

Kinetic modeling of novel radiotracers for the GABA Transporter-1 in nonhuman primates

Paul Gravel¹, Chao Wang¹, Daniel Holden¹, Krista Fowles¹, MingQiang Zheng¹, Jean-Dominique Gallezot¹, Edilio Borroni², Michael Honer², Luca Gobbi², Gilles Tamagnan³, Henry Huang¹, Richard E. Carson¹

¹PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA ²Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland ³Department of Psychiatry, Yale University, New Haven, CT, USA

SS17: Novel Radiotracers & Multi-Modal Imaging of the Brain

SNMMI 2021 Annual Meeting Tuesday, June 15th, 2021

Introduction

• GABA is the main inhibitory neurotransmitter in the central nervous system.

Introduction

- GABA is the main inhibitory neurotransmitter in the central nervous system.
- GABA transporter 1 (GAT-1), the principal GABA transporter in the brain, is an important target to study due to its potential role in a number of neuropsychiatric disorders.

Introduction

- GABA is the main inhibitory neurotransmitter in the central nervous system.
- GABA transporter 1 (GAT-1), the principal GABA transporter in the brain, is an important target to study due to its potential role in a number of neuropsychiatric disorders.
- Although PET radiotracers exist for the GABA receptors, none have been successful for GAT-1.

oche

Introduction

- GABA is the main inhibitory neurotransmitter in the central nervous system.
- GABA transporter 1 (GAT-1), the principal GABA transporter in the brain, is an important target to study due to its potential role in a number of neuropsychiatric disorders.
- Although PET radiotracers exist for the GABA receptors, none have been successful for GAT-1.
- The focus of this work is to evaluate the kinetic behavior of two novel F-18 PET radiotracers ([¹⁸F]GATT-34 and [¹⁸F]GATT-44) for imaging the GAT-1 transporter.

For more information on the radiochemistry refer to Abstract:

Development of Novel Brain-Penetrant Radioligands for PET Imaging of GABA Transporter-1 C. Wang et al., Radiopharmaceutical Young Investigator Award Session

Methods

- Two anesthetized non-human primates (NHP) each underwent a baseline and a blocking scan
 - NHPs scanned on Focus-220 small animal PET scanner
 - [¹⁸F]GATT-34 (181±6 MBq) as well as [¹⁸F]GATT 44 (182±5 MBq)
 - tiagabine (*aka* Gabitril: antiepilepsy, dose: 0.5 mg/kg, administered over 10 min at ~10 min prior to tracer injection)
 - arterial blood was collected for measurement of the input function

Parent Fraction and Arterial Input Functions (AIFs)

SUV Images (90-120 min.) and SUV TACs

[¹⁸F]GATT-34 Baseline

[¹⁸F]GATT-34 Blocking

[¹⁸F]GATT-44 **Baseline**

[¹⁸F]GATT-44 Blocking

100 120 Frontal cortex Temporal cortex Occipital cortex Caudate Nucleus 100 120 Putamen Pons Cerebellum • Centrum semiovale

80

80

80

80

100

100

120

120

60

60

60

Volume of distribution (V_{T}) values*

	GATT-34 V _Τ	GATT-34 V _Τ	GATT-44 V _τ	GATT-44 V _Τ		
ROI Name	Baseline	Blocking	Baseline	Blocking		
	(mL/cm³)	(mL/cm³)	(mL/cm³)	(mL/cm³)		
Caudate	1.37	1.25	1.98	1.20		
Cerebellum	1.70	1.37	3.24	1.60		
Cingulate cortex	2.17	1.50	3.82	1.92		
Frontal cortex	1.82	1.42	3.43	1.70		
Hippocampus	1.33	1.20	2.18	1.10		
Insula	2.01	1.45	4.12	1.89		
Occipital cortex	2.01	1.46	4.25	1.86		
Pons	1.71	1.57	2.68	1.87		
Putamen	1.62	1.37	2.63	1.43		
Temporal cortex	1.72	1.32	3.65	1.75		
Thalamus	1.41	1.20	1.84	1.10		
Average	1.71	1.37	3.08	1.58		
SD	0.28	0.12	0.86	0.32		
Range	[1.33 - 2.17]	[0.20 - 1.57]	[1.84 - 4.25]	[1.10 - 1.92]		
K ₁ values were similar between tracers and conditions,						
and were very low: 0.015 (mL/min/cm³) on average						

* The 1-TCM without a blood volume component ($V_b = 0$) delivered an overall reliable performance with standard error (SE< 10% on average) for ROIs investigated.

40 60 80 100 120

Lassen Plots

 $\frac{[^{18}F]GATT-34}{F}$ About 48% of binding sites are blocked. $V_{ND} = 0.98 \text{ mL/cm}^3$ $\frac{[^{18}F]GATT-44}{F}$ About 66% of binding sites are blocked. $V_{ND} = 0.85 \text{ mL/cm}^3$

Baseline V_{T} and BP_{ND} values

	GATT-34 V _τ	*GATT-34 BP _{ND}	GATT-44 V _T	*GATT-44 BP _{ND}
ROI Name	Baseline	Baseline	Baseline	Baseline
	(mL/cm³)	(unitless)	(mL/cm³)	(unitless)
Caudate	1.37	0.40	1.98	1.32
Cerebellum	1.70	0.74	3.24	2.79
Cingulate cortex	2.17	1.22	3.82	3.47
Frontal cortex	1.82	0.86	3.43	3.01
Hippocampus	1.33	0.36	2.18	1.56
Insula	2.01	1.06	4.12	3.82
Occipital cortex	2.01	1.05	4.25	3.98
Pons	1.71	0.75	2.68	2.13
Putamen	1.62	0.65	2.63	2.08
Temporal cortex	1.72	0.76	3.65	3.27
Thalamus	1.41	0.44	1.84	1.16
Average	1.71	0.75	3.08	2.60
SD	0.28	0.28	0.86	1.01
Range	[1.33 - 2.17]	[0.36 - 1.22]	[1.84 - 4.25]	[1.16 - 3.98]
* $BP_{\rm ND} = V_{\rm T}/V_{\rm ND}$ - 1				

• First to synthesize GAT-1 radiotracers that successfully enter the brain

- First to synthesize GAT-1 radiotracers that successfully enter the brain
- Kinetics best described with a 1-Tissue compartment model

- First to synthesize GAT-1 radiotracers that successfully enter the brain
- Kinetics best described with a 1-Tissue compartment model
- [¹⁸F]GATT-34 and [¹⁸F]GATT-44 are specific to the GAT-1 transporter
 - $[^{18}F]GATT-34$: tiagabine blocked 48% of specific binding with a V_{ND} of 0.98 mL/cm³ and average $BP_{ND} = 0.75$
 - $[^{18}F]GATT-44$: tiagabine blocked 66% of specific binding with a V_{ND} of 0.85 mL/cm³ and average $BP_{ND} = 2.60$

- First to synthesize GAT-1 radiotracers that successfully enter the brain
- Kinetics best described with a 1-Tissue compartment model
- [¹⁸F]GATT-34 and [¹⁸F]GATT-44 are specific to the GAT-1 transporter
 - $[^{18}F]GATT-34$: tiagabine blocked 48% of specific binding with a V_{ND} of 0.98 mL/cm³ and average $BP_{ND} = 0.75$
 - $[^{18}F]GATT-44$: tiagabine blocked 66% of specific binding with a V_{ND} of 0.85 mL/cm³ and average $BP_{ND} = 2.60$
- [¹⁸F]GATT-44 appears to be superior due to its higher brain uptake and higher binding potential

- First to synthesize GAT-1 radiotracers that successfully enter the brain
- Kinetics best described with a 1-Tissue compartment model
- [¹⁸F]GATT-34 and [¹⁸F]GATT-44 are specific to the GAT-1 transporter
 - $[^{18}F]GATT-34$: tiagabine blocked 48% of specific binding with a V_{ND} of 0.98 mL/cm³ and average $BP_{ND} = 0.75$
 - $[^{18}F]GATT-44$: tiagabine blocked 66% of specific binding with a V_{ND} of 0.85 mL/cm³ and average $BP_{ND} = 2.60$
- [¹⁸F]GATT-44 appears to be superior due to its higher brain uptake and higher binding potential
- Evaluation of two additional ligands is underway with plans to progress the best ligand to humans

Acknowledgments

We acknowledge the Yale PET Center staff for their contribution to this project.

This work is supported by NIH Grant U01MH107803

and is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.