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In this paper, we describe ongoing work in the Image Processing and

Analysis Group (IPAG) at Yale University specifically aimed at the

analysis of structural information as represented within magnetic

resonance images (MRI) of the human brain. Specifically, we will

describe our applied mathematical approaches to the segmentation of

cortical and subcortical structure, the analysis of white matter fiber

tracks using diffusion tensor imaging (DTI), and the intersubject

registration of neuroanatomical (aMRI) data sets. Many of our

methods rally around the use of geometric constraints, statistical

(MAP) estimation, and the use of level set evolution strategies. The

analysis of gray matter structure and connecting white matter paths

combined with the ability to bring all information into a common space

via intersubject registration should provide us with a rich set of data to

investigate structure and variation in the human brain in neuro-

psychiatric disorders, as well as provide a basis for current work in the

development of integrated brain function–structure analysis.
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Introduction

Accurate and robust extraction and measurement of neuro-

anatomic structure in the human brain from magnetic resonance

images (MRI) remain a challenging area of research. Within the

Image Processing and Analysis Group (IPAG) at Yale University,

we have been developing mathematical approaches to aspects of

this problem, with focus on using appropriate geometrical and

statistical constraints and decision-making strategies for particular

subproblems in the domain. We have identified four key areas

important to our efforts, each of which requires a unique approach:

(1) the segmentation and measurement of cortical gray matter
1053-8119/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2004.07.027

* Corresponding author. Fax: +1 203 737 7273.

E-mail address: james.duncan@yale.edu (J.S. Duncan).

Available online on ScienceDirect (www.sciencedirect.com.)
structure, (2) the segmentation and measurement of subcortical

gray matter structure, (3) tracking and analysis of white matter

fiber pathways, and (4) structurally focused intersubject image

registration for developing multisubject measures. There are, of

course, other processing issues in the analysis of human brain

images, such as bias field correction, that are not discussed here.

Methods for the analysis of subcortical gray matter, cortical gray

matter, and white matter combined with intersubject registration

techniques provide the foundation for detailed investigation of

brain structure in neuropsychiatric disorders. These structural

methods also provide the basis for our ongoing research of

integrated brain function–structure analysis techniques. In this

section, we present related work in each area and describe our own

efforts in the ensuing sections.

Cortical image segmentation

Work in segmenting the cortex from three-dimensional MR

images has fallen into two broad categories: voxel classification

and deformable models. Classifying gray and white matter by

voxel intensity can incorporate voxel continuity or homogeneity

using, for example, Markov random fields (Geman and Geman,

1984; Leahy et al., 1991) to model probabilistic constraints on the

image or fuzzy logic (Barra and Boire, 2001). The approach of

Wells et al. (1994) estimates tissue classes (gray matter, white

matter, cerebrospinal fluid (CSF)) while simultaneously estimat-

ing the bias field using an expectation-maximization (EM)

strategy. Cline et al. (1990) use multispectral voxel classification

in conjunction with connectivity to segment the brain into tissue

types. Material mixture models (Liang et al., 1992) have also

been used. Region-based methods of this type typically require

further processing to group segmented regions into coherent

structures.

Snakes or active contour models (ACMs) (Kass et al., 1988) are

energy minimizing parametric contours with smoothness con-

straints. Unlike level set implementations (Osher and Paragios,

2003; Osher and Sethian, 1988), the direct implementation of this

energy model is not capable of handling topological changes of the

evolving contour without explicit discrete model parameter
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manipulations. Deformable models using level set methods

(Malladi et al., 1995, 1996; Sethian, 1996) analyze and compute

interface motion representing the boundary as a propagating

wavefront. Level set methods are quite powerful and have useful

properties of topologic flexibility. They need to be carefully

constrained to avoid stopping short or flowing too freely beyond

the desired boundaries. Methods have been devised to preserve

topology when necessary (Han et al., 2003). See below for further

discussion of level set methods.

Deformable models specifically tailored for segmenting the

cortical gray matter have been devised. Davatzikos and Prince

(1995) proposed an active contour algorithm for determining the

spine of a ribbon modeling the outer cortex. Xu et al. (1998) use

gradient vector flow fields in conjunction with tissue membership

to control the deformation of active contour models for finding the

central gray matter layer. Teo et al. (1997) designed an approach

in which white matter and CSF regions were first segmented,

followed by connectivity analysis and a constrained deformation

from the white matter boundary. MacDonald et al. (1998)

simultaneously deform multiple surfaces to segment the brain

using multiple cost function constraint terms. This approach takes

advantage of the information of the interrelation between the

surfaces of interest, but is computationally expensive with many

parameters to tune. Kapur et al. (1996) also use a snake approach

in conjunction with EM segmentation and mathematical morphol-

ogy. Unlike subcortical structure (discussed below), the cortex is

highly variable and thus generally not well suited for specific prior

shape models (Staib et al., 2000) unless limited to specific regions

of the cortex; more generic constraints are necessary. In work we

describe in more detail in the next section Zeng et al. (1999a,b)

developed a coupled level set algorithm to segment the cortex

using a geometric constraint based on the consistency of cortical

thickness.

Once the cortical layers are segmented, a variety of useful

neuroanatomical measurement parameters can be derived. Exam-

ples of these include sulcal depth, cortical thickness, or cortical

shape (e.g., Vaillant and Davatzikos, 1997; Zeng et al., 1998). In

the work of Vaillant and Davatzikos (1997), special bribbonQ
operators were developed to characterize the depth of the sulcal

grooves. A related example is the automated extraction of sulcal

and gyral curves using crest lines from the differential geometric

properties of a segmented brain surface (Thirion, 1996). The

extraction of shape features from a segmented anatomical object in

this way may be useful not only for measurement but also feature-

based registration as well.

Subcortical structure segmentation

Statistical models can be powerful tools to directly capture the

variability of structures being modeled. Such techniques are a

necessity for the segmentation of subcortical structure that has

consistent shape but is poorly defined by image features. Atlas

registration for the purposes of segmentation (Collins et al., 1995;

Declerck et al., 1995) is one way of using prior shape information.

Collins et al. (1992), for example, segment the brain using an

elastic registration to an average brain, based on a hierarchical local

correlation. The average brain provides strong prior information

about the expected image data and can be used to form

probabilistic brain atlases (Collins et al., 1992; Thompson et al.,

1997). Specific models for prior shape have been used successfully

in our lab (Staib and Duncan, 1992, 1996; Wang and Staib, 1998;
Yang et al., 2003, 2004a) and by other groups (Cootes et al., 1993;

Szekély et al., 1995) for segmentation. The statistics of a sample of

images can be used to guide the deformation in a way governed by

the measured variation of individuals. Region-based information

can also be combined with prior models (Chakraborty and Duncan,

1999; Chakraborty et al., 1996; Staib et al., 1997) to enhance

robustness.

Level set methods and new energy terms have been reported to

increase the capture range of deformable models and incorporate

prior shape information. Chan and Vese (2001) proposed a level set

method that can detect objects whose boundaries are not

necessarily defined by gray level gradients. Leventon et al.

(2000) extended Caselles et al.’s (1997) geodesic active contours

by incorporating shape information into the evolution process. In

our work, described in this paper, we adopt a level set approach

using prior information of the shape of an object and its neighbors

(Yang et al., 2003, 2004a). We note that Tsai et al. (2001, 2003)

describe a similar approach that uses a global multishape model.

We feel that our approach is more flexible in the modeling of joint

priors and accommodates situations with limited interobject

information and variation in contrast and discernibility among

the objects.

Typically, the accurate and meaningful measurement of normal

and abnormal subcortical structure includes volume, surface area,

as well as shape measures. These analysis methods require

processing beyond the initial steps of segmentation or registration

of data sets (Gerig et al., 2001).

Analysis of white matter fiber tracks using diffusion tensor imaging

While the basic anatomy of white matter tracts in the human

brain is generally known from anatomical dissection, much is

unknown about its interconnections and its natural variations. The

characterization and quantitative measurement of its connections is

of fundamental importance in understanding brain function.

Diffusion tensor magnetic resonance imaging (DT-MRI) has

emerged as a noninvasive imaging modality capable of providing

this information in vivo, enabling the detailed study of white matter

structure in the human brain.

Brain white matter, because of the long and fibrous nature of

axons, exhibits higher restriction to water diffusion across the

fibers than along them. This directional variation is measured in

diffusivity rates and can be captured by diffusion-weighted MRI.

By acquiring diffusion-weighted data in at least six non-collinear

directions, it is possible to estimate a 3 � 3 symmetric matrix (i.e.,

diffusion tensor) that characterizes diffusion in anisotropic systems

(Basser and Pierpaoli, 1996). After tensor diagonalization, the

eigenvector corresponding to the largest eigenvalue is considered

to point along the direction of a fiber bundle.

Many connectivity studies relying on the straightforward

integration of the principal tensor eigenvector have been described

in the literature (Mori and van Zijl, 2002). Their reliability,

however, is limited by acquisition noise and partial voluming due

to fiber tracts that cross, branch, and merge. To account for these

variations, level set methods (Osher and Fedkiw, 2003) have been

employed (e.g., Lenglet et al., 2003; O’Donnell et al., 2002;

Parker et al., 2002). These techniques model the evolution of an

advancing front through the white matter tracts by following the

local directionality provided by the diffusion tensor field. Such

methods have been shown to be more robust to noise and

singularities than classical streamlining methods. A tractography
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technique based on the fast marching method (FMM) was used by

Parker et al. (2002). A front was evolved with a speed propor-

tional to the collinearity between the front normal and the

principal tensor eigenvector. A discrete approximation of front

direction had to be used to drive the evolution through the

eigenvector field, because the original FMM cannot handle

propagation in oriented domains. Others have posed the con-

nectivity problem in a Riemannian framework (e.g., Lenglet et al.,

2003; O’Donnell et al., 2002).

As will be described later, in our group, we have developed a

novel wavefront propagation method for estimating the connec-

tivity in the white matter of the brain using DT-MRI.

Image registration or matching

To gain statistical power for comparing groups of subjects in

either structural or functional brain image analysis, it can be useful

to pool image information from many subjects. In these cases, a

key step is the formation of multisubject composite activation maps

where each subject is nonrigidly mapped to a common coordinate

space. Group characterization using composite activation or

structural variation maps can then be computed on a voxel-wise

basis. However, nonrigid registration of brain images is a difficult

task.

Previously, Talairach-type methods (Talairach and Tournoux,

1988) have been used but the limitations of these methods are well

known (Mazziotta et al., 1995; Toga and Thompson, 1999). True

nonrigid registration is necessary to bring the subjects into a

common space. There have been many approaches recently to

nonrigid registration, with a particular emphasis on applications to

brain imaging (see the recent special journal issues Goshtasby et

al., 2003; Pluim and Fitzpatrick, 2003). Most commonly, nonrigid

registration methods use image intensities to compute the trans-

formation (Christensen et al., 1996; Friston et al., 1995; Rueckert

et al., 1999). The high anatomic variability of the cortex can often

result in intensity based methods yielding inaccurate results due to

local minima, as was recently demonstrated (Hellier et al., 2003).

These errors are of particular concern in functional MRI (fMRI)

analysis for evaluating cortical activations.

Feature-based methods have been developed to overcome the

limitations of gray-level methods (Collins et al., 1998; Corouge et

al., 2001; Davatzikos, 1997). None of these methods, however, is

able to handle large variations in sulcal anatomy, as well as

irregular sulcal branching and discontinuity. In our work, which

will be described in a later section, we extend the robust point

matching (RPM) algorithm (Chui et al., 2003) to better address

brain registration. We use a point matching strategy to register

structurally salient regions as part of our strategy to generate higher

resolution composite functional maps tailored to specific regions.
Coupled level sets for cortical segmentation

We have developed a coupled surfaces approach (Zeng et al.,

1999a,b) to segment cortical structure. In this work, a local gray

level operator designed to obtain the likelihood of each voxel lying

on the outer and inner cortical surfaces, respectively, is used instead

of simple gradient information. A gradient operator will respond to

all gray level transitions at a given scale. By focusing on the gray-

level transitions of interest, we remove extraneous information that

could impede the propagation of the level sets. Key to the approach
is that the surfaces representing the gray matter–white matter

cortical interface (inner) and gray–CSF interface (outer) are found

in an integrated manner by evolving two coupled level sets. Thus,

starting from inside the inner bounding surface (gray–white

boundary), with an offset in between, the interfaces propagate

along the normal direction stopping at the desired location, while

maintaining a distance between them.

The basic strategy

Embedding each surface as the zero level set in its own level

function W, we have two equations:

Wint þ Fin jjWinj ¼ 0

Woutt þ Fout jjWoutj ¼ 0 ð1Þ

where Fin and Fout are speed functions of the surface normal,

image-derived information and distance between the two surfaces.

The coupling is embedded in the design of Fin and Fout. Where the

distance between the two surfaces is within the normal range for

cortical thickness, the two surfaces propagate according to the

image-based information; where the distance is out of the normal

range, the distance constrains the propagation. The level set

implementation provides an easy and natural way to evaluate the

distance between the two surfaces because the value of the level

function at any point is simply the distance from this point to the

current front, which as in Sethian (1996) is calculated as the

shortest distance from this point to the points on the front. In our

case of two moving surfaces, for any point on the inner moving

surface, the distance to the outer moving surface is the value Wout

at this point and vice versa for the point on the outer moving

surface, that is, its distance is Win.

Experiments and results

This approach has been tested on simulated data (with known

underlying segmentations) created from the Montreal Neuro-

logical Institute’s MR simulator (Brainweb) (using different noise

conditions and 1 mm3 voxels) with very encouraging results: true

positive rates greater than 92% and false positive rates less than

6% for segmentation of cortical gray matter (Zeng et al.,

1999a,b). In addition, as reported in part in Zeng et al.

(1999a,b), we have run our coupled-surface cortical layer

segmentation strategy on 20 normal brains and compared our

results to known manual segmentations from the Internet Brain

Segmentation Repository (IBSR) (about 1 � 1 � 3 mm3 voxels).

In this work, we were able to illustrate that our approach

outperformed six other automated algorithms in the literature in

terms of the average overlap with pooled-manual-expert segmen-

tations (with 1.0 perfect and 0.0 the worst, our approach on

cortical gray matter achieved 0.701, and the next best algorithm,

0.564). In addition, we have run this approach on over 60

subjects acquired on our 1.5-T GE Signa system at Yale (SPGR

acquisition, (1.2 mm)3 voxels). A typical result from these data is

shown in Figs. 1 and 2. For one group of 14 human subjects,

there was 87% true positive findings for each subject in

comparison to manual tracings of the frontal cortical gray matter

layer, although with false positives in the 20% range. Errors can

occur where the outer cortical surface is obscured, such as due to

susceptibility artifacts in the orbital frontal cortex.



Fig. 1. Results of cortical gray matter segmentation using coupled level sets. (a) Initialization of pairs of concentric spheres in three-dimensional MR brain

images; (b) intermediate step; (c) final result of the outer (top) and inner (bottom) cortical surfaces of the frontal lobe.
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This approach provided the basis for further processing of

sulcal features (bribbonsQ) to quantify sulcal depth and shape (Zeng

et al., 1999a,b) (see Fig. 3).
Neighbor-constrained subcortical segmentation

We have developed a novel method for the segmentation of

multiple objects from three-dimensional medical images using

interobject constraints that we have employed as our subcortical

structure segmentation strategy (Yang and Duncan, 2003; Yang et
Fig. 2. Single vs. coupled surfaces approach. Top: surfaces resulting from

finding the inner and outer cortex separately, shown on a sagittal slice

through the three-dimensional result. Bottom: results from the coupled

surfaces approach run on original three-dimensional data overlaid on a

sagittal slice of the expert tracing result. The outer cortical surface resulting

from the coupled algorithm nicely fits the boundary from the expert tracing.

Coupling prevents the inner surface from collapsing into CSF (*1) and the

outer surface from penetrating nonbrain tissue (*2).
al., 2002, 2003, 2004a). Our method is motivated by the

observation that neighboring structures have consistent locations

and shapes that provide configurations and context that aid in

segmentation. In this effort, we have defined a maximum a

posteriori (MAP) estimation framework using the constraining

information provided by neighboring objects to segment several

objects simultaneously. Within the MAP strategy, we assume that

the likelihood (data adherence) term and the prior term are

Gaussian. The segmented surface can be found using discrete

approximations to level set functions and computing the associated

Euler–Lagrange equations. The contours evolve both according to

prior information related to the shape of the object of interest and

relational shape and position information, as well as the image gray

level information. We have recently compared (Yang et al., 2004b)

these level-set-based shape models with point-based models and

have been able to show that the priors formed from either method

are not statistically different for the test shapes examined, although

the level set approach can accommodate varying topology, a notion

that we intend to ultimately exploit in our work. These methods are

useful in situations where there is limited interobject information as

opposed to robust global atlases.

The MAP framework

Relating the development from Yang et al. (2002), but recasting

the notation slightly, we describe our approach as follows.

Consider a structural image represented as a random field I that

has i = 1,. . .,M structures of interest. Next assume that the

boundary of each object i can be embedded as the zero level set of

a three-dimensional (Euclidean) distance function Wi. These

distance functions can be sampled yielding discrete three-dimen-

sional versions for each structure of interest Si, i = 1,. . .,M.

Furthermore, we can model the distributions of shape, size, and

position of any structure i by assuming Si to be a random field (rf)

and then measuring instances of each rf over several subjects,

thereby constructing the probability density functions (pdfs) p(Si).

Each outcome of Si is represented by an N3-long column

vector that is a row-by-row stacking of the matrix found by

discretely sampling the corresponding level set distance function



Fig. 3. Sulcal surfaces (bribbonsQ) shown (a) with cut-away view of brain and (b) on outer cortical rendering.
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Wi in the image space. We have shown (Yang and Duncan, 2003)

that the level set distance function of any one object Si that

depends on its neighbors can be estimated using the following

MAP framework:

ŜiSi ¼ arg max
Si

p S1; S2;: : :; Si;: : :; SM jIð Þ

¼ arg max
Si

p I jS1; S2;: : :; Si;: : :; SM Þp S1; S2;: : :; Si;: : :; SM Þ;ðð

ð2Þ

for i = 1, 2,. . .,M and where p(IjS1, S2,. . .,SM) is the probability

of producing an image I given S1, S2,. . .,SM. In three-dimen-

sional, assuming gray level homogeneity within each object, we

implemented the following image-data term (adapted from Chan

and Vese, 2001):

p I jS1; S2;: : :; SMð Þ

¼
YM
i ¼ 1

Y
x;y;zð Þinside Sið Þ

e
� I x;y;zð Þ�c1ið Þ2

2r2
1i

8<
:

Y
x;y;zð Þoutside Sið Þ;inside Xið Þ

e
� I x;y;zð Þ�c2ið Þ2

2r2
2i

9=
; ð3Þ

where c1i and r1i are the average and variance of I inside the

zero level set of Si. c2i and r2i are the average and variance of I

outside the zero level set of Si but within a domain Xi that

contains Si. In our work, we typically set the domain Xi to be

where the level set distance is no more than the average diameter

of the object of interest.

Furthermore, p(S1,S2,. . .,SM) is the joint density function of all

the M objects. It contains neighbor prior information such as the

relative position and shape among the objects. A variety of

relational assumptions can be used here, but in situations where the

neighbors are sometimes difficult to locate, we initially assumed

that each object is related to the key object (denoted object k)

independently. In this case, the joint density function can be

simplified to:

p S1; S2;: : :; SMð Þ ¼ p SM jSkð Þ: : :p S2jSkð Þp Skð Þ
¼ p DM ;k

� 	
p DM � 1;k

� 	
: : :p D2;k

� 	
p Skð Þ ð4Þ

where Djk = p(SjjSk) = Sj � Sk is the difference between the

level sets of object j and k. The process of defining the joint
density function p(S1,S2,. . .,SM) is simplified to building only the

self prior p(Sk) and the local neighbor priors p(Djk), j,k =

1,2,. . .,M; j p k.

Consider a training set of n aligned images, with M objects

or structures in each image. As described above, each object i

in the training set is embedded as the zero level set of a higher

dimensional level set Wi whose discretized distance function is

the N3 column vector Si. As in our previous efforts in the

estimation of the segmentation of a single object in an image

(e.g., Chakraborty and Duncan, 1999; Staib and Duncan, 1992),

we deem it important to first be able to model the range of

plausible object self-shape information. Here, we assume that

the shapes vary smoothly in a relatively compact portion of a

high dimensional manifold such that we can model their

variation using principal component analysis (PCA). Thus, the

pdf of the level function of object i can be computed using

PCA similar to what is done for point distribution models

(Cootes et al., 1993). An estimate of Si can be represented by

the mean level set S̄i, p principal components Ui, and a p

dimensional vector of coefficients (where p b n), ai: S̃i = Ui ai + S̄i.

Under the assumption of a Gaussian distribution of shape

represented by ai, we can compute the probability of object i:

p(ai) = N (0,S).
The level set representation of shape provides tolerance to

slight misalignment of object shape in an attempt to avoid

having to solve the general correspondence problem. In practice,

the variations captured by the principal components in the level

set distribution model (Ui) in this paper are based on a rigid

alignment of the training data and may contain undesired

residuals due to misalignment. We are looking to improve the

alignment method to reduce such residuals and undesired

topology changes.

Due to the assumptions in our initial work above, that is, that

each neighbor is independently related to the object of interest,

we can use the difference between the two level sets Sj � Sk as

the representation of the neighbor difference Djk, j ¼ 1; 2; 3;: : :;
M shown above where this implicitly represents P(SjjSk. We

again assume that the distribution of Djk’s for any key object k

form a compact portion of a high dimensional space such that the

distribution can be parameterized using a linear PCA formulation.

Thus, the range of neighbor-to-object variation for each object

can be found from the mean neighbor difference D̄jk and p

principal components Pjk and a p dimensional vector of

coefficients, b jk:D̃ jk = Pjk bjk + D̄jk. We assume the neighbor

difference Djk to be Gaussian distributed over bjk: p(bjk) =

N (0,Ljk).
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Using the techniques described in Chan and Vese (2001), we

compute the associated Euler–Lagrange equation for each

unknown level set function (written here for convenience in terms

of the continuous functions Wk):

BWk

Bt
¼ de Wkð Þ lk div

jWk

jjWk j


 ��
þ mk þ k1k jI � c1k j2

� k2k jI � c2k j2

�

XM
i ¼ 1;i p k

xik g PikL
�1
ik PT

ik G Wi � Wkð Þ½
�

� D¯ i;k 	
�
� xkk g UkS�1UT

k G Ck �C¯ k

� 	� �� �
ð5Þ

To simplify the complexity of the segmentation system, we

generally choose the parameters in our experiments as follows:

xik = xkk = xk, k1k = k2k = kk = 1 � xk, lk = 0.00005 �
2552, mk = 0 (Chan and Vese, 2001). This leaves us only one

free parameter (xk) to balance the influence of two terms: the

image data term and the neighbor prior term for each object. G

denotes the conversion from a matrix to a vector by column

scanning. g is the inverse of G. The trade-off between neighbor

prior and image information depends on how much faith one

has in the neighbor prior model and the image-derived

information for a given application. We set these parameters

empirically given the image quality and the neighbor prior

information.

Experiments and results

In extensive testing using simulated image data, we have found

that using the shape prior alone reduced the final error in the

presence of varying noise and surface seed initialization, but the

addition of the neighbor prior always reduced the segmentation

errors limiting them to a very small range even for large noise

variance and for varying seed points (Yang et al., 2003, 2004a).

To illustrate the utility of our neighbor-constrained approach to

segment a particular neuroanatomical structure of interest to us, we

have applied it to the segmentation of the left and right amygdalae

and the left and right hippocampi, structures of particular interest in

autism. Note that here, contralateral structures provide context due

to the strong bilateral symmetry in the brain. In this work, we

compared the results of our fully automated, neighbor-constrained

segmentations to slice-by-slice manual tracings of the same structure

using a set ofN = 12 rigidly prealigned normal male subjects with an
Fig. 4. Stages in the simultaneous segmentation of both the left and right amygdal

Included with permission. kk = 0.1, xk = 0.9, k = 1, 2, 3, 4.
age range of 14–43. Note that even a relatively small sample

provides a valuable constraint for images of subjects in the same

population group. These three-dimensional anatomical MR images

have (1.2 mm)3 resolution. Prior distributions for the automated

algorithm were created for each test subject using a leave-one-out

approach, where both the self-shape–size priors on any one object

(e.g., the left amygdala) and neighboring-objects (e.g., right

amygdala, left–right hippocampi) priors are found from manual

tracings of these structures on the other 11 test images. The initial

training data were found from 12 three-dimensional MRI structural

T1-weighted images. Thus, using the any one object to key on, we

assumed it was independently related to the other three structures.

Using PCA, we built the object self shape–size model of each object

and the neighbor difference models between it and the other three

structures. In this initial work, we used additional regularizing terms

in the formulation of the objective function (different for each

object), one to enforce smooth boundaries and one a scalar term

related to the approximate volume of the object.

One of the results of running our neighbor-constrained MAP

algorithm on a anatomical MR image using manually traced priors

is shown in Fig. 4. We report the errors of the application of this

algorithm on a set of 12 subjects in Table 1. The mean and standard

deviation for each structure over the 12 subjects are also shown in

Table 1. Virtually all the boundary points lie within 1 or 2 mm of

the manual segmentation. Note that we have begun to extend this

approach with the inclusion of coupled intensity-appearance–shape

priors (Yang and Duncan, 2003).
Tracking white matter fiber pathways from DTI

As part of our overall approach to structural brain analysis, we

have been actively investigating the use of wavefront-level set-

based strategies to estimate white matter fiber connectivity in the

human brain (Jackowski et al., 2004). In this work, we first employ

an anisotropic version of the static Hamilton–Jacobi (HJ) equation,

and solve it by a sweeping method to obtain accurate front arrival

times and determine connectivity. We briefly describe each part of

this strategy below and present some early results as well.

Overview of approach

White matter connectivity can be viewed as an instance of the

minimum-cost path problem in an oriented-weighed domain. One
ae and hippocampi from a T1-weighted three-dimensional MR brain image.



Table 1

Average distance between the computed and the manually traced boundaries of the left and right amygdala and hippocampus for 12 subjects (in mm)

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 Mean Std.

l. amygdala 1.6 1.2 1.3 0.9 1.5 1.5 1.4 1.3 1.0 1.5 1.2 1.4 1.32 0.21

r. amygdala 1.4 1.4 1.5 1.1 1.1 1.2 1.6 1.5 1.1 1.3 1.2 1.4 1.32 0.17

l. hippocampus 1.8 1.9 1.8 1.7 1.9 2.1 1.9 2.0 1.6 2.3 1.9 1.7 1.88 0.19

r. hippocampus 2.1 2.2 1.7 1.9 1.7 1.9 2.0 1.7 1.8 2.0 2.1 1.9 1.92 0.17

Std.: standard deviation.
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would like to find a fiber path that minimizes the cumulative travel

cost from a starting point A to some destination point B in the

white matter. Because of the directionality of the tensor field, the

cost function s or its reciprocal speed F = 1/s, is anisotropic, as it is
a function of both position P(s) and direction PV(s). The minimum

cumulative cost at x is defined as:

T xð Þ ¼ min
P

Z L

0

s P sð Þ;PV sð Þð Þds ð6Þ

where L is pathway length, and the starting and ending points are

given by P(0) = A and P(L) = x. A solution to Eq. (6) also satisfies

the wave propagation equation:

jjjT jj ¼ s x;jTð Þ ð7Þ

which describes a wavefront propagating with speed 1/s. In

continuous space, solutions to Eq. (7) are given by the Hamilton–

Jacobi (HJ) equations. While a classical solution to Eq. (7) may not

exist, the viscosity solution is commonly sought using numerical

approximations (Kao et al., 2002, 2003; Sethian and Vladimirsky,

2001).

Once the evolution Eq. (7) is solved for all points in the

domain, one can use the resulting arrival times and find a solution

for Eq. (6). The minimum-cost path between point A and an

arbitrary point B in the white matter then becomes a solution to:

dX

dt
¼ �jT ð8Þ

given X(0) = B. This optimal path can be constructed by

integrating Eq. (8) at point B back to the seed point A using

standard techniques.

To trace connectivity in the white matter, we use the entire

tensor in our propagation model to avoid the possible misclassi-

fication of the principal eigenvector in oblate tensor regions, which

may lead to wrong assignment of front arrival times. We design our

wavefront to evolve from a seed point A, T(A) = 0, at a speed

governed by a function of the diffusivity magnitude d in the front

normal direction nY:

jjjT jj F d nYð Þð Þ ¼ 1; ð9Þ

where F is designed to be large for large diffusivity and to slow the

front rapidly when the diffusivity decreases. In addition, F

accounts for the local anisotropy to stop the front from advancing

into areas such as the ventricles or gray matter. In this way, we let

the speed vary locally according to the tensor profile, descriptive of

the underlying tissue structure.

The propagation equation belongs to a family of static

Hamilton–Jacobi equations described by:

H x;jTð Þ ¼ V xð Þ; T xð Þ ¼ q xð Þ xaX ð10Þ

where X is the domain in R
3, V(x) = 1 and q(x) is a function

prescribing boundary condition values T(A) = q(A) = 0. While
the propagation equation can be reformulated as a time-

dependent HJ equation and solved by recovering each zero-

level set, it is more convenient and less computationally

expensive to model it as a static problem and determine arrival

times instead.

Hamiltonians such as these cannot be correctly solved by

isotropic propagation methods. However, carefully crafted methods

have been devised (Kao et al., 2002, 2003; Sethian and

Vladimirsky, 2001) to construct accurate solutions for anisotropic

equations. We use a Lax–Friedrichs (LF) discretization of our

Hamiltonian and employ a nonlinear Gauss–Seidel updating

scheme (Kao et al., 2002) to solve the propagation equation. No

minimization is required when updating an arrival time, and thus it

is very easy to implement. Details on the LF sweeping (LFS)

scheme can be found in Kao et al. (2003).

Experiments and results

Fig. 5a shows a synthetic model consisting of two fiber

bundles, A and B, oriented along helical paths that cross each

other at their middle section. The background was filled with

nearly isotropic tensors and diffusion-weighted images were

created with added Gaussian noise. The signal-to-noise ratio is

roughly half what is encountered in real diffusion MR scans,

considering a single acquisition average. Fig. 5b depicts a close-

up of the fiber-crossing region where oblate tensors resulting

from the crossing are found. Streamlining techniques fail in

such regions because of the oblate tensors in the fiber-crossing

region. Using our method, we reconstructed the pathways

properly without deviating the fiber trajectories. One of the

resulting tensor images is shown in Fig. 5c. A seed point A1

was fixed at the bottom of bundle A (Fig. 5c) and our

wavefront (c = 2) was propagated using the LFS method on the

tensor images. Points A2, B1, and B2 were fixed at the extreme

ends of each bundle (Fig. 5c) and corresponding pathways

A2A1, B1A1, and B2A1 were traced on jT images using a

Runge–Kutta 4th-order integration. Fig. 5d illustrates the

resulting connectivity pathways embedded in the arrival time

images and corresponding arrival isocurves (up to time 100).

Darker areas in the maps show earlier arrivals. The fiber-

crossing region did not prevent pathways connecting different

branches or the same branch (A2A1) from being recovered. To

assess the variability of the extracted paths, we propagated the

same front in the diffusion tensor image without added noise

and then computed the mean distance between corresponding

pathways. The mean distance for all paths under noise r2 =

0.05 was 1.06 voxels; for r2 = 0.15 was 1.22 voxels; and for

r2 = 0.20 was 1.65 voxels. At the intersection, the maximum

distance to the original pathway under noise variance r2 = 0.20

was an average of 1.34 pixels. The largest errors, an average of

2.67 pixels, occurred not at the intersection itself, but rather in



Fig. 5. (a) Synthetic data set containing two fiber bundles with main

diffusivities {9, 2, 1} mm2/s. (b) Close-up of the fiber-crossing and

resulting oblate tensors. (c) Example tensor model with additive Gaussian

noise (0.15). (d) Corresponding times of arrival and connectivity pathways.
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the remaining trajectories after propagating through the crossing.

We attribute this deviation to the added noise in the region of

the intersection, thereby altering the original trajectory. None-

theless, the recovered pathways remained close to their original

trajectories in spite of the added noise. Variations in the seed

point location (A1) result in different pathway solutions,

depending on the local tensor field directionality.
Fig. 6. (a) Level sets depicting arrival times between 0 and 500 after propagation u

the splenium. Points leaving the genu of the corpus callosum (CC) connect to the

lobe connect via the superior longitudinal fasciculi (SL), consistent with known a
We applied our method on real human data, fixing the seed

point in the splenium of the corpus callosum (Fig. 6a). We then

propagated our wavefront throughout the image using the LFS

method. Fig. 6a depicts the resulting arrival time level sets between

0 and 500. All pathways between points on the white matter

boundary and the point in the splenium were traced using the map

of arrival times. Fig. 6b shows the resulting 20,817 pathways,

colored by the fractional anisotropy at each point, where brighter

points represent higher anisotropy. Thus, we can observe the main

routes of connection between various brain regions and the

splenium. Not all connections shown in Fig. 6 represent true

anatomical pathways. In future work, we will incorporate a metric

to rate their anatomical likelihood.
Nonrigid brain registration using extended robust point

matching for composite multisubject analysis

We have developed a method that builds on and extends the

robust point matching framework (RPM) previously developed by

our group (Chui et al., 2001, 2003). RPM was originally presented

in the context of joint estimation of rigid transformations (affine

and piecewise-affine) and correspondences using bsoftassignQ and
deterministic annealing (Rangarajan et al., 1997a,b). Developed in

an optimization framework, this previous work models point

matching as a linear assignment-least squares problem. The

algorithm estimates fuzzy correspondences while enforcing the

one-to-one constraint. A deterministic annealing optimization

framework gradually reduces the fuzziness of the correspondence

in a controlled manner. Progressively refined transformation

parameters are estimated by the resulting alternating update

algorithm. The framework was first extended to the nonlinear

registration case by Chui and Rangarajan (2000) and was evaluated

on a synthetic data set as has been reported (Chui et al., 2001,

2003). The algorithm was shown to map landmarks to an accuracy

of the order of 1–2.5 mm on average, which is superior to the

typical performance of intensity based methods in the cortex

(Hellier et al., 2003). However, this algorithm was hampered by (a)

the limitation to a relatively small number of points and (b) the lack

of outlier rejection, as a result of a clustering scheme used to

increase the actual number of points.
sing the LFS method. (b) Close-up view of the main pathways connecting to

splenium via the cingulum (CI) pathways, and points in the superior frontal

natomy.



Fig. 7. Composite Jacobian map derived using extended RPM applied to 27

Williams subjects and 20 controls showing significance ( P b 0.001).

Extended RPM using the brain surface and the four sulci indicated

significant structural differences in the region between the central sulci

replicating a previously observed structural difference (Color scale: Purple/

Blue: Williams N Controls).
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As we have reported (Papademetris et al., 2003), we have

extended the robust point matching algorithm to address both of

these issues. We explicitly use the measure of boutliernessQ
estimated in the correspondence stage of this algorithm as a

weight in the transformation estimation step to account for outliers

in the template. Advanced numerical and graphics techniques such

as sparse matrices and proper search strategies are also employed

to enable the algorithm to use many points, which is important in

the context of nonrigid brain registration.

Extended RPM: an overview

We present here a modified form of the standard RPM

methodology (Chui et al., 2003). The registration procedure

consists of two alternative steps: (i) the correspondence estimation

step and (ii) the transformation estimation step. In the following

discussion, we label the reference point set as X and the transform

point set as Y. The goal of the registration is to estimate the

transformation G : X ! Y . We label Gk the estimate of G at the

end of iteration k. G0 is the starting transformation that can be the

identity transformation. The whole process is embedded in a

deterministic annealing framework, where the temperature T is

progressively lowered, gradually decreasing the fuzziness of the

correspondence and the smoothness of the transformation.

Correspondence estimation

Given the point sets X and Y, we estimate the match matrix M,

where Mij is the distance metric between points Gk(Xi) and Yj. The

standard distance metric is defined as:

Mij ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pT 2

p e
�jGk Xi � Yjð Þj2

2T2 ð11Þ

8i :
X
j

Mij þ Ci ¼ 1 ð12Þ

8i :
X
i

Mij þ Rj ¼ 1 ð13Þ

where jXi � Yjj is the Euclidean distance between points Xi and Yj,

and T is the temperature term that controls the fuzziness of the

correspondence. Further, we restrict the correspondences to

resemble a linear assignment problem—this requires that the rows

and columns of M must sum to 1. To handle outliers, we introduce

an outlier column C and an outlier row R, where Ci is a measure of

the degree of boutliernessQ of a point in the reference point set Xi

and Rj is the same for a point in the transform point set Yj. C and R

are initialized with constant values and then, using an iterative

procedure (Rangarajan et al., 1997a,b), the values of M, C, and R

are normalized to satisfy Eqs. (12) and (13).

Once the normalization is completed, we can compute the

corresponding points as follows. Let Vi be the corresponding point

to Xi and wi, the confidence in the match. Then Vi is defined as a

normalized weighed sum of the points Yj where the weights are the

elements of the match matrix M.

wi ¼
X
j

Mij

 !
¼ 1� Ci; and Vi ¼

1

wi

X
j

MijYj ð14Þ

Note that a point that has a high value in the outlier column C

will have low confidence and vice versa.
Transformation estimation

The transformation is estimated simply using a regularized

weighted least squares fit between Xi and Vi as follows:

Gk ¼ arg min

g

X
i

wi g XiÞ � Við Þð 2 þ f Tð ÞS gð Þ ð15Þ

where S gð Þ is a regularization functional (e.g., a bending energy

function) weighted by a function of the temperature f(T). This last

weighting term is used to decrease the regularization as we

approach convergence.

Registration accuracy on a group of normal controls

As an initial evaluation of the methodology, we tested it on a set

of magnetic resonance three-dimensional SPGR images, with

isotropic (1.2 mm)3 voxels, acquired using a GE 1.5-T scanner

on a sample of 39 normal male controls (age 23.5F 10.2, IQ in the

average range). We segmented the gray matter using our coupled

level set algorithm (Zeng et al., 1999a,b) that was described earlier.

Next, the gray matter ribbon surrounding the fusiform gyri was

isolated using manual tracing and points from the gray matter

surfaces were extracted and used as an input to our extended RPM

algorithm (Papademetris et al., 2003), together with points from the

cortical surfaces. Nonrigid registration using RPM to a separate

normal template brain image yielded a transformation para-

meterized as a dense displacement field. An analysis of the

registration results showed that the average errors were (a) 1.1 mm

for points on the outer cortical surface and (b) 1.4 mm for points on

the fusiform surfaces. These errors were determined by computing

the distance from points on the warped reference surface to the

corresponding points on the target surface, thus ensuring one-to-

one correspondences.

Tensor-based morphometric study of Williams syndrome

To illustrate the utility of the approach, we performed a tensor-

based morphometric study of the structural differences between

normal controls and Williams syndrome subjects. Jackowski and
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Schultz (2003, in press) previously reported that the distances

between the ends of the central sulci and the midline were larger in

Williams patients compared to normal controls once total brain size

was factored out. In collaboration with the authors of this study, we

attempted to reproduce this finding using our point-based

registration method.

In this work, three-dimensional SPGR magnetic resonance

images with isotropic (1.2 mm)3 voxels were acquired using a GE

1.5-T scanner on a sample of 27 Williams syndrome subjects and

20 controls (groups were matched in terms of gender and age). We

manually traced the superior frontal sulci and the central sulci (as

reported in Jackowski and Schultz, 2003, in press) that were used

as inputs to our extended RPM algorithm (Papademetris et al.,

2003), together with points from the cortical surfaces, registering to

a normal template image.

A tensor-based deformation measure (the determinant of the

Jacobian of the displacement field) was computed from the

displacement field to provide a quantitative metric of the local

expansion–contraction needed for each voxel to register to the

template. The deformation measure was sampled every 1.5 mm

and smoothed (FWHM = 3.1 mm), and groups were then

compared by creating a t-map (adjusted for overall brain size

scaling differences) keeping all values more significant than P b

0.001 (uncorrected). Differences shown on the t-map away from

the sulci may not be reliable because sulcal points were not used

there to define local anatomy. However, as shown in Fig. 7, and

in accordance with the earlier reported finding, we observe a

bilateral morphometric difference between the ends of the central

sulci and the midline. We note that using an intensity based

nonlinear registration yielded less significant differences only in

the left hemisphere as a result of inaccuracies in the registration

of the sulci.

While we believe the registration results near the regions of

interest such as the central and superior frontal sulci are accurate,

we feel that the results in other regions are more variable. To

address this, we are currently working on an integrated feature–

intensity nonrigid registration strategy (Papademetris et al., 2004).

Discussion

The reliable and accurate derivation of parametric information

from structural MR images useful for quantifying differences

related to a range of neuropsychiatric disorders requires several

stages of processing (some of which are not mentioned here). In

this paper, we have described four related image analysis efforts

aimed at the quantification of cortical and subcortical gray matter

and white matter interconnections, along with a strategy for

registering multiple subject structural image information. Our

overall approach to these problems is to focus on different

specific regions rather than attempting to analyze the entire brain

at once. In this context, we have often found it advantageous to

focus on methods that rely on Bayesian reasoning strategies that

permit the incorporation of spatial relationship priors represent-

ing the geometrical–biological variability across a population. In

addition, level set and wavefront propagation strategies, such as

were used for subcortical and cortical segmentation, as well as

for diffusion image analysis, have proven to be useful and

generally robust methodologies for our purposes. Finally, we

note that our registration strategy focuses on regionally

segmented structure, an approach that we have found useful in

a variety of analyses. Our future directions are aimed at
integrating functional and structural information within this same

basic framework.
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