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Abstract

Nuclear-import receptors (NIRs) engage nuclear-localization signals (NLSs) of polypeptides in the cyto-
plasm and transport these cargo across the size-selective barrier of the nuclear-pore complex into the
nucleoplasm. Beyond this canonical role in nuclear transport, NIRs operate in the cytoplasm to chaperone
and disaggregate NLS-bearing clients. Indeed, NIRs can inhibit and reverse functional and deleterious
phase transitions of their cargo, including several prominent neurodegenerative disease-linked RNA-
binding proteins (RBPs) with prion-like domains (PrLDs), such as TDP-43, FUS, EWSR1, TAF15,
hnRNPA1, and hnRNPA2. Importantly, elevated NIR expression can mitigate degenerative phenotypes
connected to aberrant cytoplasmic aggregation of RBPs with PrLDs. Here, we review recent discoveries
that NIRs can also antagonize aberrant interactions and toxicity of arginine-rich, dipeptide-repeat proteins
that are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) caused
by G4C2 hexanucleotide repeat expansions in the first intron of C9ORF72. We also highlight recent find-
ings that multiple NIR family members can prevent and reverse liquid–liquid phase separation of specific
clients bearing RGG motifs in an NLS-independent manner. Finally, we discuss strategies to enhance NIR
activity or expression, which could have therapeutic utility for several neurodegenerative disorders, includ-
ing ALS, FTD, multisystem proteinopathy, limbic-predominant age-related TDP-43 encephalopathy, tauo-
pathies, and related diseases.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

A distinctive feature of several fatal and presently
incurable neurodegenerative diseases, including
amyotrophic lateral sclerosis (ALS), fronto-
temporal dementia (FTD), multisystem proteino-
pathy (MSP), and limbic-predominant age-related
TDP-43 encephalopathy (LATE), is the depletion
of specific RNA-binding proteins (RBPs) with
prion-like domains (PrLDs) from the nucleus and
td. All rights reserved.
their accumulation in cytoplasmic aggregates in
degenerating neurons.1–8 For example, TDP-43
exhibits this pathological phenotype in �97% of
ALS cases and �50% of FTD cases, whereas
another RBP with a PrLD, FUS, displays nuclear
depletion and cytoplasmic aggregation in �1% of
ALS cases and �9% of FTD cases.1,8 It is sug-
gested that the loss of nuclear function of these
RBPs coupled to a gain of toxic function due to cyto-
plasmic accumulation and aggregation may syner-
Journal of Molecular Biology 434 (2022) 167220
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gize to elicit neurodegeneration.1,6,8–10 We have
suggested that agents that reverse the cytoplasmic
mislocalization and aggregation of these RBPs and
restore their nuclear localization and function could
be powerful therapeutics.6,11–18 Remarkably,
nuclear-import receptors (NIRs) have emerged as
agents capable of eliciting such a therapeutic
effect.16,19

NIRs are members of the karyopherin family of
proteins that bind tightly to nuclear-localization
signals (NLSs) of polypeptide cargo in the
cytoplasm.20–22 NIRs are subdivided into a small
family of karyopherin-a (Kapa) proteins, which
engage classical NLSs and subsequently bind to a
member of the larger karyopherin-b (Kapb) family
that enables nuclear import.22 However, Kapbs
can directly recognize non-classical NLSs (e.g. pro-
line tyrosine [PY]-NLSs) independent of Kapas.22

Kapbs are flexible, superhelical proteins that typi-
cally comprise �20 consecutive HEAT (Huntingtin,
elongation factor 3 (EF3), protein phosphatase 2A
(PP2A), and the yeast kinase TOR1) repeats, a
type of protein tandem repeat structural motif com-
posed of two alpha helices linked by a short loop
(Figure 1(A)).22 Once bound to the NLS, NIRs can
transport their cargo across the nuclear-pore com-
plex (NPC) and into the nucleoplasm.22

The NPC is an intricate structure23 which oper-
ates as a size-selective barrier to prevent macro-
molecules with a molecular weight greater than
Figure 1. Specific and general interactions enable NIRs
share a similar structure, with roughly 20 paired helical HEA
repeats comprise an outer helix (raspberry) and an inner, ca
interact with cargo via two non-exclusive mechanisms. (B) M
NLS. For example, Kapb2 will interact with cargo bearing a P
to cargo through additional or alternative interactions, inclu
interactions can occur with cargo that bears an NLS, and wi
arginine-rich DPRs produced in c9ALS/FTD. This figure wa
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�30 kDa (or a Stokes radius greater than �3 nm)
from passively diffusing in and out of the nucleus.24

This barrier is established by FG-rich nucleoporins,
which form a phase-separated state inside the NPC
channel.25–28 NIRs can penetrate rapidly through
this phase and transport cargo into the nucleus.29

Once inside the nucleoplasm, the small GTPase
Ran in its GTP-bound state binds to the incoming
NIR, dissociating the NIR-cargo complex.22 Cargo
is thus released into the nucleus where a high con-
centration of RNA keeps the incoming RBP soluble
so it can perform its regular function, and the NIR is
recycled for further rounds of nuclear trans-
port.22,30–32 By contrast, in the cytoplasm Ran is
found in the GDP-bound state, which has a low
affinity for NIRs, permitting NIR-cargo
interactions.22

Beyond this classical function in nuclear
transport, NIRs are now understood to operate in
the cytoplasm to chaperone and disaggregate
NLS-bearing clients.19,33–43 In this context, NIRs
engage cognate NLSs to inhibit and reverse physi-
ological and deleterious phase transitions of their
cargo (Figure 1(B)), which include several promi-
nent neurodegenerative disease-linked RBPs with
PrLDs, including wild-type and disease-linked
mutant forms of TDP-43, FUS, EWSR1, TAF15,
hnRNPA1, and hnRNPA2.19,33–44 For example,
Karyopherin-b2 (Kapb2; also known as Transportin
1) can prevent and reverse fibrillization of wild-type
to chaperone cargo. (A) NIRs like Kapb2 (PDB: 4FDD)
T repeats coiled into an alpha solenoid structure. HEAT
rgo-facing helix (blue; FUS-PY-NLS cargo, black). NIRs
any NIRs will specifically interact with cargo bearing an
Y-NLS, like FUS and hnRNPA1. (C) NIRs can also bind
ding cation-p, p-p, and electrostatic interactions. Such
th cargo that has no known NLS sequence, such as the
s made with BioRender.
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FUS, EWSR1, TAF15, hnRNPA1, hnRNPA2, and
several disease-linked variants.19 Kapb2 also pre-
vents and reverses FUS liquid–liquid phase separa-
tion (LLPS).19,33,34,36 Moreover, Importin a (Impa
and Kapb1 (also known as importin b) cooperate
to prevent and reverse TDP-43 condensation and
fibrillization.19,37 Importantly, elevated NIR expres-
sion can mitigate degenerative phenotypes con-
nected with aberrant aggregation of RBPs with
PrLDs in model systems.19,34,45 Indeed, NIRs can
disaggregate cytoplasmic inclusions formed by
RBPs with PrLDs and return these proteins to the
nucleus, thereby restoring their native function.19

In this way, NIRs may simultaneously eliminate:
(1) any gain of toxic function due to cytoplasmic
mislocalization and aggregation of the RBP; and
(2) any loss of nuclear RBP function, two facets of
disease that likely conspire to drive neurodegenera-
tion.19 Thus, NIRs join a growing class of ATP-
independent protein disaggregases.14,46–49 These
exciting advances have been reviewed in detail
elsewhere.16–18,20,50–52

In this review, we focus on recent developments
concerning how NIRs can antagonize aberrant
interactions and toxicity of dipeptide-repeat
proteins (DPRs) that are produced via repeat-
associated non-AUG (RAN) translation53 of the
G4C2 hexanucleotide repeat expansion (HRE) in
C9ORF72 that cause ALS and FTD.37,54 We also
highlight recent findings that multiple NIR family
members can prevent and reverse the LLPS of
specific cargo bearing RGG motifs.35 In ALS/FTD
and related degenerative disorders, NIRs can be
mutated,55 expressed at lower levels,52,56 seques-
tered in stress granules (SGs)57 and aggregated
structures,52,58–60 or fail to effectively recognize
post-translationally modified cargo61 or disease-
linkedmutant NLSs.19,62–68 Moreover, NIRs are crit-
ical for neuronal maintenance and function, and
mutations in NIRs are associated with human
developmental delays, neurologic deficits, and dys-
morphic features.69 Thus, we close the review by
discussing strategies to enhance NIR activity or
expression, which could have therapeutic utility for
several presently untreatable disorders.16
NIRs as Safeguards against Toxic
DPRs

A large G4C2 HRE in the first intron of the
C9ORF72 gene is the most common genetic
cause of ALS and FTD (termed c9ALS/FTD).10,70–
73 Patients with c9ALS/FTD can have hundreds to
thousands of G4C2 repeats in the first intron of
C9ORF72, whereas healthy individuals typically
harbor �2–23 repeats.10,70–74 In c9ALS/FTD, the
G4C2 HRE is bidirectionally transcribed into toxic
repeat RNAs, which are RAN-translated to yield five
different DPRs: poly(GA), poly(GP), poly(PR), poly
(GR), and poly(PA).71,75–77 In c9ALS/FTD models,
arginine-rich DPRs (R-DPRs) are particularly toxic
3

to neurons due to their positive charge and wide
range of interacting partners.78–81 More specifically,
poly(GR) and poly(PR) can directly interact with the
PrLD-containing RBP TDP-43, altering its phase-
separation behavior and accelerating its aggrega-
tion both in vitro and in cells.37,82 In fact, poly(GR)
and poly(PR) are notorious for their ability to disrupt
the LLPS of multiple RBPs through interactions with
low-complexity domains (LCDs), and their ability to
disturb the dynamics of several membraneless
organelles, including SGs, nucleoli, nuclear speck-
les, Cajal bodies, and heterochromatin.71,80,81

Given the high affinity of NIRs to arginine- or
lysine-rich NLSs, it was postulated that NIRs
might also target R-DPRs.37 Several NIRs were
identified as modulators of R-DPR toxicity in
c9ALS/FTD models, suggesting a mechanistic link
between NIRs and R-DPRs.54,83–85 More recent
studies found that R-DPRs directly interact with
multiple NIRs, including Imp⍺, Kapb1, and Kapb2,
causing an interruption in nucleocytoplasmic traf-
ficking.37,86 Specifically, high concentrations of R-
DPRs promote the insolubility of NIRs, disrupting
their ability to bind and import their NLS-containing
cargo.37,86 As such, this mechanism provides an
explanation for why TDP-43 nuclear import deterio-
rates in c9ALS/FTD.37

With the direct link between DPRs and NIRs now
revealed, can we steer the chaperoning power of
NIRs to combat R-DPR-associated toxicity? R-
DPRs undergo RNA-stimulated phase
separation,87 which likely leads to R-DPR accumu-
lation in aggregated structures in c9ALS/FTD.76,77

Importantly, Kapb1 and Kapb2 suppress RNA-
stimulated poly(GR) condensation, whereas Impa3
is ineffective.37 Interestingly, while R-DPRs in molar
excess can directly interact with NIRs and impair
TDP-43 nuclear import, equimolar or elevated
levels of Kapb1 or Kapb2 can shield R-DPRs,
thereby suppressing their pathological interactions
with TDP-43.37 Thus, increasing the concentration
of NIRs prevents R-DPR phase separation, pre-
vents R-DPRs from engaging in deleterious interac-
tions, and also restores the nuclear localization of
TDP-43 as it becomes available to interact with its
own NIRs.37 These findings suggest that the
reported reduction in the endogenous concentra-
tions of NIRs associated with neurodegenerative
disease may contribute to the pathogenesis of
c9ALS/FTD, and that interventions aiming to ele-
vate NIR levels are a promising therapeutic strategy
to combat R-DPR toxicity in c9ALS/FTD.52

Besides R-DPRs, another c9ALS/FTD-linked
DPR, poly(GA), as well as chimeric DPR species
such as GA:GP can form cytoplasmic inclusions
that may inhibit nuclear import of TDP-43.88,89

Indeed, in hippocampal neurons, poly(GA) expres-
sion results in robust TDP-43 cytoplasmic mislocal-
ization.88 However, overexpression of Impa3 or
Impa4, which may be involved in nuclear import of
TDP-43,56,90 can likely restore TDP-43 to the
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nucleus.88 Other repeat-expansion disorders can
also produce DPRs, such as spinocerebellar ataxia
36 (SCA36), which presents with poly(PR) and poly
(GP).89,91 Thus, NIRs may also be promising thera-
peutics to mitigate DPR toxicity in SCA36.
Multiple NIRs Exhibit Chaperone and
Disaggregation Activity

The family of Kapb proteins is large, containing
over a dozen subfamilies.92 These proteins vary in
their structure, directionality of transport (nuclear-
export factors such as Crm1 are also members of
the Kapb family), and cargo repertoire.92 And,
whereas some cargo proteins show a clear prefer-
ence for a single NIR, others can be ferried by mul-
tiple karyopherins, either individually or in concert
with one another.93–99 In addition to trafficking cargo
proteins in and out of the nucleus, Kapb family
members like Kapb2 can also act to prevent and
reverse the self-assembly and aggregation of pro-
teins, including those implicated in neurodegenera-
tive disease.16 However, it had been an unexplored
question as to whether this disaggregation activity
was a feature of karyopherin proteins in general,
or an exclusive capability of only some. Focusing
on the disease-associated RBP FUS, recent work
from Baade et al. now establishes that multiple
Kapb family members can act as potent chaper-
ones both in vitro and in cells.35

To uncover the network of Kapb proteins that
FUS interacts with, Baade et al. performed pull-
down assays using cell lysates or purified proteins
and found that, in addition to Kapb2, FUS also
binds to Kapb1, transportin-3, importin-7, importin-
13, and exportin-4.35 Like Kapb2, transportin-3,
and importin-7 (either on its own or as a heterodimer
with Kapb1) interact stably with FUS, forming com-
plexes that were sensitive to the addition of Ran-
GTP.35 Although these complexes were stable, of
the NIRs tested, Kapb2 demonstrated the strongest
binding to FUS.35 It is well established that Kapb2
binds to FUS via its PY-NLS,62 but it was unclear
if these other NIRs were interacting with FUS in
the same way. Thus, Baade and colleagues
assessed the binding of each NIR to truncated con-
structs of FUS.35 They found that instead of inter-
acting with the PY-NLS, Kapb1, transportin-3,
importin-7, and Kapb1/importin-7 interact with
FUS via its arginine- and glycine-rich RGG domains
(Figure 1(C)).35 Interestingly, when the arginine
residues of the RGG domains were mutated to
lysine, the binding of Kapb1, transportin-3,
importin-7, and Kapb1/importin-7 was impaired,
underscoring the specific importance of arginine in
mediating the interaction between Kapb proteins
and their cargo.35,36,40,100

Not only do multiple Kapb proteins bind to FUS,
but they can also chaperone its material state.35 In
the absence of any NIR, purified FUS protein will
undergo LLPS.19,33,37,101 Addition of equimolar
4

levels of Kapb1, transportin-3, importin 7, or
Kapb1/importin-7 each prevented and reversed
FUS LLPS, indicating that these NIRs both bind to
and chaperone FUS.35 Baade et al. also observed
this chaperoning activity in cells, where addition of
any of the NIRs tested was able to suppress the
association of exogenous MBP-FUS with stress
granules.35 The work from Baade and colleagues
illustrates that FUS self-assembly can be modu-
lated by multiple Kapb proteins and suggests that
the mechanism by which this chaperone activity
occurs may be a universal feature of Kapb family
members.35 Although Kapb1, transportin-3, impor-
tin 7, or Kapb1/importin-7 can prevent and reverse
FUS LLPS,35 it remains unclear whether Kapb1,
transportin-3, importin 7, or importin b/7 can reverse
the formation of FUS fibrils like Kapb2.19 Kapb2
interacts more avidly with FUS than the other NIRs,
which may confer stronger FUS chaperone and
nuclear-import activity.35 Further studies into the
many Kapb family members and their respective
abilities to chaperone disease-related cargo pro-
teins will therefore be an intriguing area for future
research.
Of particular interest is Transportin-3. Intriguingly,

mutations in transportin-3 have been connected to
congenital limb-girdle myopathy,55,102–107 indicating
that transportin-3 is critical for human health.
Transportin-3 binds to multiple proteins with RGG-
motifs, including the cold-inducible RNA-binding
protein which is involved in responding to cell
stress.100 Transportin-3 has also been shown to
chaperone another disease-related cargo, the
arginine-rich nuclear-speckle protein
SRRM2.108,109 In tauopathies, including FTD and
Alzheimer’s disease, tau disrupts nuclear speckles
and sequesters SRRM2 in cytoplasmic inclusions,
which reduces SRRM2 splicing activity.110,111 Thus,
upregulation of transportin-3 might enable extrac-
tion of SRRM2 from cytoplasmic tau aggregates
and restore SRRM2 to the nucleus, which may mit-
igate degenerative phenotypes in tauopathies.112

NIRs also affect phase transitions in physiological
contexts. For example, Impa/Kapb1 regulate the
material state of Targeting Protein for XKlp2
(TPX2), a spindle-assembly factor whose activity
must be tightly regulated for proper cell cycle
progression.44,113 TPX2 condensation promotes
its activity, whereas Impa and Kapb1, either alone
or combined, inhibit TPX2 condensation through a
combination of specific binding and general low-
affinity interactions.44,113

Interestingly, there are NIR family members that
bind to cargo with no defined consensus NLS. For
example, Transportin-3 and importin 13 can each
bind dozens of cargo proteins with no annotated
NLS.114 Surprisingly, despite their close similarity,
Transportin-3 and importin 13 have little overlap in
which cargo they recognize, and for each NIR, the
cargo vary in terms of sequence and structure.114

Hence, there is yet much to uncover with respect
to potential NIR:cargo interactions.
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Leveraging NIRs as Therapeutic
Agents

As newly appreciated dissolvases,18 Kapb family
members represent an exciting target to pursue in
developing drugs for diseases related to the adoption
of aberrant material states by various proteins.16

There already exist several compounds that affect
Kapbs, however thesemainly work to prevent activity
by occupying the cargo-binding surface of their tar-
get.115 As such, there is an opening to develop com-
pounds that can stimulate Kapb activity (Figure 2A).
What would such compounds look like? One

approach could be to target disassembly of Ran-
GTP:Kapb complexes in the nucleus to promote
Kapb turnover (Figure 2(A, i)).116 Increasing the effi-
ciency with which free Kapb proteins are made
available would increase the relative levels of
unbound Kapb, thereby potentially increasing their
apparent activity.
Figure 2. Therapeutic strategies to enhance NIR activity.
enhanced is through the use of small-molecule drugs. For ex
(shown in teal) from NIRs in the nucleus would increase t
Alternatively, small molecule libraries or engineered compou
for chaperone activity (ii). (B) Another approach could us
targets. (C) Finally, NIR activity could be augmented using g
NIR expression, or to deliver sequences via AAVs or lipid-
figure was made with BioRender.
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There is also the opportunity to discover novel
small molecules to enhance Kapb activity directly
(Figure 2(A, ii)). To this end, employing a high-
throughput screening approach to identify
compounds that stimulate Kapb activity would be
an exciting avenue to pursue. Such a screen
could be done in vitro using purified proteins. For
example, it will be of great interest to screen for
drug-like compounds that enhance the ability of
Kapb2 to prevent or reverse FUS fibrillization, or
Impa/Kapb1 to prevent and reverse TDP-43
fibrillization. Likewise, screening campaigns might
also be considered in cell-based models to find
drug-like compounds that enhance the ability of
NIRs to restore nuclear localization of TDP-43 or
FUS in response to stress or disease conditions.
Several structures of Kapb2 bound to disease-

linked cargo, including hnRNPA1, FUS, and ALS-
linked FUS variants are available.40,62,117 These
structures could facilitate the design of small mole-
(A) One potential means by which NIR activity could be
ample, a molecule that promotes the release of Ran-GTP
he pool of free NIRs available for binding to cargo (i).
nds could be used to perform in vivo or in vitro screens
e a PROTAC-like molecule to direct NIRs to specified
enetic approaches to deliver saRNAs or ASOs to elevate
containing nanoparticles to express NIRs directly. This
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cules that increase the affinity of Kapb2 for these
specific cargo. This approach may be particularly
important for disease-linked hnRNPA1 and FUS
variants with mutations in the PY-NLS that weaken
the interaction with Kapb2.62,67,68 Ideally, com-
pounds could be uncovered that restore the affinity
of Kapb2 for disease-linked cargo to similar levels
observed with wild-type cargo. Although structures
of Impa/Kapb1 bound to the TDP-43 NLS are not
yet available, other structures of Impa family mem-
bers bound to cargo have been solved,118–123 and
these could also inform drug design. Here, it will
be important to ensure that small-molecules do
not make NIR-cargo interactions so tight that they
cannot be dissociated by Ran-GTP, as release of
cargo is essential for restoring nuclear activity and
NIR recycling.16

Small-molecule drugs that increase the expression
of specific NIRs or even globally upregulate NIRs
may also be an interesting therapeutic strategy.
How NIR expression is regulated in response to
nuclear-transport stress remains poorly understood,
and further studies in this area are likely to be
informative. For example, it would be important to
uncover compounds that globally upregulate
nuclear-transport pathways akin to compounds that
induce the heat-shock response to upregulate a
battery of molecular chaperones.124–130 Such com-
pounds could provide a critical boost to nuclear trans-
port to combat neurodegeneration.
Another strategy to boost NIR chaperone activity

could resemble recent work with proteolysis-
targeting chimeras (PROTACs).131 PROTACs are
small molecules that comprise a moiety that targets
an E3-ubiquitin ligase tethered to a recruiting com-
pound that binds to a protein of interest.131 Thus,
PROTACs enable specific ubiquitination and sub-
sequent degradation of a target protein, and have
been successfully used in a wide range of applica-
tions.131 However, in ALS/FTD, the disease-
relevant proteins TDP-43 and FUS serve vital roles
in biology, including in RNA metabolism, axonal
transport, and responding to DNA damage and
other stressors.6,8,34,132–136 A PROTAC-type model
that disaggregates but does not degrade its target
protein is therefore a potential adaptation well sui-
ted to Kapb activity. Here, instead of an E3 ligase,
Kapb proteins could be utilized to target phase-
separated and aggregated proteins, including those
with a mutated NLS or no NLS at all (Figure 2(B)). In
promoting a locally high concentration of NIRs, this
strategy would liberate the target protein from dele-
terious assemblies, allowing it to resume its normal
activities.
In addition to a compound-based treatment,

genetic approaches are also becoming an
increasingly tractable strategy for preventing or
reversing disease states (Figure 2(C)). For
example, delivery of specific NIRs to neurons
could be achieved using adeno-associated viruses
(AAVs).137,138 After a single administration of AAV,
6

neurons can be successfully transduced, enabling
stable expression of a therapeutic gene of inter-
est.139 The safety of this approach has been estab-
lished in numerous clinical trials for
neurodegenerative diseases140–143 and AAVs deliv-
ering specific genes are now FDA-approved
drugs.144,145 Nonetheless, caution is still
needed.146,147

Additional approaches for gene delivery might
also be considered, including lipid-containing
nanoparticle-mediated delivery of chemically-
modified mRNAs to afflicted neurons akin to the
technology that has produced highly effective
mRNA vaccines (Figure 2(C)).15,148,149 Antisense
oligonucleotides (ASOs) have also been used to
increase the expression of certain proteins by facil-
itating specific splicing events for productive gene
expression (Figure 2(C)).150,151 Alternatively,
small-activating RNAs (saRNAs) can be used to
activate the expression of target genes with the
RNA-induced transcriptional activation complex
(Figure 2(C)).152,153 These approaches could be
used to supplement production of NIRs, which
undergo age- and disease-related changes in
expression levels.52,56,154
Perspectives

It is now clear that NIRs perform a range of
beneficial chaperone and dissolvase activities that
could, if channeled appropriately, provide
profound therapeutic effects for several presently
fatal neurodegenerative disorders, including ALS,
FTD, MSP, LATE, and tauopathies.16,112 However,
several challenges lie ahead. These include ensur-
ing that elevating or enhancing NIR activity does not
result in unanticipated off-target effects or undesir-
able effects such as disturbing the nuclear:cytoplas-
mic ratio of various cargo in a manner that is
detrimental to cell viability. Likewise, some cyto-
plasmic condensates formed by RBPs with PrLDs,
such as TDP-43 myogranules155 or RNA-transport
granules34,135,156,157, serve beneficial functions,
which ideally would not be perturbed by elevated
NIR activity. Indeed, it will be important to disperse
pathological condensates and simultaneously pre-
serve beneficial condensates. Despite these chal-
lenges, the ability of NIRs to reverse the
cytoplasmic mislocalization and aggregation of
specific cargo and restore their nuclear localization
and function could enable the development of pow-
erful therapeutics, which warrants intense
investigation.
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