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Summary

In this document, we introduce five additional examples that motivate our research on testing

homogeneity. In particular, we show how to check the assumptions for two linear mixed models

to validate the asymptotic distributions of the score test statistics. Then, we give the detailed

derivation for the score test statistic. We present the result about the local power of the score

test statistics under a class of mixed effect models. Finally, we compare our method with some

existing ones.
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1 Five Additional Examples

In the following, we will give five additional examples to illustrate the potential applications of

the score test statistics proposed in Zhu and Zhang (2005). Unless stated otherwise, we will refer

to, without re-introduction of, the notation and terminology in Zhu and Zhang (2005).

We give two examples having unidentified nuisance parameters under the null hypothesis,

which include factor analysis model and random coefficient model. Other examples with uniden-

tified nuisance parameters can be found in Hansen (1996), Andrews (2001) and references therein.

We also apply the score test statistics in an epileptic study. Finally, we study linear mixed effect

model and crossed design linear mixed effect model in detail and demonstrate how to apply the

score test statistics and check the assumptions to ensure their asymptotic properties. In particu-

lar, the last two examples reveal that our theory covers the case with both large n and large mi.

To our knowledge, this is new for testing homogeneity of mixed effects models.

1.1 Factor Analysis Model

Consider the following factor analytic measurement model for an m× 1 manifest random vector

Yi:

Yi = µ + Λbi + εi i = 1, · · · , n, (1)

where µ(m × 1) is the mean vector, Λ(m × q) is the factor loading matrix, bi (q × 1) is a factor

score vector with distribution N [0, Σ(γ)], and εi (m × 1) is a random vector of measurement

errors with distribution N [0, Φε], where Φε = diag(φ1, · · · , φm). In addition, bi’s are independent

of each other. For confirmatory factor analysis models, Σ(γ) is usually an unstructured covariance

matrix whereas Λ has a special pattern. We are interested in whether factor scores are warranted,

that is, H0 : Σ(γ) = 0. It should be noted that the factor loading matrix Λ only appears under

the alternative hypothesis, but not under the null hypothesis. The same question generally arises

from latent variable models with mixed continuous and polytomous data; see Shi and Lee (2001)

and Sammel, Ryan and Legler (1997).

1.2 Random Coefficient Model

Consider the following random coefficient model:

yi = xT
i β + f(zi, γ(1))bi + εi i = 1, · · · , n, (2)

where bi ∼ N(0, σ2
b ) and εi ∼ N(0, σ2

ε ). We are interested in testing the null hypothesis that the

variance of the random coefficient is zero. When σb = 0, the parameter γ(1) cannot be identified.
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Specific examples of f(zi, γ(1)) include Box-Cox transformation (f(zi, γ(1)) = (z
γ(1)

i − 1)/γ(1)),

structure change (f(zi, γ(1)) = 1(i/n ≤ γ(1))zi), and threshold models (f(zi, γ(1)) = 1(zi ≤
γ(1))zi). Note that the score statistic in Lin (1997) and Hall and Praestgaard (2001) cannot

handle this kind of random coefficient models.

1.3 An Epileptic Study

Table 2 of Thall and Vail (1990) presented a data set from a clinical trial of 59 epileptics.

These epileptic patients were randomly assigned to treatment (T=1) and placebo (T=0) group

as an adjutant to the standard chemotherapy. Every patient reported the number of seizures in

each of the four 2-week observation periods. Thall and Vail (1990) proposed to use a Poisson

random effect model. Specifically, conditional on bi = (bi1, bi2)T , the seizure count, yij , for

the i-th patient in the j-th visit is assumed to follow Poisson distribution with mean µij such

that log µij(bi) = xT
ijβ + bi1 + bi2Visitj/10. The covariates xij include the intercept term, the

logarithm of a pre-experiment baseline count of seizures (B), treatment (T), their interaction

(B×T), the logarithm of the patient’s age and a variable, Visitj , for each of four clinic visits (-3,

-1, 1, 3). We are interested in testing whether the random effects bi are warranted for these data.

Without considering the random effects, we obtained the maximum likelihood estimate of β as

(−2.80, 0.95,−1.34, 0.56, 0.90,−0.29). SO, SP and SS for this dataset are 32.30, 23.47, and 36.77,

respectively. Setting r0 = 10, 000, we obtained the corresponding p-values as 0.038, 0.0005 and

0.0002, respectively. Thus, our tests offer significant support for including the random effects,

and modest evidence for overdispersion.

1.4 Linear Mixed Effects Model

For simplicity, we follow the notation in Stram and Lee (1994) and write the linear mixed effects

models as

Yi = Xiβ + Zibi + εi, (3)

where Zi = (zi,1, · · · , zi,mi)
T is a known covariate matrix. The random coefficients bi’s (q×1) and

the residual vectors εi’s (mi × 1) are normally distributed such that E[bi] = 0, E[bibT
i ] = Σ(γ),

E[εi] = 0 and E[εiε
T
i ] = φImi , where Imi is the mi ×mi identity matrix. Moreover, for i 6= i′, bi,

bi′ , εi and εi′ are independent of each other.

Using the parametrization in the equation (6) of Zhu and Zhang (2005), we see that Wi,j(γ)

equals to W (γ) for i = j and zero otherwise. After some calculations, for model (3), we have
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Ui,j = ei,j/φ, Vi,j = 1/φ and

bK,K′(γ) =

{
zT
(i,j)W (γ)z(i,j′), i = i′

0, i 6= i′
,

where ei,j = yi,j − xT
i,jβ. We also have

TO(γ) =
∑

K

zT
KW (γ)zK [e2

K − φ]/φ2 and TP (γ) =
n∑

i=1

∑

j 6=j′
zT

i,jW (γ)zi,j′ei,jei,j′/φ2.

Furthermore, we have φ1/2Ui,j ∼ N(0, 1), E[U2
i,j ] = φ−1 and E[U4

i,j ] = 3φ−2 for all (i, j)’s. Thus,

E[TO(γ)TO(γ′)] = 2
∑

(i,j) z
T
i,jW (γ)zi,jzT

i,jW (γ′)zi,jφ
−2 and

E[TP (γ)TP (γ′)] = 2
∑

i=1

∑

j 6=j′
zT

i,jW (γ)zi,j′zT
i,jW (γ′)zi,j′φ

−2.

As discussed in Zhu and Zhang (2005), we need to replace ξ∗ with its estimator under H0. Let

β̂ and φ̂ be the maximum likelihood estimates of β and φ under H0. In this example, we have β̂ =

(XT X)−1XT Y and φ̂ = N−1Y T (IN − PX)Y , where Y = (Y T
1 , · · · , Y T

n )T , X = (XT
1 , · · · , XT

P )T

and PX = X(XT X)−1XT . Thus, we have

β̂ − β∗ = (
∑

K

xT
i,jxi,j)−1

∑

K

ei,jxi,j and φ̂− φ∗ = N−1
∑

K

(e2
i,j − φ∗) + OP (N−1),

which give the exact form of FK for each K = (i, j). Moreover, we can calculate that JN (γ) =

(0, N−1φ−2∗
∑

K zT
KW (γ)zK)T , and T̂O(γ) =

∑
K zT

KW (γ)zK(ê2
K− φ̂)/φ̂2 can be approximated by

∑

K

{zT
KW (γ)zK −N−1[

∑

K

zT
KW (γ)zK ]}(e2

K,∗ − φ∗)/φ2
∗,

where êK = yK − xT
K β̂ and eK,∗ = yK − xT

Kβ∗. Finally, we get IEO(γ) = 2
∑

K{zT
KW (γ)zK −

N−1[
∑

K zT
KW (γ)zK ]}2/φ̂2. When all zKs are the same, T̂O(γ) is exactly equal to zero and T̂S(γ)

reduces to T̂P (γ). When q = 1 and zK = 1 for all K, our results are similar to those of Jacqmin-

Gadda and Commenges (1995).

In terms of TP (γ), we see that xK = UK/
√

φ∗ = (yK − xT
Kβ∗)/

√
φ∗. For model (3), some

assumptions like (C1) are trivial and others such as (C4) are necessary conditions. Without loss

of generality, we will validate (C2) and (C3) in two simple cases.

The first model assumes that m1 = · · · = mn = 2. Then, we have

XP (γ) =

∑n
i=1 zT

i,1W (γ)zi,2ei,1ei,2√∑n
i=1[z

T
i,1W (γ)zi,2]2

=
∑

K,K′
cK,K′(γ)xKxK′ .
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Assumption (C2) relates to the maximum of the absolute eigenvalues of matrix C(γ) = (cK,K′),

denoted by µmax[C(γ)]. After some calculations, we get

µmax[C(γ)] =
maxi |zT

i,1W (γ)zi,2)|√∑n
i=1[z

T
i,1W (γ)zi,2]2

.

Assumption(C2) requires that µmax[C(γ)] converges to zero uniformly. After some algebraic

manipulations, we have
n∑

i=1

[∂γtcK,K′(γ)]2 ≤ C + C
[
∑n

i=1 zT
i,1∂γtW (γ)zi,2zT

i,1W (γ)zi,2]2

[
∑n

i=1(z
T
i,1W (γ)zi,2)2]2

.

If the supreme of the right hand side of above inequality is finite, then (C3) holds.

The second example is that zi,j = z for all (i, j)’s, e.g., z = 1q. In this simple case, we

are interested in whether the simplest variance structure of εi is adequate. Thus, TP (γ) =

zT W (γ)z
∑n

i=1

∑
j 6=j′ ei,jei,j′φ

−2 and CP (γ, γ′) = 2zT W (γ)zzT W (γ′)z
∑n

i=1 mi(mi − 1)φ−2. We

have XP (γ) =
∑n

i=1

∑
j 6=j′ ei,jei,j′φ

−1/
√

2
∑n

i=1 mi(mi − 1), which is independent of γ. There-

fore, (C3) are unnecessary and others are trivial except (C2). Due to the special structure of

C = (cK,K′), we can show that

µmax[C] = max
i

(mi − 1)/

√√√√2
n∑

i=1

mi(mi − 1).

There are too many sequences {(n,m1, · · · ,mn)} satisfying condition (C3); for example, {mi =

i : i = 1, · · · , n} is such a sequence. The forgoing discussions lead to that XP (γ) converges to the

standard normal distribution.

Replacing ξ∗ by ξ̂ in XP (γ) gives X̂P (γ). It follows that the asymptotic variance of X̂P (γ) is

given by IEP (γ) = 2
∑n

i=1

∑
j 6=j′(z

T
i,jW (γ)zi,j)2φ−2∗ . To consider the process X̂P (γ), we need to

introduce UK(sK , ξ) = (yK −xT
Kβ)/φ. In addition, UK(sK , ξ) can be decomposed into two terms:

(yK − xT
Kβ∗)

φ∗
φ∗
φ

+ xT
K(β∗ − β)φ−1

∗
φ∗
φ

.

Let φ∗/φ = 1 + N−1/2hφ, β∗ − β = N−1/2hβ and h = (hφ,hT
β )T . We have

µK(N−1/2h) = EUK(sK , N−1/2h) = N−1/2xT
i,jhβφ−1

∗ (1 + N−1/2hφ).

Let ŨK(sK , N−1/2h) = UK(sK , N−1/2h)−µK(N−1/2h) = UK(1+N−1/2hφ). Now we can directly

check (C6), (C7) and (C8), because

ŨK(yK , N−1/2h)ŨK′(sK′ , N−1/2h)− UKUK′ = UKUK′ [2N−1/2hφ + N−1h2
φ],

ŨK(yK , N−1/2h)− ŨK(yK , N−1/2h′) = UKN−1/2(hφ − h′φ).
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We see that (C8) is given by

sup
γ∈Γ,||h||2≤M

|∑K 6=K′ zT
KW (γ)zK′UKxT

Khβ|√∑
K 6=K′(zT

KW (γ)zK′)2
φ−1
∗ N−1/2(1 + N−1/2hφ)2 = op(1).

Some extra mild conditions are good enough to ensure (C8). So we omit the details. Until now,

we have given all sufficient conditions for Theorems 3 and 5.

1.5 Crossed Design Linear Mixed Models

Following Lin (1997) and Hall and Praestgaard (2001), we consider the following cross-design

linear mixed model

yi,j = xT
i,jβ + ai + cj + εi,j , (4)

for i = 1, · · · , n and j = 1, · · · ,m. For simplicity, we assume that ai, cj and εi,j are in-

dependent of each other, Eai = Ecj = 0, Ea2
i = σ2

a, Ec2
j = σ2

c , and εi,j ∼ N(0, φ). Let

b1 = (a1, · · · ,an, c1, · · · , cm)T , we have E[b1bT
1 ] = Σ(γ) = diag(σ2

a, · · · , σ2
a, σ

2
c , · · · , σ2

c ). Define

σT as σ2
a + σ2

c , we see that

Σ(γ) = σT W (γ) = σT diag(cos2(γ1), · · · , cos2(γ1), sin2(γ1), · · · , sin2(γ1)),

where γ1 ∈ [−0.5π, 0.5π] and cos2(γ1) = σ2
a/σT . Thus, (4) becomes

yi,j = xT
i,jβ + 1T

i,jb1 + εi,j = xT
i,jβ + σ

1/2
T 1T

i,ju1 + εi,j ,

where b1 = σ
1/2
T u1 and 1i,j is an Rn+m vector with both the ith and (n + j)th entries being 1

and all other entries being zero. Similar to the derivation in Example 2, we have Ui,j = ei,j/φ,

Vi,j = 1/φ and

bK,K′(γ) = 1T
KW (γ)1K′ =





1, K = K ′;

cos2(γ1), i = i′, j 6= j′;

sin2(γ1), i 6= i′, j = j′;

0, i 6= i′, j 6= j′.

Therefore, TS(γ) = TO(γ) + TP (γ), where TO(γ) =
∑n

i=1

∑m
j=1(e

2
i,j − φ)/φ2 and

TP (γ) =
n∑

i=1

∑

j 6=j′
cos2(γ1)ei,jei,j′/φ2 +

m∑

j=1

∑

i6=i′
sin2(γ1)ei,jei′,j/φ2.

Thus, E[TO(γ)TO(γ′)] = nmφ−2 and

E[TP (γ)TP (γ′)] = 2nmφ−2[(m− 1) cos2(γ1) cos2(γ′1) + (n− 1) sin2(γ1) sin2(γ′1)].
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Since the crossed design linear mixed model reduces to a linear regression model under the

null hypothesis, the maximum likelihood estimates of β̂ and φ̂ in the previous example can be

used here to replace ξ in all test statistics. By similar arguments, we obtain T̂O(γ) = 0 and

T̂P (γ) = T̂S(γ).

Let us discuss how Theorems 3-5 in Zhu and Zhang (2005) can be applied to derive the

asymptotic distributions of TP (γ) and T̂P (γ). We already know that ITP (γ) = 2nmφ−2∗ [(m −
1) cos4(γ1) + (n− 1) sin4(γ1)]. Therefore, nonzero elements c(i,j),(i′,j′)(γ) of C(γ) include

cos2(γ1)I
−1/2
TP (γ)/φ∗, for all i = i′, j 6= j′ and sin2(γ1)I

−1/2
TP (γ)/φ∗ for all i 6= i′, j = j′.

Assumption (C.1) is trivial in this example and (C.5)-(C.8) can be validated by using the discus-

sions in the previous example. So we will focus on checking (C.2), (C.3) and (C.4).

In order to calculate µmax[C(γ)], we need to solve the characteristic equation det[xImn −
C(γ)] = 0. We obtain

det[xImn − C(γ)] = [det(A1 −B1)]n−1 det[A1 + (n− 1)B1],

where B1 = −I
−1/2
TP (γ)φ−1∗ sin2(γ1)Im and

A1 = [x + I
−1/2
TP (γ)φ−1

∗ cos2(γ1)]Im − I
−1/2
TP (γ)φ−1

∗ cos2(γ1)1m1T
m.

We can solve det(A1−B1) = 0 and det[A1 +(n−1)B1] = 0. Finally, we can obtain four character-

istic roots as follows: −I
−1/2
TP (γ)φ−1∗ , I

−1/2
TP (γ)φ−1∗ [(m − 1) cos2(γ1) − sin2(γ1)], I

−1/2
TP (γ)φ−1∗ [(n −

1) sin2(γ1)− cos2(γ1)] and I
−1/2
TP (γ)φ−1∗ [(n− 1) sin2(γ1) + (m− 1) cos2(γ1)]. Obviously, we have

µmax[C(γ)] =
[(n− 1) sin2(γ1) + (m− 1) cos2(γ1)]√

2nm[(m− 1) cos4(γ1) + (n− 1) sin4(γ1)]
≤ 1√

n− 1
+

1√
m− 1

.

A sufficient condition of (C.2) is that both m and n tend to infinity.

To check (C.3), we have

∑

K 6=K′
[∂γ1cK,K′(γ)]2 =

(n− 1)(m− 1) sin2(γ1) cos2(γ1)
2[(m− 1) cos4(γ1) + (n− 1) sin4(γ1)]2

≤
√

(n− 1)(m− 1)
[(m− 1) cos4(γ1) + (n− 1) sin4(γ1)]

.

The right hand side is bounded by (m + n − 2)/
√

(n− 1)(m− 1). So a sufficient condition for

(C.3) is that the limit of m/n must be a positive constant c0, as both m and n tend to infinity.

That is, m and n increase at the same order. However, if m/n (or n/m) converges to zero, the

left hand side of the above inequality may tend to infinity.
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Some simple calculations lead to

ρN (γ, γ′) =
(m− 1) cos2(γ1) cos2(γ′1) + (n− 1) sin2(γ1) sin2(γ′1)√

[(m− 1) cos4(γ1) + (n− 1) sin4(γ1)][(m− 1) cos4(γ′1) + (n− 1) sin4(γ′1)]
.

As m/n → 0 and N → ∞, we see that the limit of ρN (γ, γ′) is one; thus, TP (γ)’s for all γ ∈ Γ

are identical. In this case, we can arbitrarily set γ = 0 and make inference by using TP (0). If

m/n → c0, we see that

ρ(γ, γ′) =
c0 cos2(γ1) cos2(γ′1) + sin2(γ1) sin2(γ′1)√

[c0 cos4(γ1) + sin4(γ1)][c0 cos4(γ′1) + sin4(γ′1)]
.

2 Derivation of Score Test Statistic

Following Zhu and Zhang (2005), we can write the log-likelihood function as

Ln(σT |β, γ,Φ) = log





∫ n∏

i=1

mi∏

j=1

p(yi,j |ψi,j(xT
i,jβ, fi,j(zi,j , γ(1))

Tuiσ
1/2
T ), Φ)dF (u1, · · · ,un|γ)



 ,

where F (u1, · · · ,un|γ) is the distribution function of (u1, · · · ,un). Let ηi,j = fi,j(zi,j , γ(1))Tui,

ti,j = σ
1/2
T ηi,j and Hi,j(ηi,jσ

1/2
T ) = p(yi,j |ψi,j(xT

i,jβ, fi,j(zi,j , γ(1))Tuiσ
1/2
T ), Φ). So, we can have

Ln(σT |β, γ, Φ) = log





∫ n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )dF (u1, · · · ,un|γ)



 .

Thus, we have

lim
σT→0+

∂

∂σT
Ln(σT |β, γ,Φ) = lim

σT→0+

∂

∂σT
log





∫ n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )dF (u1, · · · ,un|γ)





= lim
σT→0+








∂
√

σT

∂σT

∂

∂
√

σT




∫ n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )dF (u1, · · · ,un|γ)






 ×




∫ n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )dF (u1, · · · ,un|γ)



−1

 .

The second term on the right hand side of the above equation converges to a constant as σT → 0+,

so we omit them temporary and focus the first term on the right side. In the following, we assume

7



that we can change the order of integration and derivative. Now, because ∂
√

σT /∂σT = 0.5/
√

σT ,

it follows from the L’Hopital’s rule (Buck and Buck, 1965; p.92) that the first term is given by

0.5 lim
σT→0+

∂
∂
√

σT

{∫ ∏n
i=1

∏mi
j=1 Hi,j(ηi,jσ

1/2
T )dF (u1, · · · ,un|γ)

}

√
σT

= 0.5 lim
σT→0+

∂2

∂2√σT

{∫ ∏n
i=1

∏mi
j=1 Hi,j(ηi,jσ

1/2
T )dF (u1, · · · ,un|γ)

}

∂
√

σT

∂
√

σT

L’Hopital’s rule

= 0.5 lim
σT→0+





∫
∂2

∂2√σT

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )dF (u1, · · · ,un|γ)



 .

Now, we only need to consider the integrand

A =
∂2

∂2√σT

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T ).

We can show that

A =
∂

∂
√

σT
[

∂

∂
√

σT
log{

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )}{

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )}] = {

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )} ×


 ∂2

∂2√σT
log{

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )}+





∂

∂
√

σT
log{

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )}





2
 .

Then, we have




∂

∂
√

σT
log{

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )}



 =

n∑

i=1

mi∑

j=1

∂

∂
√

σT
log{Hi,j(ηi,jσ

1/2
T )}

=
n∑

i=1

mi∑

j=1

∂ti,j
∂
√

σT

∂

∂ti,j
log{Hi,j(ti,j)} =

n∑

i=1

mi∑

j=1

ηi,j
∂

∂ti,j
log{Hi,j(ti,j)}

and




∂2

∂2√σT
log{

n∏

i=1

mi∏

j=1

Hi,j(ηi,jσ
1/2
T )}



 =

n∑

i=1

mi∑

j=1

ηi,j
∂

∂
√

σT

{
∂

∂ti,j
log{Hi,j(ti,j)}

}

=
n∑

i=1

mi∑

j=1

ηi,j
∂ti,j

∂
√

σT

∂2

∂2ti,j
log{Hi,j(ti,j)} =

n∑

i=1

mi∑

j=1

ηi,j
2 ∂2 log{Hi,j(ti,j)}

∂2ti,j
.
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Combining the results above, we show that the first-order right derivative of Ln(σT |β, γ, Φ) at

σT = 0 is given by

TS(γ|β, Φ) = 2 lim
σT→0+

{
∂Ln

∂σT
(σT |β, γ, Φ)

}
=

∫ 






n∑

i=1

mi∑

j=1

∂ log p(yi,j |ψi,j(xT
i,jβ; ti,j))

∂ti,j
(0)ηi,j





2

+
n∑

i=1

mi∑

j=1

[ηi,j ]2
{

∂2 log p(yi,j |ψi,j(xT
i,jβ; ti,j))

∂t2i,j
(0)

}
 dF (u1, · · · ,un|γ).

3 Asymptotic Local Power

In this section, we mainly study asymptotic local power of the score test statistics under certain

conditions. We assume that the true value ξ∗ = (β∗, φ∗) of ξ = (β, φ) is an interior point of the

parametric space Ξ. Let η = (σT , ξ). We denote LN (σT , ξ|γ) as the corresponding log-likelihood

function. Because LN (0, ξ|γ) is independent of γ, we define η̂ to be the maximum likelihood

estimate of η under H0, which does not depend on γ under H0. Furthermore, we now define the

η̃(γ) to be the maximum likelihood estimate of η for any given γ ∈ Π under H1. In addition, we

define

∂LN (η|γ)
∂η

= Sη,N (γ|η) =

(
Sσ,N (γ|η)

Sξ,N (γ|η)

)
, Sη,N (γ) = Sη,N (γ|η)|η=η∗ =

(
Sσ,N (γ)

Sξ,N (γ)

)
,

and Jη,N (γ) = E{∂2LN (η|γ)/∂η∂ηT }|η=η∗ .

We need the following higher level conditions to establish the asymptotic properties.

Assumption S.1. supγ∈Γ ||η̃(γ)− η∗|| → 0 and ||η̂ − η∗|| → 0 in probability.

Assumption S.2. Assume that

Op(1) = LN (η|γ) = LN (η∗|γ) +
√

N(η − η∗)T Sη,N (γ)− N

2
(η − η∗)T Jη,N (γ)(η − η∗) + op(1), (5)

holds uniformly for all
√

N ||η − η∗|| ≤ C0, where C0 is any positive scalar. In addition, Sη,N (γ)

and Jη,N (γ) are (q1 + 2) × 1 random vector and (q1 + 2) × (q1 + 2) symmetric random matrix,

respectively. Moreover, supγ∈Γ ||Sη,N (η|γ)|| = Op(1) and

C2 ≥ sup
γ∈Γ

µmin[Jη,N (γ)] ≥ inf
γ∈Γ

µmin[Jη,N (γ)] ≥ 4C2
l > 0

holds almost surely for some fixed Cl and C2, where µmax and µmin represents the minimum and

maximum eigenvalues of a matrix.
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Assumption S.3. (Sη,N (·), Jη,N (·)) ⇒ (Sη(·), Jη(·)), where {(Sη(γ), Jη(γ)) : γ ∈ Γ} has

bounded continuous sample paths with probability one, where ⇒ denotes weak convergence of a

stochastic process under the uniform metric. Moreover, the (q1 + 2) × (q1 + 2) matrix Jη(·) is

symmetric and ∞ > supγ∈Γ λmax[Jη(γ)] ≥ infγ∈Γ λmin[Jη(γ)] > 0 holds almost surely.

Comments: Assumption S.1 ensures that both η̃(γ) and η̂ are consistent for η∗ = (0, ξ∗)

uniformly over γ ∈ Γ. In general, this assumption can be proved by using Assumption 1∗ of

Andrews (2001). Assumptions S.1-S.3 can be validated by using Assumptions 1∗ and 22∗ in

Andrews (2001). See Zhu and Zhang (2005) for how to validate Assumption S.3.

We need the following notation:

Sη(γ) =

(
Sσ(γ)

Sξ(γ)

)
, Jη(γ) =

[
Jσσ(γ) Jσξ(γ)

Jξσ(γ) Jξξ(γ)

]
,

Zη,N (γ) = Jη,N (γ)−1Sη,N (γ) =

(
Zσ,N (γ)

Zξ,N (γ)

)
, Zη(γ) = Jη(γ)−1Sη(γ) =

(
Zσ(γ)

Zξ(γ)

)
.

Here, LN (η∗|γ), LN (η̂|γ), Sξ(γ) and Jξξ(γ) do not depend on γ, so we drop γ from them. Let

e1 = (1, 0, · · · , 0)T ∈ Rq1+2.

Theorem S.1. Suppose Assumptions S.1-S.3 hold. Then, under the null hypothesis, we have the

following results:

(a) supγ∈Γ ||η̃(γ)− η∗|| = Op(N−1/2).

(b)

LN (η̃(·)|·)− LN (η∗|·) ⇒ 0.5{Sη(·)T Jη(·)−1Sη(·)− inf
λ

[λ− Jη(·)−1Sη(·)]T Jη(·)[λ− Jη(·)−1Sη(·)]},

and

sup
γ∈Γ

[LN (η̃(γ)|γ)− LN (η∗|γ)] ⇒ 0.5 sup
γ∈Γ

{Sη(γ)T Jη(γ)Sη(γ)−

inf
λ

[λ− Jη(γ)−1Sη(γ)]T Jη(γ)[λ− Jη(γ)−1Sη(γ)]}.

(c)
√

Nσ̃(·) ⇒ max{Zσ(·), 0}.
(d) supγ∈Γ[LN (η̃(γ)|γ)]−LN (η∗) ⇒ 0.5 supγ∈Γ max2{Zσ(γ), 0}/(eT

1 Jη(γ)−1e1)+0.5ST
ξ J−1

ξξ Sξ.

(e) LN (η̂)− LN (η∗) ⇒ 0.5ST
ξ J−1

ξξ Sξ.

(f) supγ∈Γ[LN (η̃(γ)|γ)]− LN (η̂) ⇒ 0.5 supγ∈Γ max2{Zσ(γ), 0}/(eT
1 Jη(γ)−1e1).

Proof of Theorem S.1. Part (a) can be easily seen from the quadratic expansion in Assumption

S.2 and consistency assumption in Assumption S.1. For given γ, it follows from Assumption S.2

that LN (η|γ)− LN (η∗|γ) can be approximated by

0.5{Sη,N (γ)T J−1
η,N (γ)Sη,N (γ)− [

√
N(η − η∗)− Zη,N (γ)]T Jη,N (γ)[

√
N(η − η∗)− Zη,N (γ)]}+ op(1).
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Furthermore, LN (η̃(γ)|γ)− LN (η∗|γ) is close to

0.5{Zη,N (γ)T Jη,N (γ)Zη,N (γ)− inf
λ

[λ− Zη,N (γ)]T Jη,N (γ)[λ− Zη,N (γ)]}.

By using Assumption S.3 and continuous mapping theorem, we can prove part (b).

By noting that the parametric space of σT is [0,∞) and η∗ is an interior point, we use some

matrix calculation to obtain

ST
η,N (γ)Jη,N (γ)Sη,N (γ) = ZT

η,N (γ)Jη,N (γ)−1Zη,N (γ) = Zσ,N (γ)2/(eT
1 Jη,N (γ)−1e1)+ST

ξ J−1
ξξ Sξ+op(1)

and infλ[λ− Zη,N (γ)]T Jη,N (γ)[λ− Zη,N (γ)] = infσ[σ − Zσ,N (γ)]2/[eT
1 Jη,N (γ)−1e1]−1. With these

preparations, we can prove parts (c) and (d). Similarly, we can easily prove parts (e) and (f).

Theorem S.2. Suppose Assumptions S.1-S.3 hold. If TS(γ) is evaluated at the η̂, the likelihood

ratio statistic and the score test statistic SS for testing H0 against H1 have the same asymptotic

null distribution.

Proof of Theorem S.2. Recall that

SS = sup
γ∈Γ

max2

{
T̂S(γ)√
IES(γ)

, 0

}
.

At the η̂, we see that

eT
1 J−1

η,N (γ)

(
2T̂S(γ)

0

)
= eT

1 J−1
η,N (γ)Sη,N (γ|η̂) = eT

1 J−1
η,N (γ)Sη,N (γ) + op(1).

Thus, the left term of the equation above is equal to 2T̂S(γ)eT
1 J−1

η,Ne1, so we have

2T̂S(γ) =
eT

1 Zη(γ)
eT

1 Jη,N (γ)−1e1
+ op(1) and IES(γ) =

1
4eT

1 Jη,N (γ)−1e1
+ o(1).

Therefore, we can show that SS = supγ∈Γ max2

{
eT

1 Zη(γ)/
√

eT
1 Jη(γ)−1e1, 0

}
+ op(1). Now, we

finish the proof of Theorem S.2.

Theorem S.2 holds for most mixed models considered in the literature, because Assumptions

S.1-S.3 are almost necessary for establishing asymptotic behavior of estimates and test statistics

in general mixed model (Jiang, 1996). For instance, for the clustered mixed models, if the number

of observations in each unit is finite, then Assumptions S.1-S.3 are obviously true. Even further,

for the hierarchical and crossed model, we can show that Assumptions S.1-S.3 hold under some

mild conditions. In general, we have the following Corollary.

Corollary 1. Under the assumption of Lin’s (1997) Proposition 1, Assumptions S.1-S.3 hold.
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Furthermore, we consider the asymptotic local power of the score testing statistics, because

power considerations are important in study design and significance testing (Cox and Hinkley,

1975, p.103). It becomes apparent from the quadratic approximations that the distribution of

Zη(γ) plays a critical role in determining the asymptotic local power of SS . Therefore, it is

worthwhile to explore its property under a sequence of local alternatives (ηN (h), γ0) such that

ηN (h) = η∗ + N−1/2h and γ = γ0, a true value of γ when h = (h1, · · · , hq1+2)T 6= 0 and h1 > 0.

Theorem S.3. Under Assumptions S.1-S.3 and the alternatives (ηN (h), γ0), Zη,N (γ) converges

to N(Jη(γ)−1Jη(γ, γ0)h, Jη(γ)−1) in distribution for any given γ ∈ Γ, where

Jη(γ, γ0) = lim
N→∞

Cov[Sη,N (γ), Sη,N (γ0)],

and Zη,N (·) converges weakly to a Gaussian process with mean Jη(·)−1Jη(·, γ0)h and covariance

components Jη(γ1)−1Jη(γ1, γ2)Jη(γ2)−1.

Proof of Theorem S.3. First, we have

LN (η∗ + N−1/2h|γ0)− LN (η∗) = hT Sη,N (γ0)− 1
2
hT Jη,N (γ0)h + op(1).

Therefore, under H0, we can show that (Zη,N (γ), LN (η∗ + N−1/2h|γ0) − LN (η∗)) converges to

normal distribution with mean (0T ,−0.5σ22)T and covariance matrix
(

J−1
η (γ) Jη(γ)−1Jη(γ, γ0)h

hT Jη(γ, γ0)Jη(γ)−1 σ22

)

where σ22 = hT Jη(γ0)h. By using LeCam third lemma (van der Vaart, 1998, p.90), we can show

that Zη,N (γ) converges to N(Jη(γ)−1Jη(γ, γ0)h, Jη(γ)−1) in distribution. We also infer that the

local alternatives (ηN (h), γ0) are contiguous to the null η∗.

We need to check finite convergence and asymptotic equicontinuity of Zη,N (γ) under the

local alternatives (ηN (h), γ0). The finite convergence can be directly verified by generalizing

the asymptotic distribution of Zη,N (γ) at one point to any finite points. With contiguous local

alternatives, we can use the same methods to establish the asymptotic equicontinuity of Zη,N (γ)

as we did in Theorem 3 of Zhu and Zhang (2005). Combing these two, we can establish that Zη,N

converges weakly to the desirable Gaussian process under the local alternatives (ηN (h), γ0).

Based on Theorems S.1-S.3, we know that under the local alternatives alternatives (ηN (h), γ0),

Zσ,N (·) converges weakly to a Gaussian process GP (·) with marginal mean µσ(γ) = eT
1 Jη(γ)−1Jη(γ, γ0)h

and covariance component Cσ(γ1, γ2) = eT
1 Jη(γ1)−1Jη(γ1, γ2)Jη(γ2)−1e1. We also define

X(γ) =
GP (γ)− µσ(γ)√

eT
1 Jη(γ)−1e1

and µ(γ) =
µσ(γ)√

eT
1 Jη(γ)−1e1

.
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Note that for each given γ, X(γ) follows standard normal, but X(·) is a centered Gaussian process

with correlation component
Cσ(γ1, γ2)√

eT
1 Jη(γ1)−1e1

√
eT

1 Jη(γ2)−1e1

Let χX,α be the critical value of supγ∈Γ max{X(γ), 0} at the level of α. Therefore, the power of

SS under under the local alternatives alternatives (ηN (h), γ0) is close to

P

(
sup
γ∈Γ

max2{X(γ) + µ(γ), 0} > χ2
X,α

)
.

Inspired by Theorem 2 of Fan (1996), we use a grid of Γ, {γi : i = 1, · · · ,m} to approximate

Γ. Thus, we know that

P

(
sup
γ∈Γ

max2{X(γ) + µ(γ), 0} > χ2
X,α

)
≥ P

(
max

1≤i≤m
{X(γi) + µ(γi), 0} > χX,α

)

= 1− P

(
max

1≤i≤m
{X(γi) + µ(γi), 0} ≤ χX,α

)
= 1− P

(
max

1≤i≤m
{X(γi) + µ(γi)} ≤ χX,α

)
.

Based on the above result, we have the following result.

Theorem S.4.The score test statistic SS has the power at the alternatives (ηN (h), γ0) at least

1− P (∩m
i=1Ai) , where Ai denotes event {X(γi) ≤ χX,α − µ(γi)}.

For given grid, we can numerically calculate the probability of event ∩m
i=1Ai. If the grid

includes γ0, we have µ(γ0) = h1/
√

eT
1 Jη(γ0)−1e1. As h1 → ∞, we know that the probability of

{X(γ0) ≤ χX,α − µ(γ0)} converges to zero. So, the power of the score test statistic is close to

one. We have shown how to establish the asymptotic local power for SS . In fact, we can similarly

study the asymptotic local power for SO and SP .

4 Comparisons between the Methods

In the literature, many authors have proposed score test statistics to test homogeneity in the

framework of the GLMMs; see Liang (1987), Commenges and Jacqmin-Gadda (1997), Lin (1997),

Hall and Praestgaard (2001), and Verbeke and Molenberghs (2003), for example. Specifically, we

will highlight the advantages of our method over Lin’s (1997) score test statistic, referred to as

LS, and Hall and Praestgaard’s (2001) projected score test, referred to as PLS.

Our score test statistics cover more models than do LS and PLS. Lin (1997) and Hall and

Praestgaard (2001) are based on a conditional generalized linear mixed model (GLMM) with

E(yi,j |b) = µi,j(b) and g(µi,j(b)) = xT
i,jβ + zT

i,jb,
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where b denotes all possible random effects. In contrast, in Section 1 of Zhu and Zhang (2005),

we assume that the probability density of yi,j depends on ψi,j(bi; β, γ(1)) that ψi,j(bi; β, γ(1)) may

not be a function of the mean of yi,j conditional on the random effects. Moreover, f(zi,j , γ(1))

may depend on an unknown parameter in Sections 1.1 and 1.2. In general, the existing methods

are not applicable in some useful models including random coefficient models, genetic models and

factor analysis models, when a hypothesis testing involves a nuisance parameter which is defined

only under the alternative hypothesis (Davis, 1977; Andrews, 2001). In some application where

there is no nuisance γ(1), we can show that our score test SS reduces to the PLS. In this sense,

SS is a generalization of the existing test.

Both our score test statistics and PLS impose the positive definitive constraint on the variance

components of Σ. We should note, however, that LS is not necessarily locally asymptotically

most stringent as defined in equation (1.3) of Bhat & Nagnur (1963) (even under the GLMM),

because it does not account for the fact that Σ, the covariance matrix of the random effects,

has to be a positive semidefinite matrix. Lin (1997) suggested the asymptotical stringency of

LS, but in remarks following their Theorem 2, Hall and Praestgaard (2001) argued against Lin’s

(1997) suggestion. Through simulations, we have shown that ignoring the constraint of Σ can

lead to the loss of power of detecting heterogeneity (see Tables 1 and 2 in Zhu and Zhang, 2005).

Similar findings have also been reported in Table 3 of Hall and Praestgaard (2001). Previous

result revealed that the likelihood ratio (or score) statistic under the constrained alternative is

uniformly powerful than that for the unconstrained case (Tsai, 1992).

Whether or not we need to explicitly impose the constraint on Σ (or specify the alternative

model) for the score test is an important issue, and it is equivalent to choosing a one-sided or

two-sided test for testing the variance component. Recently, Verbeke and Molenberghs (2003)

suggest that choice between a two-sided/one-sided score test should be tightly linked to a un-

constrained/constrained alternative space, and developing the one-sided score test is statistically

sound and practically meaningful. Interestingly, Lin (1997) also suggested to use a one-sided score

test to test for individual variance component; see the second paragraph on page 316 and the first

paragraph on page 317 in Lin (1997). In contrast, for a general Σ, Lin (1997) considered an

unconstrained parametrization, which may lead to a matrix that does not satisfy the covariance

constraint. In general, the choice between one-sided and two-sided tests should also depend on

the scientific question, the models and the interpretation of the parameters in those models.

Some of previous results about the PLS also appear in doubt. In particular, the PLS may

not follow a mixture of χ2 distributions as claimed in Hall and Praestgarrd (2001). In fact,
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the tangent cone given in Sections 3.2 and 3.3 of Hall and Praestgarrd (2001) are not correct.

Even for a random effect model with unstructured Σ as discussed in Example 1.4, we can show

that the tangent cone is in fact the convex cone given by {Σ : Σ ≥ 0}, where Σ ≥ 0 represents a

positive semidefinite matrix. For simplicity, we consider a 2×2 Σ with three unknown components

(σ11, σ22, σ12) and the parametric space is given by

Θ = {(σ11, σ22, σ12) : σ11 ≥ 0, σ22 ≥ 0, σ11σ22 − σ2
12 ≥ 0}.

The parameter under the null hypothesis is θ0 = (0, 0, 0). Thus, t(Θ − θ0) converges to Θ as

t → ∞. It follows from a result due to Rockafeller and Wets (1998, page 198) that the tangent

cone is Θ itself instead of {θ : σ11 ≥ 0, σ22 ≥ 0} as given in Section 3.2 of Hall and Praestgarrd

(2001). Similar mistake was made in their Section 3.3. It is not even clear what happens if the

Σ has a specific structure in most of applications. In contrast, our theoretical results fill up such

gap, and our resampling method provides an attractive approach to conduct the homogeneity

test.

Following Commenges and Jacqmin-Gadda (1997), we make an additional improvement by

decomposing the score test into two components: SO and SP . We have shown that SO mainly

tests the overdispersion and SP detects the homogeneity. Computationally, it is much easier to

calculate SP than both SS and SO, because the formula for computing SP remains valid if the

unknown estimate has the property of asymptotic normality (see equation (12) in Zhu and Zhang

(2005)). However, if we choose different estimation methods, computations of SS , LS and PLS

need to be modified as a result of changing variances.

We have established the asymptotic null distributions of the score test statistics under weaker

conditions than the existing methods. For instance, our results cover the situations with both

large n and large mi and a general design matrix for mixed models, because we only need to

validate Assumption (C.2); see Section 1 in Zhu and Zhang (2005) for details. However, to obtain

the asymptotic distribution, Lin (1997) requires either large n and bounded mis, or a M-dependent

structure and special design pattern in the mixed effect model.

If the dimension of γ is large, computing the score test can be computational intensive. Zhu

and Zhang (2005) suggest to compute the score test on a grid and to search for the maximum. In

many cases that we have examined, a rough grid work very well. See the examples in Andrews

(2001). Similar finding has been reported in the linkage analysis by Zheng and Chen (2005).

However, we agree that in some cases, choosing a rough grid could lead to loss of power. Further

research along this direction is warranted.
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