization [1] as well as level set-
based approaches [12,3]. Lorigo et al. [12] applied a novel level-set segmentation
formulated specifically for 3D curves. Vessel segmentation, however, is prone to
errors and may result in discontinuous segments and inclusion of extraneous fea-
tures, such as bone. Work on tracing vessel trajectories has also been attempted
before. Olabarriaga et al. find a minimum cost path through a vesselness image
using bidirectional search [14]. Flasque et al. [5] track vessels from MRA using a
model-based approach, tracking centerlines using a search strategy. Deschamps
and Cohen presented a minimal-path method based on the Fast Marching algo-
rithm applied to vessel centerline extraction for virtual endoscopy [2]. Lin [10]
also investigated extracting minimal paths using an anisotropic version of the
Fast Marching method that incorporates orientation and was applied to MRA
and fluorescence images.

In this paper, we also focus on extracting vessel trajectories. Our approach is
similar to that of Lin [10], by using an anisotropic wavefront evolution method,
and like Descoteaux [3], we also make use of Frangi’s vesselness measure. While
we are interested in finding the size of extracted vessels, which can be obtained by
the vesselness response across scales, we do not use level sets to explicitly recon-
struct vessel boundaries. Levels sets for explicit surface reconstruction can easily
bleed out into regions with similar vessel intensities. They also have difficulty ex-
tracting finer-scale vessels and may result in disconnected vessel segments. In the
next section, we describe our vessel tracing approach using a static anisotropic
wavefront propagation method combined with a multiscale vessel analysis.

2 Approach

In this section, we briefly describe the multiscale vessel localization procedure
and how to obtain the vessel likelihood measure [6]. Then we describe the wave
propagation equation that will drive the front evolution using information from
the Hessian matrix as well as the maximum vessel likelihood response across
different scales. Finally, we describe how to extract vessel trajectories by tracing
the characteristics of the front evolution PDE. An anisotropic version of the
static front evolution method is used to build a cost map which will be minimum
for pathways in highly oriented structures and with high vesselness measure.
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2.1 Vessel Filtering

One way to account for the varying size of vessels is by multiscale analysis. It
allows us to detect structures of different sizes according to the scale at which
they give maximal response. In order to enhance blood vessels at a particular
scale σ, Frangi [6] designed the filter V (x, σ), which is a nonlinear combination
of the eigenvalues of the Hessian matrix H computed at each voxel of the image.
This vesselness measure has given reasonable results in the segmentation of blood
vessels by other investigators [3] and is also employed here. The scale corresponds
to the vessel radius in pixels.

The filter V provides a likelihood value for a structure having a tubular
shape. At each scale σ, the image is first convolved by a 3-D Gaussian with
standard deviation equal to that scale in pixels and then the vesselness measure
is computed as:

V (x, σ) =
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ordered according to their magnitudes as |λ1| ≤ |λ2| ≤ |λ3|. Since the vessels
are bright against a darker background in microCT images, the eigenvalues are
negative. The quantities RA, RB and S are designed to punish cross-sectional
asymmetry, blobness and low energy, respectively. The parameters α, β and c
are used to tune the sensitivity of the filter to deviations from perfect tubular
structures. This measure will yield maximum response at the center of vessels
and close to zero outside them. The filter V is applied at different scales in order
to detect vessels with different scales. We vary σ from σmin to σmax, and compute
the maximum vessel likelihood across all chosen radii:

Vmax(x) = max
σmin≤σ≤σmax

V (x, σ). (2)

2.2 Front Evolution

Once the maximum response Vmax is computed for all points in the domain, not
only will we have a vessel likelihood map but also a map containing the corre-
sponding Hessian matrix Hmax at the maximum scale. From the eigenanalysis
of Hmax, the eigenvector u = u1 which corresponds to the smallest eigenvalue
will represent the vessel orientation. In our implementation, we will propagate a
wavefront through the vector field defined by u. The front will move fastest in
regions where its normal vector n = ∇T

‖∇T‖ lines up with the vector field and in
regions with a high vesselness measure. T represents the time of arrival of the
front at each location. Such evolution can be modeled by the following static
anisotropic evolution equation:

‖∇T ‖ Vmax(x) F (x, n) = 1, F (x, n) = exp({n · u}2). (3)
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This propagation equation will evolve a wavefront driven by the directionality of
the vector field u but will stop its evolution near the boundary with non-vessel
structures, since Vmax will be close to zero in these regions. Since the Hessian
matrix is indefinite [10], not all eigenvalues have the same sign. Hence, Hmax
may not represent an ellipsoid at all times. Instead of using the full Hessian as
an ellipsoidal speed profile, we resort to driving our wavefront according to the
colinearity between the front normal n and u.

Equations such as (3) cannot be correctly solved by isotropic propagation
methods, such as the Fast Marching Method. Hence, we employ an iterative
approach combined with a Lax-Friedrichs (LF) discretization of our propagation
equation. A nonlinear Gauss-Seidel updating scheme is used to solve the equation
in terms of neighboring grid points. No minimization is required when updating
an arrival time, and thus it becomes very easy to implement.

In order to track vessel segments, we seed the evolution at a point inside the
vessel, and let the propagation take place. When the evolution has converged to
a solution, it will represent a cost map which can be used to find a minimal cost
path representing the vessel trajectory.

2.3 Vessel Tracking

Minimum-cost trajectories are determined by the characteristic curves of the
respective partial differential equation [13,7]. In our propagation model, the gra-
dient ∇T of the solution will not point to the minimum-cost path, since our
equation is anisotropic and the speed profile is not circular. One must explicitly
calculate the appropriate characteristic directions of the obtained arrival times
solution at every point.

A generic first-order PDE with m independent variables can be written as:

H(xi, T, pi) = 0, where pi = ∂T/∂xi, i = 1, ..., m (4)

where T is a function of each of the independent variables xi. In our case, T
represents the arrival times of the wavefront. The characteristic vector a can
be obtained via Charpit’s equations [13] and is defined as ai = ∂H/∂pi. Our
wavefront evolution equation (3) can be written in generic form by discarding
its dependence on location x:

H =
√

p2
1 + p2

2 + p2
3 Vmax F (p1, p2, p3) − 1 = 0 (5)

By differentiating H with respect to p1, p2 and p3, we find the characteristic
vector a. Because the speed function F is a function of the gradient ∇T , the
characteristic vector a does not necessarily coincide with the gradient. Therefore,
one must integrate dX

dt = −a instead of dX
dt = −∇T to obtain the minimum-cost

path, X .

3 Experimental Results

In order to evaluate our vessel tracing method, we first applied it on a synthetic
dataset obtained from the Laboratory of Mathematics in Imaging at Harvard
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University [9]. Figure 1a depicts the Y-junction vessel model which contains
2 segments of different radii (1 and 3 pixels). They have Gaussian intensity
profiles with a maximum intensity value of 100 at their centerlines. Fig. 1b
shows the corresponding ridges (centerlines) from the model. The centerlines
are assumed to be the true trajectories. We investigated how close the resulting
trajectories were to the true centerlines, with and without noise. Gaussian noise
with σ2 = 10, 20, 40 was added to the original image. The maximum vesselness
measure Vmax and the respective Hessian Hmax were then computed at two
different scales, 1 and 3 pixels to match the exact model dimensions (Fig. 1c-e).
Parameters α, β and c were set to 0.5, 0.5 and half the maximum Frobenius
norm of the Hessian matrices, respectively, according to [6]. Next, we employed
our wave propagation technique by first selecting a seed point for propagation
(see cross-hairs in Fig. 1a). After propagation reached convergence, we traced
the centerlines from the extreme points of the two branches (Figs. 1f-h) and
compared the results to the true trajectories (Fig. 1b).

As can be seen in Figs. 1f-h, the technique is robust enough to recover the tra-
jectories embedded in very noisy backgrounds. This is partly due to the Gaussian

(a) (b)

(c) (d) (e)

(f) (g) (h) (i)

Fig. 1. (a) Synthetic dataset. (b) Corresponding centerlines. Second row: Vector field
u at different noise levels; (c) σ2 = 10, (d) σ2 = 20, (e) σ2 = 40. Third row: Resulting
trajectories at different noise levels. (i) Close-up at branching point.
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smoothing that is applied at each scale when determining the maximum vessel-
ness response. Figure 1i shows a close-up view of the branching point in the
model. The maximum disparities between the centerline (shown in gray) and
the resulting trajectories were found to be at the center of the branching point
(shown as a white square in Fig. 1i). This is because our speed term does not
currently follow the ridges of the vessels, only their directionality. Therefore,
the minimum-cost trajectory may not pass exactly through the true center of
the intersection. For the larger branch (3 pixels in radius), the maximum error
averaged ≈ 1 voxel, with and without added noise (no-noise trajectory shown in
red). The largest error was obtained for the smaller size branch, as large levels of
noise destroyed a lot of its structure and subsequent smoothing altered its final

(a) (b)

(c) (d)

Fig. 2. (a) Volume rendering of the CT dataset depicting the lower body of a mouse. (b)
Three-dimensional view of the vector field u colored by the vesselness measure. Both
bones and vessels can be seen. (c) Reconstruction of the major vessels connecting to the
aorta shown with volume rendering. Vessels are colored according to their estimated
size. (d) Reconstructed vessels colored according to their maximum vesselness measure.
Vessels located in the inferior half of the volume were partially obscured for better
spatial perception.
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shape. A maximum error of ≈ 1.7 voxels resulted at σ2 = 40. The corresponding
errors for no-noise was 0.79 voxels, with noise σ2 = 10 was 0.92, σ2 = 20 was
1.13 and σ2 = 40 reached 1.73 voxels. Despite the discrepancies from the true
centerline, the technique presented here allows for fine vessel extraction in the
presence of significant noise, and will not result in disconnected structures, as
may occur with other level set-based techniques.

To evaluate our method on a real image, an ex-vivo mouse microCT dataset
using barium-sulfate contrast was acquired at a resolution of 50×50×100 µm.
(Figure 2a). After cropping, the resulting image size was 291×131×226. A mean
curvature-based smoothing was first applied to eliminate undesired background
noise while preserving edge information. Multiscale analysis was performed in
10 uniformly sampled Gaussian scales ranging from 0.5 to 5 voxels. The maxi-
mum vesselness measure and the corresponding Hessian Hmax was computed at
each location. Figure 2b shows the vector field u after diagonalizing Hmax. The
vector field is colored according to the vesselness measure at each point. Both
vessels and bones can be seen. A seed point was placed inside the aorta and a
wavefront was propagated in the vector field u. In order to initialize tracking, 45
points were selected manually by picking the center of vessels at different planes.
Vessel trajectories were then traced back into the aorta. Estimates of radius and
vesselness measures were calculated at every point on the trajectories.

Figure 2c shows the resulting trajectories as tubular structures and colored
according to their estimated radius. Because a discrete number of scales were
employed, tubes representing the vessels did not change in size continuously.
With a more continuous scaling, better radii estimates can be determined. Radii
were determined by the scale in which the vesselness measure was maximum.
Figure 2d shows the extracted vessels colored according to their maximum ves-
selness measure.

4 Conclusions

An anisotropic front propagation method was described for determining vascular
pathways in mouse microCT images. Using multiscale analysis, the maximum
vesselness measure was computed at every point and the corresponding Hessian
matrix was recorded. A wavefront was propagated in the vector field defined
by the smallest eigenvector of the Hessian matrix. The propagation speed was
defined by the colinearity between front normal and the smallest eigenvector of
the Hessian. The front stopped at regions of very low vesselness. Using the char-
acteristic vector of the propagation solution, the technique was able to recover
trajectories in both synthetic and real microCT data.

Results on mouse CT datasets were presented where major vessels were re-
covered and reconstructed. Vessel trajectories were fit with tubular structures
with a radius corresponding to the scale in which they were detected. Further
investigation will be done on new forms of the evolution PDE for tracking the
ridges. We will also fit ellipses instead of circles for the vessel reconstruction by
using the eigenvalue magnitudes from the Hessian matrix. In addition, we will
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investigate an automated approach for initializing the vessel tracing which will
enable us to reconstruct the entire vessel tree and allow for its quantification
with minimum manual intervention. Features such as connectivity, level of ram-
ification, segment length as well as cross-sectional area and volume can then be
calculated. These measures may ultimately improve quantitative diagnosis and
allow the measurement of change due to disease or therapy.
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