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Web Appendix A Equivalence of conditional 
likelihood and a model on 
differences 

Verbeke et al.[1] proved this equivalence for the mixed effects model, 

where Σi = ZiDZ
0 
i + σw

2 I. This model has the special feature that condi-

tional on the random effects, the observations are independent. The DEX 

model does not follow this structure. The proof given here is for a general 

response covariance matrix, Σi , and thus extends their results. Suppose 

that we have subject-specific intercepts ai, which can be fixed or random, 

and assume that E (Yi) = ai1 + Xiγ, where 1 is a vector of ones, Xi a 

matrix of covariates and γ a vector of regression parameters. Assuming 

normality of Yi and V ar (Yi) = Σi, the probability density function has 
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the expression � � 
1 1 

f (Yi|ai, Xi) = exp − (Yi − ai1 − Xiγ)
0 Σi 

−1 (Yi − ai1 − Xiγ) = r+1 

|Σi|1/2 2(2π) 2 

r+1 

|Σi|1/2(2π) 2 � 
1 h i� 

0 0 −1 2 −1
exp − (Yi − Xiγ) Σi 

−1 (Yi − Xiγ) − 2 (Yi − Xiγ) Σi ai1 + ai 1
0Σi 1 . 

2 

By the factorization theorem, a sufficient statistic for ai is si = Yi
0Σi 

−11 = 

10Σi 
−1Yi. The sufficient statistic si is distributed as a univariate normal 

with expected value 10Σi 
−1 ai1 + 10Σi 

−1Xiγ and variance 10Σi 
−11. Then, 

the density of Yi conditioning on the sufficient statistic si is 

1 
r+1f (Yi|ai, Xi) (2π) 2 |Σi|1/2 

f (Yi|si, Xi) = = 
f (si|ai, Xi) 1 

1 1/2 
(2π) 2 |10Σi 

−11|� � ��0 −1 0 −1 2 −1exp −1 (Yi − Xiγ) Σi (Yi − Xiγ) − 2 (Yi − Xiγ) Σi ai1 + ai 1
0Σi 12 � � = � �2 

exp − 1 10Σi 
−1Yi − 10Σi 

−1 ai1 − 10Σi 
−1Xiγ 

2(10Σi 
−11) � −1 ��1/2 � � � ��10Σi 

� �−11 1 0 −1 −1−11r exp − (Yi − Xiγ) Σi 
−1 − Σi 10Σi 1 10Σi (Yi − Xiγ) . 

|Σi|1/2 2(2π) 2 

Using property B.3.5 of Seber[2], 

� �−1−1 −1 −1
Σi 
−1 − Σi 

−11 10Σi 1 10Σi = Δ0 (ΔΣiΔ
0) Δ, 
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we can write then the conditional likelihood as 

L (γ|s1, . . . , sN , X) = 
N

� −1 ��1/2 � �Y �10Σi 1 1 
exp − (Yi − Xiγ)

0 Δ0 (ΔΣiΔ
0)
−1 
Δ (Yi − Xiγ) 

i=1 (2π)
2 
r 

|Σi|1/2 2 

and the log-likelihood log L (γ|s1, . . . , sN , X) will then be proportional to 

� � N � �XN � −1 � N 1 −1
log �10Σi 1�− log |Σi|− (Yi − Xiγ)

0 Δ0 (ΔΣiΔ
0) Δ (Yi − Xiγ) . 

2 2 2 
i=1 

The maximum likelihood estimator of γ is !− ! 
N � � N � �X X −1 −1

ˆ = X0 ΔXi Xi
0 Δ0 (ΔΣiΔ

0) ΔYiγ iΔ
0 (ΔΣiΔ

0)
i=1 i=1 

and !− !−N � � NX X 
V ar (γ̂) = X0 iΔ

0 (ΔΣiΔ
0)
−1 
ΔXi = (X0 iMiXi) , 

i=1 i=1 

where the notation A− indicates the generalized inverse of A. Note 

that ΔXi will contain columns of zeros for those variables that are time-

invariant, and first order differences for the time-varying variables. It is 

readily seen that, when Σi is known, γ̂ and V ar (γ̂) from the conditional 

approach are equivalent to the solution to the regression of ΔYi on ΔXi 

by GLS using the covariance matrix ΔΣiΔ
0 . 
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Web Appendix B Relationship between corre-
lation coefficient and intra-
class correlation when the ex-
posure prevalence is not con-
stant over time 

If the prevalence of exposure is not constant over time 

but the exposure process follows CS, we have E [Ej Ej0 ] = � �p p
ρx pej (1 − pej ) pej0 (1 − pej0 ) + pej pej0 , where ρx is the common 

correlation between exposures at different time points. From Web 
rP P 

Appendix C, we have E [Ej Ej0 ] = p̄er (r + 1) [p̄e(1 − ρe) + ρe]. 
j=0 j0=6 j 

Therefore, we have that 

r q q rXX XX 
ρx pej(1 − pej ) pej0 (1 − pej0 ) + pej pej0 = 

j=0 j0=6 j j=0 j0 6=j 

p̄er (r + 1) [p̄e(1 − ρe) + ρe] . 

Solving for ρx, we have 

rP P 
p̄er (r + 1) [p̄e(1 − ρe) + ρe] − pej pej0 

j=0 j0=6 j 
= P P .ρx r p p

pej (1 − pej ) pej0 (1 − pej0 ) 
j=0 j0=6 j 

Note that if pej = pe ∀j then ρx = ρe. Equivalently one can deduce 

r P p r PP p P 
2ρx pej (1 − pej ) pej0 (1 − pej0 ) + pej pej0 − p̄er (r + 1) 

j=0 j0=6 j j=0 j0 6=j
ρe = . 

p̄er (r + 1) (1 − p̄e) 
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Web Appendix C Upper bound for ρe 

rP 
Let Ei· = Eij be the total number of exposed periods for subject i. Then, 

j=0 

the intraclass correlation of exposure can be written as 

E (Ei
2 
·) − (r + 1) p̄e (1 + p̄er)

ρe = 
r(r + 1)p̄e (1 − p̄e) 

[3]. By the properties of the expectation we have 

E [Ej Ej0 ] = E (E [Eij Eij0 | Ei·]) = E (P (Eij = 1 ∩ Eij0 = 1| Ei·)) � � 
Ei· (Ei· − 1) 1 � � � � 

= E = E E2 − E (Ei·) ,
(r + 1)r r(r + 1) i· 

rP P 
and E [Ej Ej0 ] = E (Ei

2 
·) − E (Ei·) = E (Ei

2 
·) − (r + 1) p̄e. Therefore, the 

j=0 j0=6 j 

intraclass correlation of exposure can be rewritten as ⎡ r ⎤P P 
E [Ej Ej0 ] 

1 ⎢ j=0 j0 6 ⎥ ⎢ ⎥ρe = 
=j − p̄e .⎣ ⎦1 − p̄e p̄er (r + 1) 

For binary variables, we have the constraint E [Ej Ej0 ] 6 

min (pej , pej0 ) ∀j, j0. Then, it is easily shown that ⎡ r ⎤P P 
min (pej , pej0 )⎢ ⎥1 j=0 6

ρe 6 ⎢⎣ j0=j − p̄e 
⎥⎦ . 

1 − p̄e p̄er (r + 1) 

Now, 

r r−1XX � � X 
min (pej , pej0 ) = 2 rpe(0) + (r − 1)pe(1) + · · · + pe(r−1) = 2 (r − j)pe(j), 

j=0 j0 6=j j=0 
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where pe(j) is the jth order statistic. Then, ⎡ ⎤ 
r−1P 
2 (r − j)pe(j)⎢ ⎥1 ⎢ j=0 ⎥

ρe 6 ⎢ − p̄e⎥ . 
1 − p̄e ⎣ p̄er (r + 1) ⎦ 

Web Appendix D Derivation of σ̃2 

The derivations in Web Appendix D are valid only when Σi = Σ, and 

therefore they are not valid if the covariance of the response is RS and 

V (t0) > 0, in which case a distribution for the time variable would need to 

be assumed. When the covariance is RS and V (t0) = 0 the derivations in 

this appendix apply. 

Web Appendix D.1 Derivation of σ̃2 for model (3) 

Model E (Yi,j+1|Xi) = γ0 + γttij + γe∗Eij 
∗ includes three covariates. As de-

fined in the paper, Ei,
∗
−1 is the cumultive exposure before entering the 

study for subject i, so that the cumulative exposure at time j is Eij 
∗ = 

jP 
E∗ 

i,−1 + Eik. 
k=0 

The [g, h] term of the matrix E [X0 iΣ−1Xi] can be written as Xr r � �X 
jj0 v E [xijgxij0h] . 

j=0 j0=0 P P 
Then, the [1,1] component of E [X0 iΣ−1Xi] is 

r r

vjj0 . The [2,1] and [1,2] 
j=0 j0=0 

components are 
r r � � r r � � r r r rXX XX XX XX 

jj0 jj0 jj0E [tj ] v = E [t0 + sj] v = E (t0) v +s 
j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 

jvjj0 . 
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The [3,1] and [1,3] components are ! 
r r � � � � r jXX � � � � r X XX XX r r

jj0 jj0 jj0 E ∗ E ∗E j v = E −1 v + v pek . 
j=0 j0=0 j=0 j0=0 j=0 j0=0 k=0 

The [2,2] component is �Xr r r r r r� X XX XX 
2 jj0 jvjj0 2 jj0E t0 v + 2sE (t0) + s jj0 v . 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

The [2,3] and [3,2] components are " ! # ! 
r r � � r r jXX � � XX X 

jj0 jj0 E ∗ E ∗E j tj0 v = E −1 + Ek (t0 + sj0) v = 
j=0 j0=0 j=0 j0=0 k=0 " ! # ! 
r r j rXX X � � r XX 

jj0 jj0 E ∗ E ∗E −1 + Ek (t0 + sj0) v = E −1t0 v + 
j=0 j0=0 k=0 j=0 j0=0 

r r r j r r j� � r X XXX XXXX 
E ∗ j0 jj0 jj0 jj0 sE −1 v + E (Ekt0)v + s pekj

0 v . 
j=0 j0=0 j=0 j0=0 k=0 j=0 j0=0 k=0 

The [3,3] component is 

j0h i r r � � r rXX XXX � � 
E ∗

2 jj0 E ∗ jj0E −1 v + E −1Ek0 v + 
j=0 j0=0 j=0 j0=0 k0=0 

j j j0r r X � � XX XXX r r X 
jj0 jj0 E ∗E −1Ek v + E (EkEk0 )v . 

j=0 j0=0 k=0 j=0 j0=0 k=0 k0=0 

Then, E [X0 iΣ−1Xi] needs to be inverted, and the [3,3] component of 

the inverse is σ̃2 . 

Web Appendix D.1.1 Derivation of σ̃2 for model (3) when Ei,
∗
−1 = 0 ∀i 

and V (t0) = 0 h i� � � � � � 
E∗2If Ei,

∗
−1 = 0 ∀i then E E∗ = 0, E = 0, E E∗ = 0, E E∗ = −1Ek0 −1Ek−1 −1 � � 

E∗0 and E −1t0 = 0. If, in addition, ti0 = 0 ∀i, then E (t0) = 0, E (t20) = 0 
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� 

and E (Ekt0) = 0. Using this and the results in Web Appendix D.1, we 

obtain the following symmetric matrix, 

�� 
X0 iΣ

−1Xi Pr rP E = 

jj0 v

⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 
j=0 j0=0 

j=0 j0=0 

Pr r

� 
P 

s2 
r

j=0 

P r

j0=0 

P 
jj0 jj0vjvjj0 s , � PPPPr r j r r j r r j j0

j=0 j0=0 k=0 j=0 j0=0 k=0 j=0 j0=0 k=0 k0=0 

P 
0jjand all its elements are determined by just knowing and E [E E ]v p 0 0, ej j j

P 

for all j, j0. Then, to derive σ̃2 one needs to invert this matrix and take the 

P 

[3,3] component. 

PP 

2Web Appendix D.2 Derivation of for model (4)σ̃

W WModel includes two covariates. The vec-E − |(Y Y X ) = γ γ E+i,j+1 i,j i ij∗e

0tor of differences , has covariance matrix . Let −Y Y ΔY ΔΣΔ w 0,i,j+1 i,j i jj

0 0 0be element of . Then, ;[j, j ] (ΔΣΔ ) j = 1 j = 1, . . . , r , . . . , r, 

P 

t 

−1 

jj0 jj0 jj0 pekj
0 E (EkEk0 )vv pek s v

h� 
ΣΓ = E 

i�−1 
X0 i (ΔΣΔ

0)
−1 
Xi . 

� � 
is 

Pr rP 
w

j=1 j0=1 

jj0 ; The X0 i (ΔΣΔ
0)−1 

P The [1,1] component of the matrix E 

r

Xi Pr
pej w

j=1 j0=1 

jj0 

Pr rP [2,1] and [1,2] components are ; and the [2,2] component is �� � 
jj0 X0 i (ΔΣΔ

0)−1 Xi. All the elements of E are deter-E [Ej Ej0 ] w
j=1 j0=1 

mined by just knowing wjj0 , pej0 and E [Ej Ej0 ] for all j, j0. The [2,2] compo-
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� � 
X0 −1nent of the inverse of E i (ΔΣΔ

0) Xi is 

r rP P 
jj0 w

j=1 j0=1 
σ2˜ = ! ! !2 . 

r r r r r rP P P P P P 
jj0 jj0 jj0 w (E [Ej Ej0 ] w ) − pej w

j=1 j0=1 j=1 j0=1 j=1 j0=1 

Web Appendix D.2.1 Proof that σ̃2 is minimized at the upper bound of 
jj0 ρe if w 6> 0 ∀j = j0 for model (4). Proof that this 

condition hold for CS and DEX but not for RS 

For model (4) we have from Web Appendix D.2 that 

r rP P 
jj0 w

j=1 j0=1 
σ2˜ = ! ! !2 , 

r r r r r rP P P P P P 
jj0 jj0 jj0 w (E [Ej Ej0 ] w ) − pej w

j=1 j0=1 j=1 j0=1 j=1 j0=1 

where wjj0 is the [j, j0] element of (ΔΣΔ0)−1. When pej ∀j are fixed, only 
r r � �P P 

jj0E [Ej Ej0 ] w is affected by changes in the exposure distribution, 
j=1 j0=1 P P � � 
so σ̃2 will be affected by changes on ρe only through 

r r

E [Ej Ej0 ] wjj0 . 
j=1 j0=1 P P 

Since (ΔΣΔ0)−1 is positive definite then 
r r

wjj0 > 0 and an increase in 
j=1 j0=1 

r Pr �P � 
E [Ej Ej0 ] wjj0 decreases σ̃2, so in order to minimize σ̃2 we need 

j=1 j0=1 
r Pr �P � 

jj0to maximize E [Ej Ej0 ] w . In addition, since E [Ej Ej ] = pej 
j=1 j0=1 P P 

and pej ∀j are fixed, only 
r

E [Ej Ej0 ] wjj0 need to be maximized. If 
j=1 j0=6 j 

rP P
jj0 jj0 w > 0 ∀j 6= j 0, then E [Ej Ej0 ] w will be maximized when all 

j=1 j0=6 j 

terms E [Ej Ej0 ] ∀j =6 j0 take their upper bound, min (pej , pej0 ). It can be 
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derived that ⎡ ⎤ ⎥⎥⎦ 
r

j=1 j0 6=j − p̄e 

P P 
E (Ej Ej0 )⎢⎢⎣ 1 

ρe = 
(1 − p̄e) p̄er (r − 1) 

(Web Appendix C). Therefore, when all terms E [Ej Ej0 ] ∀j 6 j0 are equal = 

to their upper bound, so does ρe. So, σ̃2 will be minimum when ρe takes its 

maximum (i.e. ρe = 1, the time-invariant exposure case, if the prevalence 

is constant over time), and equivalently, it can be derived that σ̃2 takes its 

maximum when ρe takes its minimum. 

As derived in Web Appendix D.2.2, the off-diagonal elements of 

(ΔΣΔ0)−1 when Σ has a CS structure are equal to 

1 
wjj0 = [j(r + 1 − j0)]

σ2(1 − ρ)(r + 1) 

for j < j0, and therefore they are all positive. For DEX, we performed a 

grid search for values of r 6 50 and ρ and θ in [0,1] and found that the 

off-diagonal elements of (ΔΣΔ0)−1 where always greater or equal than 

zero. For RS, examples can be found where some off-diagonal elements 

of (ΔΣΔ0)−1 are negative. For example, for r = 3, σw 
2 = 0.1, σb

2 
0 
= 0.12, 

σb
2 
1 
= 0.15, ρb0b1 = −0.52, 

(ΔΣΔ0)
−1 
= 

⎛⎝ ⎞⎠3.52 −0.29 −1.47 
−0.29 2.94 −0.29 . 
−1.47 −0.29 3.52 
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Web Appendix D.2.2 Derivation of σ̃2 for model (4) when both the re-
sponse and the exposure follow CS and pej = 
pe ∀j 

If pej = pe ∀j then the expression for σ̃2 reduces to 

1 Pr r r rPPP ! . 

(E [Ej Ej0 ] wjj0 ) − pe 
2 wjj0 

j=1 j0=1 j=1 j0=1 

Under CS, the matrix ΔΣΔ0 is a r × r tridiagonal matrix of the form 

σ2(1 − ρ) 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 

2 −1 0 · · · 0 

−1 2 −1 . . . ..
. 

.
0 −1 2 . . 0 . 
. . . .. . . .. . . . −1 
0 · · · 0 −1 2 

jj0The [j, j0] element of (ΔΣΔ0)−1, i.e. , is of the form w

1 
[(j + j0 − |j0 − j|) (2r + 2 − |j0 − j| − j − j0)]

4σ2(1 − ρ)(r + 1) 

for j, j0 = 1, . . . , r [4], which can be rewritten as 

1 
[(r + 1)j + (r + 1)j0 − 2jj0 − (r + 1) |j0 − j|] . 

2σ2(1 − ρ)(r + 1) 

From this formula, we have that, if j = j0 then 

1 
wjj = [j(r + 1 − j)] ; 

σ2(1 − ρ)(r + 1) 

if j < j0 then 
1 

wjj0 = [j(r + 1 − j0)] ; 
σ2(1 − ρ)(r + 1) 
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and if j > j0 then 

1 
wjj0 = [j0(r + 1 − j)] . 

σ2(1 − ρ)(r + 1) 

Then we can derive 

r rXX 
jj0 w = 

j=1 j0=1 

r r−1 rX X X1
[j(r + 1 − j)]+2 

1
[j(r + 1 − j0)]

σ2(1 − ρ)(r + 1) σ2(1 − ρ)(r + 1) 
j=1 j=1 j0=j+1 " # 

r r r−1 r r−1 rX X X X X X 
=

1 
(r + 1) j − j2 + 2(r + 1) j − 2 jj0 . 

σ2(1 − ρ)(r + 1) 
j=1 j=1 j=1 j0=j+1 j=1 j0=j+1 

Since 

X Xr
r(r + 1) 

r
r(r + 1)(2r + 1) 

j = j2 = 
2 6 

j=1 j=1 

r−1 r r−1 rX X X Xr(r − 1)(r + 1) r(r + 1)(r − 1)(2 + 3r)
j = jj0 = ,

6 24 
j=1 j0=j+1 j=1 j0=j+1 

we can deduce that 

Xr rX r(r + 1)(r + 2) jj0 w = . 
12(1 − ρ)σ2 

j=1 j0=1 

Also, if we assume that the exposure process follows CS, the matrix 

E [Ej Ej0 ] has diagonal elements pe and off-diagonal elements ρepe(1−pe)+ 

2 jj0 pe. Therefore, the matrix with elements E [Ej Ej0 ] w has diagonal ele-

ments equal to 
1 

pe [j(r + 1 − j)]
σ2(1 − ρ)(r + 1) 
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and off-diagonal elements equal to 

� � 1 
ρepe(1 − pe) + p 2 [j(r + 1 − j0)]e σ2(1 − ρ)(r + 1) 

if j < j0 and 

� � 1 
ρepe(1 − pe) + p 2 

e [j0(r + 1 − j)]
σ2(1 − ρ)(r + 1) 

if j > j0. Then, 

r r � �XX 
jj0E [Ej Ej0 ] w = 

j=1 j0=1 

r r−1 rX X X 21 (ρepe(1 − pe) + pe) pe [j(r + 1 − j)]+2 [j(r + 1 − j0)]. 
σ2(1 − ρ)(r + 1) σ2(1 − ρ)(r + 1) 

j=1 j=1 j0=j+1 

Using the previous results we derived in this section, we can derive 
r r � �XX per(r + 2) (2 + pe(r − 1)(1 − ρe) − ρe + rρe)jj0E [Ej Ej0 ] w = . 

12(1 − ρ)σ2 
j=1 j0=1 

Then, 

1 12(1 − ρ)σ2 

σ̃2 = ! = . 
r r r r (1 − pe)r(r + 2) (2 + (r − 1)ρe)P P P P pe

(E [Ej Ej0 ] wjj0 wjj0) − p2 
e 

j=1 j0=1 j=1 j0=1 

Web Appendix D.3 Derivation of σ̃2 for model (5) 

Model E (Yi,j+1|Xi) = γ0 +γttij + γeEij + γte (Eij × tij ) includes four covari-
r rP P 

ates. The [1,1] component of E [X0 iΣ−1Xi] is vjj0 . The [2,1] and [1,2] 
j=0 j0=0 

components are 
r r � � r r � � r r r rXX XX XX XX 

jj0 jj0 jj0 jvjj0E [tj ] v = E [t0 + sj] v = E (t0) v +s . 
j=0 j0=0 j=0 j0=0 j=0 j0=0 j=0 j0=0 
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r Pr � PrP � rP
jj0 jj0The [3,1] and [1,3] components are E [Ej ] v = pej v . The 

j=0 j0=0 j=0 j0=0 

[4,1] and [1,4] components are 

r r � � r r � �XX XX 
jj0 jj0E [Ej tj ] v = E [Ej (t0 + sj)] v = 

j=0 j0=0 j=0 j0=0 

r r � � r rXX XX 
jj0 jj0 = E [Ej t0] v + s jpej v . 

j=0 j0=0 j=0 j0=0 

The [2,2] component is 

r r � � r r � �XX XX 
jj0 jj0E [tj tj0 ] v = E [(t0 + sj) (t0 + sj0)] v

j=0 j0=0 j=0 j0=0 

r rXX�� � � � � 
2 jj0 = E t0 + s(j + j0)E (t0) + s 2jj0 v

j=0 j0=0 � r r r r r r� XX XX XX 
2 jj0 2 jj0 = E t0 v + 2sE (t0) jvjj0 + s jj0 v . 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

The [2,3] and [3,2] components are 

r r � � r r � �XX XX 
jj0 jj0E [Ej tj0 ] v = E [Ej (t0 + sj0)] v

j=0 j0=0 j=0 j0=0 

r r � � r r � �XX XX 
jj0 jj0 = E [Ejt0] v + s j0 pej v . 

j=0 j0=0 j=0 j0=0 

The [2,4] and [4,2] components are 

r r � � r r � �XX XX � � �� 
jj0 2 jj0E [tj Ej0 tj0 ] v = E Ej0 t0 + s (j + j0) t0 + s 2jj0 v

j=0 j0=0 j=0 j0=0 

r r � � r r � � r r � �XX � � XX XX 
2 jj0 jj0 jj0 = E Ej0 t0 v +s jE [Ej0 t0] v +s j0E [Ej0 t0] v + 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

r r � �XX 
2 jj0 s jj0 pej0 v . 

j=0 j0=0 

14 



r Pr �P � 
The [3,3] component is E [Ej Ej0 ] vjj0 . The [3,4] and [4,3] compo-

j=0 j0=0 

nents are 

r r � � r r � �XX XX 
jj0 jj0E [Ej Ej0 tj0 ] v = E [Ej Ej0 (t0 + sj0)] v

j=0 j0=0 j=0 j0=0 

r r � � r r � � 
jj0 jj0 

XX XX 
= E [Ej Ej0 t0] v + s j0E [Ej Ej0 ] v . 

j=0 j0=0 j=0 j0=0 

Finally, the [4,4] component is 

r r � �XX 
jj0E [Ej tj Ej0 tj0 ] v = 

j=0 j0=0 

r r � � r r � �XX � � �� XX � � 
2 jj0 2 jj0E Ej Ej0 t0 + s (j + j0) t0 + s 2jj0 v = E Ej Ej0 t0 v + 

j=0 j0=0 j=0 j0=0 

r r � � r r � �XX XX 
jj0 2 jj0 + 2s jE [Ej Ej0 t0] v + s jj0E [Ej Ej0 ] v . 

j=0 j0=0 j=0 j0=0 

r r r r r rP P P P P P
jj0 jvjj0 jj0Now, let us call a = v , b = , c = jj0v , 

j=0 j0=0 j=0 j0=0 j=0 j0=0 
r r r r r rP P P P � � P P 

jj0 jj0 d = (pej vjj0 ), e = E [Ej Ej0 ] v , f = j 0pejv , 
j=0 j0=0 j=0 j0=0 j=0 j0=0 

r Pr � PrP � rP
jj0 jj0 g = E [Ej t0] v , h = j pej v , 

j=0 j0=0 j=0 j0=0 
r Pr �P � 

k = jj0pej0 v
jj0 , 

j=0 j0=0 
r r r rP P � � P P � � 

jj0 jj0 l = E [Ej0 t0
2] v , m = jE [Ej0 t0] v , 

j=0 j0=0 j=0 j0=0 
r r r rP P � � P P � � 

jj0 jj0 n = j0E [Ej0 t0] v , o = E [Ej Ej0 t0] v , 
j=0 j0=0 j=0 j0=0 
r Pr � � r Pr � �P P

jj0 jj0 p = j0E [Ej Ej0 ] v , q = E [Ej Ej0 t
2
0] v , 

j=0 j0=0 j=0 j0=0 
r Pr � � r Pr � �P P 

jj0 jj0 u = jj0E [Ej Ej0 ] v , v = jE [Ej Ej0 t0] v . Without 
j=0 j0=0 j=0 j0=0 

loss of generality, the time variable can be centered at the mean initial 
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� � 
� � 

� � 
� 

time so that E [t0] = 0 and E [t20] = V (t0). Then, we get the following 

symmetric matrix, 

�� 
E X0 iΣ

−1Xi = 

⎛ ⎜⎜⎝ 
a 
sb V (t0)a + s2c 
d g + sf e 

g + sh l + sm + sn + s2k o + sp q + 2sv + s2u 

⎞ ⎟⎟⎠ , 

and we are interested in the [4,4] component of its inverse, which has a 

Pr r r r

very complicated expression. 

P 

Web Appendix D.3.1 Derivation of σ̃2 for model (5) when V (t0) = 0 

If V (t0) = 0 and we assume, without loss of generality, that t0 = 0, we 

have that PP � � 
jj0

P j0E [Ej0 t
2
0] v

jj0

r

E [Ej t0] v = 0; l = = 0;g = 

P 
Pr r r

P 
P 

P 
0 0j=0 j=0j =0 j =0 P 

r rr rP 
� � 

jj0 j0E [Ej0 t0] vjj0jE [Ej0 t0] v = 0 ; = 0;m = n = 
j=0 j0=0 j=0 j0=0 � � 

jj0 E [Ej Ej0 t
2
0] v

jj0

Pr rP E [Ej Ej0 t0] v = 0; q = = 0;o = 
j=0 j0=0 j=0 j0=0 � 

jj0and v = 0. Then, the matrix to invert has = jE [Ej Ej0 t0] v
j=0 j0=0 

the form ⎛ ⎜⎜⎝ 
a sb d sh 
sb 2s c sf 2ks
d sf e sp 
sh s2k sp 2s u 

⎞ ⎟⎟⎠ , 
�� 

E X0 iΣ
−1Xi = 

jj0and all its elements are determined by just knowing v , pej0 and E [Ej Ej0 ] 

for all j, j0 . The form of the [4,4] component of the inverse is still quite 

complicated. 
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Web Appendix D.3.2 Derivation of σ̃2 for model (5) when V (t0) = 0, 
pej = pe ∀j and both the response and the expo-
sure process follow CS 

In addition to the reduction in terms derived in Web Appendix D.3.1 due 
r Pr � 

to the fact that V (t0) = 0, when pej = pe ∀j we have d = 
P � 

pej v
jj0 = 

j=0 j0=0 
r rP P 

jj0 pe v = pea; 
j=0 j0=0 

r r r rP P P P
jj0 jj0 f = j 0pejv = pe j 0v = peb ; 

j=0 j0=0 j=0 j0=0 P P P P 
jj0 h = 

r r

j pe,j v = pe

r r

j vjj0 = peb; 
j=0 j0=0 j=0 j0=0 

r Pr � PrP � rP
jj0 jj0and k = jj0pej0 v = pe jj0v = pec. Therefore, 

j=0 j0=0 j=0 j0=0 ⎛ ⎞ 
a sb pea speb � � ⎜ sb s2c speb s2pec ⎟ ⎜ ⎟E X0 iΣ

−1Xi = ⎝ ⎠ , 
pea speb e sp 
speb s2pec sp s2u 

and the [4,4] component of the inverse is 

ape 
2 − e 

. 
4 2 2s2 (p2 − 2bppe 

2 + (b2 − ac) pe + e (cpe − u) + apeu) 

In addition if Σ has CS structure, then Σ−1 has diagonal elements equal to 

1 1 + ρ(r − 2) − ρ2(r − 1) 
σ2 (1 − ρ)2 (1 + rρ) 

and off-diagonal elements equal to 

1 −ρ 
. 

σ2 (1 − ρ) (1 + rρ) 

Importantly, the sum of every row or column is the same and equal to 
r r

1X X 
jj0 jj0 v = v = ,

σ2 (1 + rρ)
j=0 j0=0 
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and the sum of all elements of the inverse matrix is 

XXr r
r + 1 jj0 v = . 

σ2 (1 + rρ)
j=0 j0=0 

Then, it can be deduced that 

XX XXr r

jj0 r + 1 
r r

jvjj0 r(r + 1) 
a = v = , b = = 

σ2 (1 + rρ) 2σ2 (1 + rρ)
j=0 j0=0 j=0 j0=0 

XXr r
r(r + 1) (2 + r(4 + (r − 1)ρ) 

c = jj0 vjj0 = . 
12σ2(1 − ρ) (1 + rρ)

j=0 j0=0 

Also, 

r r � �XX 
jj0 v E [Ej Ej0 ] = 

j=0 j0=0 X � � XX(r − 1)ρ + 1 
r

ρ 
r

E2E j − E (Ej Ej0 )
σ2 [1 + ρ(r − 1) − ρ2r] σ2 (1 + ρ(r − 1) − ρ2r)

j=0 j=0 6j0=j 

rP P 
and since E (Ej Ej0 ) = per (r + 1) [pe(1 − ρe) + ρe] (Web Appendix C) 

j=0 j0 6=j 

we have 
pe(r + 1) [1 + ρ (r − 1 − per(1 − ρe) − ρer)] 

e = . 
(1 − ρ)σ2 (1 + rρ) 

If, in addition, we assume that the exposure process also follows CS, then 

r r � �XX 
p = j0E [Ej Ej0 ] v

jj0 = 
j=0 j0=0 

r � � �X 2pe (r − 1)ρ + 1 ρ (ρepe(1 − pe) + pe)j0 + + 
σ2 [1 + ρ(r − 1) − ρ2r] σ2(1 − ρ) (1 + rρ)

j0=0 � 
−ρr(r + 1) (ρepe(1 − pe) + p2) r(r + 1)pee = [1 − ρ (1 − (1 − pe)r(1 − ρe))] ; 

2σ2(1 − ρ) (1 + rρ) 2σ2(1 − ρ) (1 + rρ) 
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and 

r r � �XX 
u = jj0E [Ej Ej0 ] v

jj0 = 
j=0 j0=0 

r � � �X 2pe (r − 1)ρ + 1 ρ (ρepe(1 − pe) + pe)j02 + + 
σ2 [1 + ρ(r − 1) − ρ2r] σ2(1 − ρ) (1 + rρ)

j0=0 � 
−ρr(r + 1) (ρepe(1 − pe) + p2 

e) r(r + 1) 
j0 = 

2σ2(1 − ρ) (1 + rρ) σ2(1 − ρ) (1 + rρ)� � 
(1 + (pe + r − 1)ρ + (1 − pe)ρρe) (2r + 1) ρr(r + 1) (ρepe(1 − pe) + p2)pe e− . 

6 4 

As derived above, the [4,4] component of the inverse of E [X0 iΣ−1Xi] is 

ap2 
e − e 

,
4 2 2s2 (p2 − 2bpp2 + (b2 − ac) p + e (cp − u) + ap u)e e e e

which, using the simplifications derived in this section, reduces to 

12σ2(1 − ρ)(1 + rρ) 
. 

pe(1 − pe)s2r(r + 1)(r + 2) [1 + rρ − ρ(1 − ρe)] 

Web Appendix D.4 Derivation of σ̃2 for model (6) 

The variance of the coefficients under model (6) can be obtained as ΣB = 

(E [X0 iMXi])
−, where M = Δ0 (ΔΣΔ0)−1 Δ (Web Appendix A). Since 

Δ1 = 0, the sum of a column or a row of M is zero, and the first row 

and column of E [X0 iMXi] will be zero. The [2,2] component of E [X0 iMXi] 
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r rP P 
is mjj0 E [Ej Ej0 ]. The [2,3] and [3,2] components are 

j=0 j0=0 

r r r rXX XX 
jj0 jj0 m E [Ej tj0 ] = m E [Ej (t0 + sj0)] 

j=0 j0=0 j=0 j0=0 

r r r rXX XX 
jj0 jj0 = m E [Ej t0] + s pejj

0 m
j=0 j0=0 j=0 j0=0 

r r r r r rX X XX XX 
jj0 jj0 jj0 = E [Ej t0] m + s pej j

0 m = s pej j
0 m

j=0 j0=0 j=0 j0=0 j=0 j0=0 

rP 
jj0since m = 0. The [3,3] component is 

j0=0 

r r r r rXX XX � X� r X 
jj0 jj0 2 jj0 m E [tj tj0 ] = m E [(t0 + sj)(t0 + sj0)] = E t0 m + 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

r r r r r rXX XX XX 
2 jj0 2 jj0 2sE [t0] jmjj0 + s jj0 m = s jj0 m , 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

P P P P 
jj0since 

r r

m = 0 and 
r r

jmjj0 = 0. The [2,4] component is 
j=0 j0=0 j=0 j0=0 

r r r rXX XX 
jj0 jj0 m E [Ej Ej0 tj0 ] = m E [Ej Ej0 (t0 + sj0)] = 

j=0 j0=0 j=0 j0=0 

r r r rXX XX 
jj0 jj0 m E [Ej Ej0 t0] + s j0 m E [Ej Ej0 ]. 

j=0 j0=0 j=0 j0=0 
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The [3,4] component is 

r r r rXX XX 
jj0 jj0 m E [tj Ej0 tj0 ] = m E [(t0 + sj)(t0 + sj0)Ej0 ] 

j=0 j0=0 j=0 j0=0 

r r r r r rXX � � XX XX 
jj0 2 jj0 j0 jj0 = m E t0Ej0 + s m jE [t0Ej0 ] + s m E [t0Ej0 ] 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

r r r r r� rXX X � X XX 
2 jj0 2 jj0 jj0 + s jj0 m pej0 = E t0Ej m + s m jE [t0Ej0 ] 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

r r r rX X XX 
jj0 2 jj0 + s jE [t0Ej ] m + s jj0 m pej0 

j=0 j0=0 j=0 j0=0 

r r r rXX XX 
jmjj0 2 jj0 = s E [t0Ej0 ] + s jj0 m pej0 

j=0 j0=0 j=0 j0=0 

rP 
jj0since m = 0. The [4,4] component is 

j0=0 

r r r rXX XX 
jj0 jj0 m E [Ej tj Ej0 tj0 ] = m E [(t0 + sj)(t0 + sj0)Ej Ej0 ] = 

j=0 j0=0 j=0 j0=0 

r r r r r rXX � � XX XX 
jj0 2 2 jj0 m E Ej Ej0 t0 +2s jmjj0 E [t0Ej Ej0 ]+s jj0 m E [Ej Ej0 ]. 

j=0 j0=0 j=0 j0=0 j=0 j0=0 

Then, one needs to compute the generalized inverse of E [X0 iMXi], and the 

[4,4] component is σ̃2 . 

Web Appendix D.4.1 Derivation of σ̃2 for model (6) when V (t0) = 0 

When V (t0) = 0 and we assume, without loss of generality, that t0 = 0, 

some of the terms derived in Web Appendix D.4.1 have a simpler expres-
r rP P 

sion. In particular, the [2,4] component reduces to s j0mjj0 E [Ej Ej0 ], 
j=0 j0=0 
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r rP P
2 jj0the [3,4] component reduces to s jj0m pej0 and the [4,4] compo-

j=0 j0=0 
r rP P 

2 jj0nent reduces to s jj0m E [Ej Ej0 ]. Then, σ̃2 only depend on the 
j=0 j0=0 

exposure through pej ∀j and E [Ej Ej0 ] ∀j, j0 . 

Web Appendix D.4.2 Derivation of σ̃2 for model (6) when V (t0) = 0, 
pej = pe ∀j and both the response and the expo-
sure process follow CS 

When the response covariance is CS, we derived in Web Appendix D.2.2 

that the [j, j0] element of (ΔΣΔ0)−1, is 

1 
[(r + 1)j + (r + 1)j0 − 2jj0 − (r + 1) |j0 − j|] . 

2σ2(1 − ρ)(r + 1) 

If we pre-multiply by Δ0, the [j, j0] element of Δ0 (ΔΣΔ0)−1 is 

1 
2σ2(1 − ρ)(r + 1) 

rX 
(I {k = j} − I {k = j + 1}) ((r + 1)k + (r + 1)j0 − 2kj0 − (r + 1) |j0 − k|), 

k=1 

where I {k = j} is an indicator function that is one if k = j and zero other-

wise. The last expression can be simplified to 

1 
((r + 1) [|j0 − j − 1| − |j0 − j| − 1] + 2j0) ,

2σ2(1 − ρ)(r + 1) 

for j = 0, . . . , r; j0 = 1, . . . , r. Now, post-multiplying the result by Δ we 

can derive the [j, j0] element of Δ0 (ΔΣΔ0)−1 Δ, which is 

2σ2(1 − ρ)(r + 1) 
rX 
((r + 1) [|k − j − 1| − |k − j| − 1] + 2k) (I {k = j0} − I {k = j0 + 1}) 

k=1 

22 
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1 

for j = 0, . . . , r; j0 = 0, . . . , r. The last expression simplifies to 

((r + 1) [|j0 − j − 1| + |j0 − j + 1| − 2 |j0 − j|] − 2) . 
2σ2(1 − ρ)(r + 1) 

Note that this expression is r for j0 = j and −1 for j0 =6 j.
σ2(1−ρ)(r+1) σ2(1−ρ)(r+1) 

Therefore, the matrix M = Δ0 (ΔΣΔ0)−1 Δ has diagonal elements 

r 
σ2(1 − ρ)(r + 1) 

and off-diagonal elements 

−1 
. 

σ2(1 − ρ)(r + 1) 

It is then easily proven that the sum of any row or column of M is zero. 

When both the response and the exposure have CS covariance, the 

components of ΣB derived in Web Appendix D.4 and Web Appendix D.4.1 

simplify. The [2,2] component becomes 

r r r rXX X XX 
jj0 jj jj0 m E [Ej Ej0 ] = m pej + m E [Ej Ej0 ] 

j=0 j0=0 j=0 j=0 j0=6 j X XXr 
r

1 
r

= pej − E [EjEj0 ]. 
σ2(1 − ρ)(r + 1) σ2(1 − ρ)(r + 1) 

j=0 j=0 6j0=j 

r rP P P 
Now, pej = (r +1)p̄e, E [Ej Ej0 ] = p̄er (r + 1) [p̄e(1 − ρe) + ρe] (Web 

j=0 j=0 6j0=j 

Appendix C). Therefore, 

XXr r
r(r + 1)p̄e p̄er (r + 1) [p̄e(1 − ρe) + ρe]jj0 m E [Ej Ej0 ] = − 

σ2(1 − ρ)(r + 1) σ2(1 − ρ)(r + 1) 
j=0 j0=0 

p̄e(1 − p̄e)r(1 − ρe) 
= . 

σ2(1 − ρ) 
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Since the prevalence is constant over time, the [2,3] component is 

r r r rXX XX 
jj0 j0 jj0 s pej j

0 m = spe m = 0, 
j=0 j0=0 j=0 j0=0 

r rP P 
jj0because j0m = 0. The [3,3] component becomes 

j=0 j0=0 � � ��XX 2 X 
2 

r r

jj0 s
r

r(r + 1) 
s jj0 m = j rj − − j

σ2(1 − ρ)(r + 1) 2 
j=0 j0=0 j=0 " # 

s X X2 r
r(r + 1) 

r

= (r + 1) j2 − j
σ2(1 − ρ)(r + 1) 2 

j=0 j=0 � � 
s2 r(r + 1)2(2r + 1) r2(r + 1)2 s2r(r + 1)(r + 2) 

= − = . 
σ2(1 − ρ)(r + 1) 6 4 12σ2(1 − ρ) P P 

The [2,4] component is s 
r r

j0mjj0 E [Ej Ej0 ]. Under CS of exposure, 
j=0 j0=0 

E [Ej Ej0 ] is pe for j = j0 and (ρepe(1 − pe) + p2 
e) for j =6 j0. So, � � � �Xr

j0 jj0 pe r(r + 1) 
m E [Ej Ej0 ] = − (ρe(1 − pe) + pe) − j + rj 

σ2(1 − ρ)(r + 1) 2 
j0=0 

and 

r rXX 
j0 jj0 s m E [Ej Ej0 ] = 

j=0 j0=0 � � � � 
spe r(r + 1)2 r(r + 1) r2(r + 1) − (ρe(1 − pe) + pe) − + 

σ2(1 − ρ)(r + 1) 2 2 2 
2sper

= (1 − ρe(1 − pe) − pe) . 
2σ2(1 − ρ) 

The [3,4] component becomes 

r r r rXX XX 
2 jj0 2 jj0 s jj0 m pej0 = s pe jj0 m , 

j=0 j0=0 j=0 j0=0 
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and using the results derived for the [3,3] component, it becomes 

s2per(r + 1)(r + 2) 
. 

12σ2(1 − ρ) 

For the [4,4] component, using some results derived for the [2,4] compo-

nent, we can deduce 

r rXX 
2 jj0 s jj0 m E [EjEj0 ] = 

j=0 j0=0 

r � � � �
2 Xs pe r(r + 1) 

j − (ρe(1 − pe) + pe) − j + rj = 
σ2(1 − ρ)(r + 1) 

j=1 
2 

2s pe 

σ2(1 − ρ)(r + 1) � � � � 
r2(r + 1)2 r(r + 1)(2r + 1) r2(r + 1)(2r + 1) − (ρe(1 − pe) + pe) − + 

4 6 6 
s2per(r + 1) 

= [(pe(r − 1)(2 + 3r)(−1 + ρe) + 2ρe + r (2 + r(4 − 3ρe) + ρe)] . 
12σ2(1 − ρ)(r + 1) 

Then, the [4,4] component of the generalized inverse of E [X0 iMXi] is 

12(1 − ρ)σ2 

σ2˜ = . 
pe(1 − pe)s2r(r + 2)(r + ρe) 

Web Appendix E Generation of arbitrary preva-
lence vectors and correlation 
matrices 

Arbitrary prevalence vectors can easily be generated by drawing num-

bers from a Uniform[0, 1]. Arbitrary correlations matrices for binary data 

are more difficult to generate because they involve a lot of constraints 

[5]. Thus, we proceeded by first generating valid arbitrary covariance 
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matrices for a multivariate normal distribution, and then deriving the co-

variance matrix that results from dichotomizing each of the normal vari-

ables so that a given prevalence at each time point is obtained. To gen-

erate arbitrary correlations matrices, random numbers were drawn from 

a Uniform[−1, 1] for each pair of time points. If the resulting correlation 

matrix was not positive definite, it was transformed to the nearest positive 

definite one [6]. The process of obtaining the prevalence vector and the 

covariance matrix of the dichotomized variables is described by Leisch et 

al.[5]. To ensure that the space of possible values of (p̄e, ρe) was evenly cov-

ered, prevalence vectors with a narrow range of prevalences and correla-

tion matrices with positive and high correlations were given more weight. 

Web Appendix F Demonstration of program use 

More information can be found in a detailed user’s manual at http:// 

www.hsph.harvard.edu/faculty/spiegelman/optitxs.html. 

Here, we showed how to compute the required sample size for a study 

with 31 partiticipants and 14 post-baseline measures to detect a 5 L/min 

decrease in PEF associated with the use of air-freshener sprays with 90% 

power, assuming DEX covariance structure of the response. We assume 

the rates of change vary by exposure and a cumulative exposure effect, 

and we want to estimate the within-subject effect of exposure, so we 

assume the model E (Yij − Yi,j−1|Xi) = γW + γe
W 
∗ Eij . This example is based t 

on a study on respiratory function and cleaning tasks/products [7]. 
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> long.N() 

* By just pressing <Enter> after each question, the default value, 
shown between square brackets, will be entered. 

* Press <Esc> to quit 

Enter the number of post-baseline measures (r) [1]: 14 

Enter the desired power (0<Pi<1) [0.8]: .9 

Enter the time between repeated measures (s) [1]: 1 

Is the exposure time-invariant (1) or time-varying (2) [1]? 2 

Do you assume that the exposure prevalence is constant over 
time (1), that it changes linearly with time (2), or you want 
to enter the prevalence at each time point(3) [1]? 2 

Enter the exposure prevalence at time 0 (0<pe0<1) [0.5]: .35 

Enter the exposure prevalence at time 14 (0<pe14<1) [0.5]: .45 

Enter the intraclass correlation of exposure 
(-0.071<rho.e<0.808) [0.5]: .13 

Constant mean difference (1) or Linearly divergent difference (2) 
[1]: 2 

Which model are you basing your calculations on: 
(1) Cumulative exposure effect model. No separation of between-

and within-subject effects 
(2) Cumulative exposure effect model. Within-subject contrast only 
(3) Acute exposure effect model. No separation of between- and 

within-subject effects 
(4) Acute exposure effect model. Within-subject contrast only 
Model [1]: 2 

Will you specify the alternative hypothesis on the absolute (beta 
coefficient) scale (1) or the relative (percent) scale (2) [1]? 1 

Enter the interaction coefficient (gamma3) [0.1]: 5 

Which covariance matrix are you assuming: compound symmetry (1), 
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damped exponential (2) or random slopes (3) [1]? 2 

Enter the residual variance of the response given the assumed 
model covariates (sigma2) [1]: 4570 

Enter the correlation between two measures of the same subject 
separated by one time unit (0<rho<1) [0.8]: .88 

Enter the damping coefficient (theta) [0.5]: .12 

Sample size = 28 

Do you want to continue using the program (y/n) [y]? n 
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