AAC Accepted Manuscript Posted Online 27 September 2021 Antimicrob Agents Chemother doi:10.1128/AAC.01105-21 This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

2 Threats: Findings from The Antibiotic Resistance Laboratory Network, 2017–2019

3

- 4 Sarah Sabour^{1#}, Jennifer Y. Huang¹, Amelia Bhatnagar¹, Sarah E Gilbert¹, Maria Karlsson¹, David
- 5 Lonsway¹, Joseph D. Lutgring¹, J. Kamile Rasheed¹, Alison Laufer Halpin¹, Richard A. Stanton¹,

6 Stephanie Gumbis¹, Christopher A. Elkins¹, Allison C. Brown¹

- 7
- ⁸ ¹Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA.

9	
10	
11	
12	
13	
14	
15	#Corresponding Author: Sarah Sabour, SSabour@cdc.gov.

16 Running Title: Carbapenemase Organisms Detected in The AR Lab Network

17 Abstract

18	Carbapenemase gene-positive (CP) Gram-negative bacilli are of significant clinical and public health
19	concern. Their rapid detection and containment are critical to preventing their spread and additional
20	infections they can cause. To this end, CDC developed the Antibiotic Resistance Laboratory Network
21	(AR Lab Network), in which public health laboratories across all 50 states, several cities, and Puerto
22	Rico characterize clinical isolates of carbapenem-resistant Enterobacterales (CRE), Pseudomonas
23	aeruginosa (CRPA), and Acinetobacter baumannii (CRAB), and conduct colonization screens to detect
24	the presence of mobile carbapenemase genes. In its first three years, the AR Lab Network tested 76,887
25	isolates and 31,001 rectal swab colonization screens. Targeted carbapenemase genes (<i>bla</i> _{KPC} , <i>bla</i> _{NDM} ,
26	<i>bla</i> _{OXA-48-like} , <i>bla</i> _{VIM} , or <i>bla</i> _{IMP}) were detected by PCR in 35% of CRE, 2% of CRPA, <1% of CRAB,
27	and 8% of colonization screens tested, respectively. $bla_{\rm KPC}$ and $bla_{\rm VIM}$ were the most common CP-CRE
28	and CP-CRPA, respectively, but regional differences in the frequency of carbapenemase genes detected
29	were apparent. In CRE and CRPA isolates tested for carbapenemase production and the presence of the
30	targeted genes, 97% had concordant results; 3% of CRE and 2% of CRPA were carbapenemase
31	production-positive but PCR-negative for those genes. Isolates harboring bla_{NDM} showed the highest
32	frequency of resistance across the carbapenems tested and those harboring bla_{IMP} and $bla_{OXA-48-like}$ genes
33	showed the lowest frequency of carbapenem resistance. The AR Lab Network provides a national
34	snapshot of rare and emerging carbapenemase genes, delivering data to inform public health actions to
35	limit the spread of these antibiotic resistance threats.

2

37	Carbapenems are critically important β -lactam drugs for treating patients with severe infections caused
38	by Gram-negative bacilli, and resistance to this class of antibiotics is an evolving, global public health
39	problem. Many of these carbapenem-resistant pathogens are common in healthcare environments and of
40	particular concern because of high mortality rates and treatment failures among infected patients(1-3).
41	In 2019, the Centers for Disease Control and Prevention (CDC) published its second report on Antibiotic
42	Resistance Threats In the United States and estimated that antibiotic-resistant infections sicken over 2.8
43	million people each year in the United States, and more than 35,000 people die from these infections(4).
44	The report reconfirmed carbapenem-resistant Enterobacterales (CRE) and multidrug resistant
45	Pseudomonas aeruginosa as urgent and serious threats to human health and promoted carbapenem-
46	resistant Acinetobacter baumannii (CRAB) as an urgent threat(5).
47	Production of carbapenemase β -lactamases represent one mechanism by which organisms may acquire
48	carbapenem resistance. They are enzymes that can hydrolyze carbapenems and other β -lactam drugs,
49	rendering them ineffective. Some carbapenemase genes may be carried on mobile genetic elements,
50	facilitating transmission among bacterial genera and species, which may also spread between patients
51	and across healthcare facilities(6). In the United States, the five most common carbapenemase genes
52	circulating among healthcare-associated Gram-negative bacilli are <i>Klebsiella pneumoniae</i>
53	carbapenemase (bla_{KPC}), New Delhi metallo- β -lactamase (bla_{NDM}), Verona Integron-encoded metallo- β -
54	lactamase (bla_{VIM}), oxacillinase-48-like carbapenemases ($bla_{OXA-48-like}$), and active-on-imipenem
55	$(bla_{\rm IMP}).$
56	In 2017, CDC outlined a new Containment Strategy that encouraged health care facilities and public
57	health authorities to implement aggressive response activities when new or rare genes and germs are
58	identified so that transmission can be contained(7). For example, colonization screening and contact

59 tracing are important pillars to containing spread. That same year, CDC established the Antibiotic

Antimicrobial Agents and Chemotherapy 60 Resistance Laboratory Network (AR Lab Network) to enhance national laboratory capacity to rapidly identify and characterize such AR threats. This laboratory infrastructure works in conjunction with 61 CDC's Containment Strategy to support faster outbreak detection and response to contain the spread of 62 AR threats. Herein, we summarize findings from the AR Lab Network's first three years of testing CRE, 63 64 carbapenem-resistant P. aeruginosa (CRPA), CRAB, and colonization screens.

Methods 65

In 2016, CDC began funding the public health laboratories (PHLs) of all 50 states plus several cities and 66 Puerto Rico to enhance their capacity to characterize clinical isolates of CRE and CRPA. Each PHL 67 engages a network of clinical laboratories within their jurisdiction to submit bacterial isolates for 68 phenotypic and molecular testing. The size and coverage of each PHL's network varies based on their 69 jurisdiction's reporting laws and submission criteria for CRE and/or CRPA isolates. For jurisdictions 70 71 lacking defined submission requirements, CDC recommend testing isolates from skilled nursing facilities with ventilator units, long-term acute-care hospitals, or short-stay acute care hospitals because 72 patients admitted to these facilities typically have multiple comorbidities and are at a higher risk of 73 74 acquiring infections caused by multidrug-resistant Gram-negative bacilli(8).

In January 2017, testing in the AR Lab Network began. CRE is defined as any clinical Enterobacterales 75 76 isolate resistant to ertapenem, imipenem, meropenem, or doripenem according to Clinical Laboratory 77 and Standards Institute (CLSI) M100 guidelines (minimum inhibitory concentrations [MIC] of $\geq 4 \mu g/ml$ 78 for imipenem, meropenem, and doripenem or $\geq 2 \mu g/ml$ for ertapenem)(9). The AR Lab Network prioritizes testing of Escherichia coli, Klebsiella oxytoca, K. pneumoniae, and Enterobacter spp. but 79 encourages testing of additional Enterobacterales where local capacity allowed. CRPA and CRAB are 80 81 defined respectively, as any clinical isolate of *P. aeruginosa* or *A. baumannii* resistant to imipenem, meropenem, or doripenem according to CLSI M100 guidelines (MIC of $\ge 8 \,\mu g/ml$)(9). No isolates are 82 83 excluded based on specimen source.

AAC

84 PHLs in the Network perform organism identification, antimicrobial susceptibility testing (AST), carbapenemase production testing, and molecular detection of five targeted carbapenemase genes: 85 *bla*_{KPC}, *bla*_{NDM}, *bla*_{OXA-48-like}, *bla*_{VIM}, and *bla*_{IMP}. Testing methods vary by PHL (Supplementary Table 1). 86 For organism identification, most PHLs use matrix-assisted laser desorption ionization-time of flight 87 (MALDI-ToF); some use Vitek 2 (BioMérieux, Marcy-l'Étoile, France), and/or biochemical methods. 88 AST is most often performed using commercially available broth microdilution panels, disk diffusion, 89 90 and/or gradient diffusion strips. Isolates are tested once against a range of drugs, including at least two carbapenems and two third-generation cephalosporins. Interpretations are based on the most updated 91 92 version of CLSI M100 breakpoints where available; U.S. Food and Drug Administration breakpoints are 93 used when no CLSI breakpoints were set (e.g., tigecycline) (9, 10). All but one PHL conducts carbapenemase production testing using the modified carbapenem inactivation method (mCIM); one lab 94 uses CarbaNP exclusively(9, 11, 12). Molecular detection of targeted carbapenemase genes is conducted 95 96 using one or more PCR-based protocols and platforms, including CDC's laboratory-developed and validated methods(13-16), Gene Xpert Carba-R (Cepheid, Sunnyvale, CA), ARM-D Kit, β-Lactamase 97 (Streck, Omaha NE), and/or Verigene Gram-Negative Blood Culture System (Nanosphere, Northbrook, 98 IL). Testing is conducted in accordance with CDC guidance and Clinical Laboratory Improvement 99 100 Amendments (CLIA) requirements, when necessary.

Seven state PHLs also serve as "regional laboratories", to conduct sentinel surveillance and colonization screening by testing CRAB isolates and rectal swabs, respectively, from healthcare facilities in their region. For sentinel surveillance, each PHL recruits at least one clinical laboratory from their jurisdiction to submit all CRAB isolates to their regional laboratory for additional characterization. Screening is not limited to specific health facility types and is used to detect silent transmission of the targeted carbapenemase genes among patients and includes testing epidemiologically-linked contacts of patients found to have infections caused by a carbapenemase-positive organism. For rectal swabs collected for

109

110

attempt to culture gene-positive screens to identify the organisms carrying the genes detected. 111 Any testing for which a participating PHL is not validated, including supplemental testing of additional 112 gene targets and drugs, is conducted by a regional laboratory or CDC. Thus, a small subset of isolates 113 114 tested by state and local PHLs are submitted to their regional laboratory for additional characterization. 115 Regional laboratories also conduct whole genome sequencing to characterize a subset of isolates, 116 including those with discordant carbapenemase production and PCR results (i.e., carbapenemase production positive but negative for the targeted carbapenemase genes), which may indicate the 117 118 presence of a novel carbapenemase gene. PHLs report results back to submitting clinical laboratories within two working days of testing 119 120 completion. Colonization screening results are reported to submitting facilities and jurisdictional public 121 health departments within one working day of completion. Testing results that require immediate public 122 health actions to contain the spread of resistance are reported to jurisdictional public health departments 123 and CDC within one day of completion. 124 PHLs submit testing results to CDC at least monthly. After each calendar year, data are reconciled to

colonization screens, regional laboratories use the Gene Xpert Carba-R (Cepheid, Sunnyvale, CA) in

accordance with the manufacturer's guidance to detect the presence of bla_{KPC}, bla_{NDM}, bla_{QXA-48-like},

bla_{VIM}, and bla_{IMP-1} genes in rectal swabs collected for colonization screens. Regional laboratories

verify the number of isolates tested and the associated testing results. Each isolate is counted once, with 125 testing results from each PHL consolidated with additional results submitted by its regional laboratory 126 127 into one record. Each targeted carbapenemase gene detected is counted individually; therefore, the number of carbapenemase genes detected exceeds the number of isolates reported because some isolates 128 carried more than one such gene. In all summary reports, organisms reported as Enterobacter aerogenes 129 130 or Klebsiella oxytoca/Raoultella ornithinolytica are re-classified as Klebsiella aerogenes and Klebsiella oxytoca, respectively. 131

133	From January 2017 through December 2019, the AR Lab Network tested 76,887 CRE, CRPA, CRAB,
134	and colonization screening specimens. Among the 42,006 CRE isolates tested, the genera identified
135	most frequently were the three prioritized for AR Lab Network testing: Klebsiella spp., E. coli, and
136	Enterobacter spp. (Table 1). Fifty-one PHLs conducted testing of additional Enterobacterales families
137	and genera, accounting for 14% (n=5,804) of all CRE tested in the AR Lab Network. At least one
138	targeted carbapenemase gene was detected in 35% (n=14,562) of CRE tested (Table 1); <i>bla</i> _{KPC} was the
139	most common gene detected (86%; n=12,540), followed by <i>bla</i> _{NDM} (9%; n=1,378). The proportion of
140	carbapenemase gene-positive (CP) CRE and the frequency of specific carbapenemase genes varied by
141	genus (Table 1). The most common genes detected among CP-CRE, by genus, were: <i>bla</i> _{KPC} in <i>Klebsiella</i>
142	(92%; n=9,224), Enterobacter (88%; n=1,520), Citrobacter (92%; n=431) and Serratia (98%; n=190),
143	<i>bla</i> _{NDM} in <i>E. coli</i> (35%; n=578), and <i>bla</i> _{IMP} in <i>Providencia</i> (79%; n=81) and <i>Proteus</i> (54%; n=61). More
144	than one targeted gene was identified in 190 (<1%) of CP-CRE tested. The most common combinations
145	were bla_{NDM} with $bla_{OXA-48-like}$ (60%; n=114) and bla_{KPC} with bla_{NDM} (26%; n=50). A single isolate
146	harbored bla_{NDM} , bla_{VIM} , and $bla_{\text{OXA-48-like}}$ genes.
147	Among 30,390 CRPA isolates tested; 2% (n=672) were CP-CRPA (Table 1). The most frequently
148	detected carbapenemase gene among CP-CRPA was bla_{VIM} (62%; n=414), followed by bla_{KPC} (25%;
149	n=171). No CRPA isolate harboring the <i>bla</i> _{OXA-48-like} gene was detected. Fifteen CP-CRPA isolates were
150	positive for more than one targeted gene; these isolates carried bla_{IMP} and bla_{VIM} (n=6), bla_{KPC} and
151	bla_{VIM} (n=4), bla_{NDM} and bla_{VIM} (n=3), or bla_{NDM} and bla_{IMP} (n=2).

- 152 Regional sentinel surveillance tested 4,491 CRAB isolates from 41 states. Targeted carbapenemase
- 153 genes were detected in 39 (<1%) CRAB isolates submitted. Among CP-CRAB, *bla*_{NDM} (69%; n=27) and
- 154 bla_{KPC} (31%; n=12) were detected; bla_{IMP} , bla_{VIM} or $bla_{\text{OXA-48-like}}$ genes were not (Table 1).

155 Regional laboratories also tested 31,001 colonization screening swabs. Eight percent (n=2,503) of screens were positive for at least one targeted gene and *bla*_{KPC} (84%; n=2,103) and *bla*_{NDM} (11%; n=281) 156 were the most frequently detected (Table 1). More than one carbapenemase gene was detected in 132 157 colonization screens; nine of these were positive for three carbapenemase genes. The most common 158 159 gene combination among screens was bla_{KPC} and bla_{VIM} (37%; 49/132).

160 The volume of CRE and CRPA isolates tested and the percent positive for any given targeted 161 carbapenemase gene varied by region (Table 2). For example, the Northeast region detected the highest 162 frequency of CP-CRE (49%; n=2,225) and the Central region detected the lowest (18%; n=599). bla_{VIM} 163 (2%; n=79) and *bla*_{IMP} (8%; n=50) genes were most frequently detected in the Midwest and Central regions respectively, whereas bla_{NDM} (16%; n=351) was most frequently detected in the Northeast 164 165 region. Among CRPA, the West region detected bla_{VIM} (76%; n=60) most frequently, but bla_{KPC} (54%; n=27) and bla_{NDM} (17%; n=4) were detected most frequently in the Mid-Atlantic and Central regions, 166 167 respectively. Among colonization screens, bla_{KPC} (91%; n=575) and bla_{IMP} (1%; n=5) genes were most frequently detected in the Mid-Atlantic region. In contrast, screens with blavim (13%; n=69) were most 168 169 frequently detected from the Southeast region and screens with *bla*_{NDM} (40%; n=27) were most 170 frequently from the Central region.

The carbapenem resistance profile among carbapenemase gene-positive CRE and CRPA is presented in 171 172 Table 3. Generally, isolates with *bla*_{NDM} showed the highest frequency of resistance across the different 173 carbapenem drugs, whereas isolates with *bla*_{IMP} and *bla*_{OXA-48-like} showed lower frequencies of carbapenem resistance. Apart from imipenem resistance among bla_{IMP} isolates, resistance to doripenem 174 175 was the least predictive of carbapenemase presence among CRE. CRPA isolates harboring the metallo-176 β -lactamase (MBL) genes, *bla*_{IMP}, *bla*_{NDM}, or *bla*_{VIM}, showed the highest frequency of resistance across 177 carbapenems tested.

179

180	subset of CRE (3%, n=443) and CRPA (2%; n=117) isolates were carbapenemase production-positive,
181	but PCR negative. AST phenotypes suggested that 49% (n=219) of these discordant CRE isolates were
182	likely explained by the presence of hyperproduction of AmpC in <i>Enterobacter</i> (n=114) or bla_{SME}
183	(Serratia marcescens enzyme) in Serratia (n=105). PCR testing and whole genome sequencing of a
184	subset of additional discrepant CRE and CRPA isolates identified additional mechanisms: two bla_{IMI}
185	(Imipenem-hydrolyzing β -lactamase) genes and a variety of beta-lactamase genes were found among 8
186	CRE; bla_{GES} (Guiana extended-spectrum β -lactamase) genes and/or other bla_{OXA} variants were detected
187	in all 93 CRPA sequenced. Less than 1% (n=76) of CRE and CRPA isolates tested were carbapenemase
188	production-negative but PCR-positive for the targeted carbapenemase genes. These discrepant PCR-
189	positive isolates were reported from 27 different PHLs and across all targeted genes.
189 190	Discussion
190	Discussion
190 191	Discussion CDC established the AR Lab Network to provide nationwide laboratory capacity to rapidly detect
190 191 192	Discussion CDC established the AR Lab Network to provide nationwide laboratory capacity to rapidly detect antibiotic resistance and inform local responses to help contain the spread of resistance in the United
190 191 192 193	Discussion CDC established the AR Lab Network to provide nationwide laboratory capacity to rapidly detect antibiotic resistance and inform local responses to help contain the spread of resistance in the United States. By implementing state-of-the-art methods in PHLs, the AR Lab Network has improved our
190 191 192 193 194	Discussion CDC established the AR Lab Network to provide nationwide laboratory capacity to rapidly detect antibiotic resistance and inform local responses to help contain the spread of resistance in the United States. By implementing state-of-the-art methods in PHLs, the AR Lab Network has improved our national infrastructure to detect and characterize novel and emerging resistance threats like

Among isolates tested for carbapenemase production and targeted carbapenemase genes, 97% of both

CRE and CRPA had concordant findings between the phenotypic and PCR tests (Table 4). A small

- healthcare-associated infections caused by these organisms to the National Healthcare and Safety 198
- Network (NHSN). In 2018, carbapenem resistance was detected in 39.2%, 14.3% and 2.7% of A. 199
- 200 baumannii, P. aeruginosa and Enterobacterales isolates tested, respectively(17). CDC's Multi-site
- 201 Gram-negative Surveillance Initiative (MuGSI), an active population- and laboratory-based surveillance

9

AAC

(n=94/312) of CRE tested from January 2011 to January 2014, and <1% (n=1/391) of CRPA tested from 203 August 2016 to July 2017(18, 19). Unlike NHSN and MuGSI, the AR Lab Network was not designed to 204 205 be a traditional surveillance system; yet the frequency with which the AR Lab Network detected 206 carbapenemase genes was similar to MuGSI, detecting at least one carbapenemase gene in 35% of CRE 207 and 2% of CRPA. Thus, the nationwide testing in the AR Lab Network is not only detecting 208 carbapenemase genes in CRE and CRPA at comparable frequencies as MuGSI, but also testing higher volumes of these relatively rare threats, thereby providing a wealth of data on the targeted mechanisms 209 210 and these less common organisms spreading domestically. Data from the AR Lab Network not only substantiate existing literature that $bla_{\rm KPC}$ is the most common 211 carbapenemase gene circulating in the United States (20, 21), but also highlight its dissemination into 212 213 CRPA, CRAB, and the less common CRE genera, like *Citrobacter* and *Serratia*(22-25). Among 214 jurisdictions routinely testing all CRE, 20% of isolates from the less common genera were carbapenemase gene-positive. This finding supports the concern that other genera can harbor and spread 215 216 carbapenemase genes and highlights that testing less common CRE genera is important for detecting and 217 controlling the spread of resistance (26, 27). As a result of these and other data collected through the AR Lab Network, some states subsequently implemented or updated their reporting laws to include 218 219 additional CRE genera beyond E. coli, Klebsiella and Enterobacter spp.. 220 The five targeted carbapenemase genes were detected in only 39 of 4,491 CRAB isolates tested. 221 Although still rare, the frequency of these carbapenemases in CRAB has increased annually in the AR 222 Lab Network. Continued vigilance by rapid detection is essential for containing the spread of these 223 genes in these already highly resistant organisms and preventing the difficult-to-treat infections they 224 cause.

activity that is part of Emerging Infections Program, detected carbapenemase producers in 30%

Chemotherapy

negatives (28-32). MBL genes were detected in only 3% of all isolates tested but their frequency varied 226 by specimen type; they were present in 77% of CP-CRPA, 69% of CP-CRAB, 20% of positive 227 colonization screens, and 11% of CP-CRE detected. This is concerning because in addition to 228 229 hydrolyzing carbapenems, MBLs are unaffected by newer β -lactamase inhibitors such as avibactam, vaborbactam, and relebactam. MBL-producers do not hydrolyze the monobactam, aztreonam; however, 230 231 some also co-express extended-spectrum β -lactamases (ESBLs) or AmpC which inactivate monobactams, rendering aztreonam ineffective. This limits the treatment options for these highly 232 233 resistant infections. Cefiderocol is one such option and aztreonam-avibactam, which is still in Phase 3 234 clinical trials but can be achieved through administration of two FDA-approved drugs (ceftazidime-235 avibactam and aztreonam), has also shown potent in vitro activity against bla_{NDM}-producing Enterobacterales(33). 236 237 A small subset of specimens tested in the AR Lab Network were found to carry multiple targeted carbapenemase genes. These specimens may represent novel threats for public health because the 238 239 presence of more than one gene, and/or more than one plasmid, may provide increased opportunity for spread. And although the clinical implications of these multi-mechanism organisms are not fully known, 240 they could have negative implications for treatment(34). Organisms harboring genes from different 241 Ambler classes of β -lactamases could further limit available treatment options for patients, particularly 242

Currently, few FDA-approved drugs are available to treat infections caused by MBL-producing Gram-

243 because most of these multiple-mechanism isolates harbored at least one MBL gene. Additional studies

have demonstrated increased MIC values associated with such multi-mechanism isolates and suggest 244 245 they display increased virulence(35, 36).

246 Ninety-seven percent of CRE and CRPA had concordant findings for carbapenemase production and 247 targeted gene detection. Most of the observed differences in isolates with discordant findings could be explained by their AST profiles, false-negative carbapenemase production results, variations in mCIM 248

protocols used, and the presence of other resistance mechanisms. These findings not only support the sensitivity and specificity of mCIM for the detection of CP-CRE and CP-CRPA, including its performance in the presence of weaker carbapenemase genes and variants, but also highlight its potential value in laboratories with limited resources (11, 12, 37). Facilities without molecular platforms to detect carbapenemase genes could use these tests for phenotypic detection of carbapenemase production to inform containment response efforts.

The AR Lab Network data show all CP-CRPA were highly resistant to all carbapenems tested. In contrast, CRE isolates harboring *bla*_{OXA-48-like} or *bla*_{IMP} had lower frequencies of resistance across the carbapenems tested. *bla*_{IMP}-positive CRE isolates displayed lower frequencies of resistance to imipenem (46%), particularly *bla*_{IMP}-positive *Enterobacter* spp. and species of the *Morganellaceae* family when compared with other genera tested in the Network. This observation has also been noted by others(38). Together, these findings suggest that performing AST using more than one carbapenem can facilitate detection of CP-CRE more efficiently.

One key aspect of CDC's Containment Strategy is to respond to even a single case of an emerging AR threat to prevent its transmission. A pillar of this strategy is to conduct colonization screening of persons exposed to patients with confirmed cases. Eight percent of patient contacts screened from January 2017 through December 2019 were colonized with at least one carbapenemase gene-positive organism. These colonization screens informed infection control measures and detected potentially unrecognized carriers who could spread highly resistant bacteria to other patients and facilities(39).

268 The data presented in this report have several limitations. First, isolate testing wase influenced by

clinical laboratory network coverage and jurisdictional reporting and isolate submission laws; therefore,

- the data reported do not represent all clinical isolates of CRE, CRPA, or CRAB in the United States.
- 271 Second, not all Network PHLs began testing at the same time. Third, specific assays were staggered in
- timing of deployment, validation, and implementation across the Network. For example, testing for

273 *bla*_{IMP} variants beyond those detected by the Cepheid CarbaR was not initiated until 2018. Thus, the number of *bla*_{IMP}-positive isolates reported is likely underrepresented during these years. Staggered test 274 implementation also likely hampered the identification of all multi-mechanism isolates because some 275 276 PHLs took a stepwise approach to PCR; if one PCR target was positive, no additional PCR targets were 277 tested. Nevertheless, in 2018 CDC recommended comprehensive PCR testing to better detect multi-278 mechanism isolates and 96% (n=5737) of mCIM-positive isolates from 2019 were tested against all 279 validated targets. Fourth, characterization of CRAB isolates for sentinel surveillance did not include routine testing of additional oxacillinase genes (i.e., *bla*_{OXA-23-like}, *bla*_{OXA-24/40-like}, *or bla*_{OXA-58-like}) that are 280 more common in Acinetobacter spp. Finally, our data include specimens collected for clinical diagnosis, 281 surveillance, and outbreak investigations. Because of the confluence of these various public health 282 283 activities, outbreak-associated testing and screenings likely increase the proportion of specimens that are carbapenemase gene-positive. But this confluence also points to how AR Lab Network testing has 284 285 helped identify and contain outbreaks that could have gone otherwise undetected. Two well-publicized examples of large investigations facilitated through the AR Lab Network include an outbreak of blavIM-286 287 CRPA infections associated with medical tourism to Tijuana, Mexico and a regional outbreak of blavim-CRPA infections around Lubbock, Texas(40, 41). 288

Antibiotic resistance is a global threat and resistance mechanisms that were once novel are emerging and 289 290 spreading rapidly in the United States(42, 43). As an essential component of CDC's Containment Strategy, the AR Lab Network offers flexibility with the capacity to incorporate new resistance targets 291 and detection methods as threats emerge and technologies evolve. In 2019, the AR Lab Network 292 293 deployed aztreonam-avibactam testing at regional laboratories to bridge the gap between clinical use of this drug combination and the availability of commercial susceptibility testing for this combination(28, 294 44-46). In addition, the Network has incorporated more whole genome sequencing capacity to better 295 detect and understand known and novel AR threats. By establishing national infrastructure for improved 296

298

improve patient safety.
Acknowledgements
The findings and conclusions in this report are those of the author(s) and do not represent the official
position of the Centers for Disease Control and Prevention. This work was supported by the Centers for
Disease Control and Prevention's internal funding.

detection of carbapenemase gene-positive organisms in the United States, the AR Lab Network is

helping healthcare facilities and public health partners identify and respond to AR threats quickly and

Antimicrobial Agents and Chemotherapy

306 TABLE 1. Carbapenemase genes detected in carbapenem-resistant Enterobacterales, carbapenem-resistant *Pseudomonas aeruginosa*,

and carbapenem-resistant Acinetobacter baumannii, and colonization screens—Antibiotic Resistance Laboratory Network, 2017–2019

		Specimens	Carbapenemase Gene Detected ^{†,‡}							
Specimen Type and Organism	Specimens Tested (N)	with ≥1 Carbapenemase Detected n (%) [*]	bla _{KPC} n (%)	bla _{NDM} n (%)	bla _{VIM} n (%)	bla _{IMP} n (%)	bla _{OXA-48-like} n (%)			
Carbapenem-Resistant Clinical Isolates	76,887	15,273 (20)	12,723 (83)	1,452 (10)	531 (3)	225 (1)	549 (4)			
Enterobacterales	42,006	14,562 (35)	12,540 (86)	1,378 (9)	117 (<1)	169 (1)	549 (4)			
Enterobacteriaceae	37,418	13,883 (37)	12,064 (87)	1,342 (10)	105 (<1)	19 (<1)	534 (4)			
Klebsiella spp.	16,753	10,004 (60)	9,224 (92)	573 (6)	40 (<1)	4 (<1)	289 (3)			
Enterobacter spp.	12,191	1,734 (14)	1,520 (88)	173 (10)	39 (2)	13 (<1)	2 (<1)			
Escherichia coli	7,258	1,641 (23)	865 (53)	578 (35)	8 (<1)	0 (0)	226 (14)			
Citrobacter spp.	1,136	468 (41)	431 (92)	17 (4)	18 (4)	2 (<1)	6(1)			
Other [§]	80	36 (45)	24 (67)	1 (3)	0 (0)	0 (0)	11 (31)			
Yersiniaceae										
Serratia spp.	1,101	194 (18)	190 (98)	1 (<1)	3 (2)	0 (0)	1 (<1)			
Morganellaceae	2,291	239 (10)	62 (26)	22 (9)	7 (3)	149 (62)	2 (<1)			
Proteus spp.	1,181	113 (10)	42 (37)	7 (6)	2 (2)	61 (54)	1 (<1)			
Providencia spp.	482	103 (21)	6 (6)	11 (11)	5 (5)	81 (79)	1 (<1)			
Morganella spp.	628	23 (4)	14 (61)	4 (17)	0 (0)	7 (33)	0 (0)			
Hafniaceae										
Hafnia spp.	104	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)			
Erwiniaceae										
Pantoea spp.	18	4 (22)	4 (100)	0 (0)	0 (0)	0 (0)	0 (0)			
Unknown/blank [¶]	1,021	243 (24)	220 (91)	13 (5)	2 (<1)	1 (<1)	12 (5)			
Pseudomonas aeruginosa	30,390	672 (2)	171 (25)	47 (7)	414 (62)	56 (8)	0 (0)			
Acinetobacter baumannii	4,491	39 (<1)	12 (31)	27 (69)	0 (0)	0 (0)	0 (0)			
Colonization Screens	31,001	2,503 (8)	2,103 (84)	281 (11)	205 (8)	5 (<1)	51 (2)			

³⁰⁸

309 *Carbapenemase gene detected if PCR-positive for ≥ 1 of the five targeted carbapenemase

AAC

310 genes tested.

- 311 [†]Specimens with multiple carbapenemase genes detected were counted once in each gene category.
- 312 [‡]Arranged by carbapenemase class; class B metallo-β-lactamase genes include *bla*_{NDM}, *bla*_{VIM} and *bla*_{IMP}.
- 313 §Other genera included Cronobacter, Kosakonia, Kluyvera, Leclercia, Pluralibacter, Raoultella and Yokenella
- ¹Isolates submitted to the public health laboratory as Enterobacterales, but genus and species not reported to CDC.

TABLE 2. Regional distribution of carbapenemase genes detected in carbapenem-resistant Enterobacterales, carbapenem-resistant *Pseudomonas aeruginosa*, and carbapenem-resistant

318 Acinetobacter baumannii isolates, and colonization screens— Antibiotic Resistance Laboratory

319 Network, 2017–2019

		Specimens	Carbapenemase Genes Detected ^{‡,§§}						
Specimen Type and Region	Specimens Tested (N)	with a Carbapenemase Detected n (%) [†]	<i>bla</i> _{KPC} n (%)	<i>bla</i> _{NDM} n (%)	<i>bla</i> _{VIM} n (%)	<i>bla</i> _{IMP} n (%)	bla _{OXA-48-} _{like} n (%)		
Carbapenem-Resistant	42,006	14,562 (35)	12,540 (86)	1,378 (9)	117 (<1)	169 (1)	549 (4)		
Enterobacterales		, , , ,							
Central	3,419	599 (18)	457 (76)	61 (10)	(0)	50 (8)	36 (6)		
Mid-Atlantic	7,941	3,427 (43)	3,079 (88)	238 (7)	7 (<1)	18 (<1)	139 (4)		
Midwest	10,724	3,231 (30)	2,786 (86)	229 (7)	79 (2)	73 (2)	85 (3)		
Mountain	4,318	1,322 (31)	1,111 (83)	150 (11)	9 (<1)	9 (<1)	59 (4)		
Northeast	4,539	2,225 (49)	1,794 (81)	351 (16)	1 (<1)	4 (<1)	114 (5)		
Southeast	6,166	2,209 (36)	2,035 (91)	143 (6)	16(1)	6 (<1)	39 (2)		
West	4,899	1,550 (32)	1,279 (81)	206 (13)	5 (<1)	9 (<1)	77 (5)		
Carbapenem-Resistant	30,390	672 (2)	171 (25)	47 (7)	414 (62)	56 (8)	0 (0)		
Pseudomonas aeruginosa Central	2 270	22 (<1)	4 (17)	4 (17)	12 (50)	4 (17)	0.(0)		
	3,370	23 (<1)	4 (17)	4 (17)	12 (50)	4 (17)	0(0)		
Mid-Atlantic	3,122	50 (2)	27 (54)	7 (14)	13 (26)	3 (6)	0(0)		
Midwest	5,445	49 (<1)	10 (20)	6 (12)	33 (66)	1(2)	0(0)		
Mountain	6,667	194 (3)	19 (10)	12 (6)	132 (67)	33 (17)	0(0)		
Northeast	3,890	129 (3)	51 (40)	10 (8)	67 (52)	1 (<1)	0 (0)		
Southeast	3,838	154 (4)	58 (36)	3 (2)	97 (61)	2(1)	0 (0)		
West	4,058	73 (2)	2 (3)	5 (6)	60 (76)	12 (15)	0 (0)		
Carbapenem-Resistant Acinetobacter baumannii	4491	39 (<1)	12 (31)	27 (69)	0 (0)	0 (0)	0 (0)		
Central	272	1 (<1)	1 (100)	0 (0)	0 (0)	0(0)	0 (0)		
Mid-Atlantic	708	19 (3)	2 (11)	17 (89)	0 (0)	0 (0)	0 (0)		
Midwest	781	7 (<1)	2 (29)	5 (71)	0 (0)	0(0)	0 (0)		
Mountain	1,369	0(0)	0(0)	0 (0)	0 (0)	0(0)	0 (0)		
Northeast	320	3 (<1)	2 (67)	1 (33)	0 (0)	0 (0)	0 (0)		
Southeast	702	5 (<1)	2(40)	3 (60)	0 (0)	0(0)	0 (0)		
West	339	4(1)	3 (75)	1 (25)	0 (0)	0 (0)	0 (0)		
Colonization Screens	31,001	2,503 (8)	2,103 (84)	281 (11)	205 (8)	5 (<1)	51 (2)		
Central	3,301	68 (2)	41 (60)	27 (40)	2 (3)	0 (0)	1(1)		
Mid-Atlantic	4,998	632 (13)	575 (91)	37 (6)	11 (2)	5 (<1)	22 (3)		
Midwest	5,741	720 (13)	605 (84)	106 (15)	76 (11)	0(0)	13 (2)		
Mountain	2,504	144 (6)	119 (83)	4 (3)	16 (11)	0 (0)	5 (3)		
Northeast	2,191	211 (10)	149 (71)	63 (30)	10 (5)	0 (0)	5 (2)		
Southeast	9,923	543 (5)	457 (84)	34 (6)	69 (13)	0(0)	5 (<1)		
West	2,343	185 (8)	157 (85)	10 (5)	21 (11)	0(0)	0 (0)		
*Antibiotic Resistance I	,		. ,	. ,		. ,	()		

320 *Antibiotic Resistance Laboratory Network Regions are as follows: Central (AR, IA, KS, MN, MO,

321 ND, NE, OK, SD), Mid-Atlantic (DC, DE, MD, NC, PA, Philadelphia, SC, VA, WV), Midwest (IL, IN,

322 KY, MI, OH, WI), Mountain (AZ, CO, Houston, ID, MT, NM, TX, UT, WY), Northeast (CT, MA, ME,

324 (AK, CA, HI, LA County, NV, OR, WA). [†]Carbapenemase gene detected if PCR-positive for ≥1 of the five targeted carbapenemase genes tested. 326 [‡]Specimens with multiple carbapenemase genes detected were counted once in each gene category.

327 [§]Arranged by carbapenemase class; class B metallo- β -lactamase genes include bla_{NDM} , bla_{VIM} and

NH, NJ, NY, New York City, RI, VT), Southeast (AL, FL, GA, LA, MS, Puerto Rico, TN) and West

328 $bla_{\rm IMP}$.

329

323

Accepted Manuscript Posted Online

330 TABLE 3. Carbapenem susceptibility testing data for carbapenem-resistant Enterobacterales and carbapenem-resistant

331 *Pseudomonas aeruginosa* isolates, characterized by carbapenemase genes detected* — Antibiotic Resistance Laboratory Network,

332 **2018-2019**

						Ca	rbapenen	ase Ger	e Detect	ed [†]					333
		bla _{KPC}			bla _{NDM}			bla _{VIM}			bla _{IMP}		bl	a _{OXA-48-lik}	æ
Organism and Drug	Tested (N)	R, n (%)	I, n (%)	Tested (N)	R, n (%)	I, n (%)	Tested (N)	R, n (%)	I, n (%)	Tested (N)	R, n (%)	I, n (%)	Tested (N)	R, n (%)	3 <u>7</u> 34 n
Carbapenem-Resistar		· · · ·	+	(1)	(70)	(,,,,)	(1)	(,,,)	(70)	(1)	(,,,)	(70)	(11)	(70)	(%) 335
Ertapenem	7,279	6501 (89)	615 (8)	796	789 (99)	6(1)	69	55 (80)	12 (17)	106	88 (83)	11 (10)	279	224 (80)	47 (136
Meropenem	7,160	5868 (82)	605 (8)	803	787 (98)	9 (1)	73	63 (86)	2 (3)	95	67 (71)	9 (9)	273	124 (45)	36 (13) 337
Imipenem	6,026	4,806 (80)	859 (14)	714	694 (97)	15 (2)	71	65 (92)	2 (3)	91	42 (46)	35 (38)	236	95 (40)	53 (22)
Doripenem	4,140	2,097 (51)	1,091 (26)	345	321 (93)	17 (5)	19	11 (58)	2 (11)	49	28 (57)	11 (22)	200	54 (27)	338 30 (15)
Carbapenem-Resistar	nt Pseudon	nonas ae	ruginosa	ı [§]											339
Meropenem	121	114 (94)	1 (1)	29	28 (97)	0 (0)	231	223 (97)	5 (2)	39	39 (100)	0	ND	ND	ND 340
Imipenem	111	104 (94)	1 (1)	28	28 (100)	0 (0)	228	225 (99)	2 (1)	37	36 (97)	0	ND	ND	ND
Doripenem¶	55	48 (87)		21	21 (100)		131	128 (98)		33	33 (100)		ND	ND	341 ND

343 *Excludes isolates with >1 carbapenemase gene detected. Not all isolates were tested for all drugs listed.

344 [†]Arranged by carbapenemase class; class B metallo-β-lactamase genes include *bla*_{NDM}, *bla*_{VIM}, and *bla*_{IMP}.

Antimicrobial Agents and

Chemotherapy

- 345 ^{*}Carbapenem-resistant Enterobacterales tested at public health laboratories were defined as any clinical isolate of Enterobacterales resistant to
- ertapenem, imipenem, meropenem, or doripenem (minimum inhibitory concentrations of $\geq 4 \mu g/ml$ for imipenem, meropenem, and doripenem
- 347 or $\ge 2 \mu g/ml$ for ertapenem) at the submitting clinical laboratory. Interpretations were based on Clinical Laboratory and Standards Institute
- 348 breakpoints.
- 349 [§]Carbapenem-resistant *Pseudomonas aeruginosa* tested at public health laboratories were defined as any clinical isolate of *Pseudomonas*
- aeruginosa resistant to imipenem, meropenem, or doripenem (minimum inhibitory concentrations of $\geq 8 \mu g/ml$) at the submitting clinical
- 351 laboratory. Interpretations were based on Clinical Laboratory and Standards Institute breakpoints.
- 352 ⁶Excludes data from laboratories using commercial broth microdilution panels where intermediate and resistant doripenem interpretations
- 353 could not be distinguished.

A A C

TABLE 4. Comparison of carbapenemase production and molecular testing results for 354

carbapenem-resistant Enterobacterales and carbapenem-resistant Pseudomonas aeruginosa 355

Isolate Characteristics	Carbapenem-Resistant Enterobacterales Isolates, n (%)*	Carbapenem-Resistant Pseudomonas aeruginosa Isolates, n (%)
Total [*]	16,980	4,759
Carbapenemase production+/PCR+	9,638 (57)	468 (10)
Carbapenemase production-/PCR-	6,841 (40)	4,156 (87)
Carbapenemase production+/PCR-	443 (3)	117 (2)
Carbapenemase production-/PCR+	58 (<1)	18 (<1)
isolates— Antibiotic Resistance Laborat	tory Network, 2017–2019	

357	
358	
359	
360	
361	*Excludes <i>Serratia</i> isolates with AST phenotypes consistent with the presence of bla_{SME} (<i>Serratia</i>
362	marcescens enzyme) (defined as resistant to carbapenems and susceptible to 3rd generation
363	cephalosporins), Enterobacter spp. isolates with AST phenotypes suggestive of hyperproduction of
364	AmpC (defined as resistant to cefotaxime, ceftriaxone, and ceftazidime and susceptible to cefepime),

and isolates with missing modified carbapenem inactivation method (mCIM) or PCR testing results. 365

356

366 **References**

367	1.	Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y. 2008.
368	1.	Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults
369		and effect of acquisition on mortality. Antimicrob Agents Chemother 52:1028-33.
370	2.	Akova M, Daikos GL, Tzouvelekis L, Carmeli Y. 2012. Interventional strategies and current
371		clinical experience with carbapenemase-producing Gram-negative bacteria. Clin Microbiol
372		Infect 18:439-48.
373	3.	Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM.
374	61	2016. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections:
375		Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease
376		Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol 37:1288-1301.
377	4.	CDC. Centers for Disease Control and Prevention: 2019 AR Threat Report.
378		https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf Accessed
379	5.	CDC. Centers for Disease Control and Prevention: 2013 AR Threat Report
380		https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf. Accessed
381	6.	de Man TJB, Yaffee AQ, Zhu W, Batra D, Alyanak E, Rowe LA, McAllister G, Moulton-
382		Meissner H, Boyd S, Flinchum A, Slayton RB, Hancock S, Spalding Walters M, Laufer Halpin
383		A, Rasheed JK, Noble-Wang J, Kallen AJ, Limbago BM. 2021. Multispecies Outbreak of
384		Verona Integron-Encoded Metallo-ss-Lactamase-Producing Multidrug-Resistant Bacteria Driven
385		by a Promiscuous Incompatibility Group A/C2 Plasmid. Clin Infect Dis 72:414-420.
386	7.	CDC. 2017. Centers for Disease Control and Prevention: Interim Guidance for a Public Health
387		Response to Contain Novel or Targeted Multidrug-resistant Organisms (MDROs)
388		https://www.cdc.gov/hai/pdfs/containment/Health-Response-Contain-MDRO-H.pdf. Accessed
389	8.	Patolia S, Abate G, Patel N, Patolia S, Frey S. 2018. Risk factors and outcomes for multidrug-
390		resistant Gram-negative bacilli bacteremia. Ther Adv Infect Dis 5:11-18.
391	9.	Institute CaLS. 2017-2019. M100 Performance Standards for Antimicrobial Susceptibility
392		Testing- 27-29th Edition, Wayne, PA.
393	10.	Administration USFD. Antibacterial Susceptibility Test Interpretive Criteria.
394		https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-
395		criteria. Accessed
396	11.	Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK, Brasso WB, Bobenchik
397		AM, Lockett ZC, Charnot-Katsikas A, Ferraro MJ, Thomson RB, Jr., Jenkins SG, Limbago BM,
398		Das S. 2017. Modified Carbapenem Inactivation Method for Phenotypic Detection of
399		Carbapenemase Production among Enterobacteriaceae. J Clin Microbiol 55:2321-2333.
400	12.	Simner PJ, Johnson JK, Brasso WB, Anderson K, Lonsway DR, Pierce VM, Bobenchik AM,
401		Lockett ZC, Charnot-Katsikas A, Westblade LF, Yoo BB, Jenkins SG, Limbago BM, Das S,
402		Roe-Carpenter DE. 2018. Multicenter Evaluation of the Modified Carbapenem Inactivation
403		Method and the Carba NP for Detection of Carbapenemase-Producing Pseudomonas aeruginosa
404		and Acinetobacter baumannii. J Clin Microbiol 56.
405	13.	Lutgring JD, Zhu W, de Man TJB, Avillan JJ, Anderson KF, Lonsway DR, Rowe LA, Batra D,
406		Rasheed JK, Limbago BM. 2018. Phenotypic and Genotypic Characterization of
407		Enterobacteriaceae Producing Oxacillinase-48-Like Carbapenemases, United States. Emerg
408		Infect Dis 24:700-709.
409	14.	Rasheed JK, Kitchel B, Zhu W, Anderson KF, Clark NC, Ferraro MJ, Savard P, Humphries RM,
410		Kallen AJ, Limbago BM. 2013. New Delhi metallo-beta-lactamase-producing
411		Enterobacteriaceae, United States. Emerg Infect Dis 19:870-8.

22

412	15.	Lonsway DR TT, Kongphet-Tran T, Anderson KF, Limbago BM, Rasheed JK. Evaluation of
413		phenotypic screening methods to detect metallo-beta-lactamase production in Pseudomonas
414		aeruginosa, p. In (ed),
415	16.	Campbell D DJ, Rasheed JR and Karlsson M Development of a Multiplex TaqMan Probe-Based
416		Real-Time PCR Assay for Detection of blaIMP Variants p.In (ed),
417	17.	Prevention CfDCa. Centers for Disease Control and Prevention Antibiotic Resistance Patient
418		Safety Portal https://arpsp.cdc.gov/. Accessed
419	18.	Julian Grass SB, Wendy Bamberg, Sarah J. Janelle, Patrick Stendel, Jesse T. Jacob, Chris Bower,
420		Stephen Sukumaran, Lucy E. Wilson, Elisabeth Vaeth, Linda Li, Ruth Lynfield, Paula Snippes
421		Vagnone, Ginette Dobbins, Erin C. Phipps, Emily B. Hancock, Ghinwa Dumyati, Rebecca Tsay,
422		Rebecca Pierce, P. Maureen Cassidy, Nicole West, Marion A. Kainer, Daniel Muleta, Jacquelyn
423		Mounsey, Davina Campbell, Richard Stanton, Maria S. Karlsson, and Maroya Spalding Walters.
424		2018. Epidemiology of Carbapenem-Resistant Pseudomonas aeruginosa Identified Through the
425		Emerging Infections Program (EIP), United States, 2016–2017. Open Forum Infectious
426		Disease:2.
427	19.	Chea N, Bulens SN, Kongphet-Tran T, Lynfield R, Shaw KM, Vagnone PS, Kainer MA, Muleta
428		DB, Wilson L, Vaeth E, Dumyati G, Concannon C, Phipps EC, Culbreath K, Janelle SJ,
429		Bamberg WM, Guh AY, Limbago B, Kallen AJ. 2015. Improved Phenotype-Based Definition
430		for Identifying Carbapenemase Producers among Carbapenem-Resistant Enterobacteriaceae.
431		Emerg Infect Dis 21:1611-6.
432	20.	Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, Quale J. 2005. Rapid spread of
433		carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic
434		armamentarium. Arch Intern Med 165:1430-5.
435	21.	Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, Brolund A, Giske
436		CG. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the
437		United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother
438		53:3365-70.
439	22.	Margate E, Magalhaes V, Fehlberg LC, Gales AC, Lopes AC. 2015. KPC-PRODUCING
440		Serratia marcescens IN A HOME-CARE PATIENT FROM RECIFE, BRAZIL. Rev Inst Med
441		Trop Sao Paulo 57:359-60.
442	23.	Silva KE, Cayo R, Carvalhaes CG, Patussi Correia Sacchi F, Rodrigues-Costa F, Ramos da Silva
443		AC, Croda J, Gales AC, Simionatto S. 2015. Coproduction of KPC-2 and IMP-10 in
444		Carbapenem-Resistant Serratia marcescens Isolates from an Outbreak in a Brazilian Teaching
445		Hospital. J Clin Microbiol 53:2324-8.
446	24.	Dong D, Mi Z, Li D, Gao M, Jia N, Li M, Tong Y, Zhang X, Zhu Y. 2020. Novel IncR/IncP6
447		Hybrid Plasmid pCRE3-KPC Recovered from a Clinical KPC-2-Producing Citrobacter braakii
448		Isolate. mSphere 5.
449	25.	Babiker A, Evans DR, Griffith MP, McElheny CL, Hassan M, Clarke LG, Mettus RT, Harrison
450		LH, Doi Y, Shields RK, Van Tyne D. 2020. Clinical and Genomic Epidemiology of
451		Carbapenem-Nonsusceptible Citrobacter spp. at a Tertiary Health Care Center over 2 Decades. J
452		Clin Microbiol 58.
453	26.	Walters MS, Witwer M, Lee YK, Albrecht V, Lonsway D, Rasheed JK, Anacker M, Snippes-
454		Vagnone P, Lynfield R, Kallen AJ. 2018. Notes from the Field: Carbapenemase-Producing
455		Carbapenem-Resistant Enterobacteriaceae from Less Common Enterobacteriaceae Genera -
456	07	United States, 2014-2017. MMWR Morb Mortal Wkly Rep 67:668-669.
457	27.	Shugart A, Mahon G, Huang JY, Karlsson M, Valley A, Lasure M, Gross A, Pattee B, Vaeth E,
458		Brooks R, Maruca T, Dominguez CE, Torpey D, Francis D, Bhattarai R, Kainer MA, Chan A,
459		Dubendris H, Greene SR, Blosser SJ, Shannon DJ, Jones K, Brennan B, Hun S, D'Angeli M,

AAC

Antimicrobial Agents and Chemotherapy

460		Murphy CN, Tierney M, Reese N, Bhatnagar A, Kallen A, Brown AC, Spalding Walters M.
461		2021. Carbapenemase production among less-common Enterobacterales genera: 10 US sites,
462		2018. JAC Antimicrob Resist 3:dlab137.
463	28.	Bhatnagar A, Ransom EM, Machado MJ, Boyd S, Reese N, Anderson K, Lonsway D, Elkins
464		CA, Rasheed JK, Patel JB, Karlsson M, Brown AC, Lutgring JD. 2021. Assessing the in vitro
465		impact of ceftazidime on aztreonam/avibactam susceptibility testing for highly resistant MBL-
466		producing Enterobacterales. J Antimicrob Chemother 76:979-983.
467	29.	Chew KL, Tay MKL, Cheng B, Lin RTP, Octavia S, Teo JWP. 2018. Aztreonam-Avibactam
468		Combination Restores Susceptibility of Aztreonam in Dual-Carbapenemase-Producing
469		Enterobacteriaceae. Antimicrob Agents Chemother 62.
470	30.	Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, Hujer KM,
471		Marshall EK, Rudin SD, Perez F, Wilson BM, Wasserman RB, Chikowski L, Paterson DL, Vila
472		AJ, van Duin D, Kreiswirth BN, Chambers HF, Fowler VG, Jr., Jacobs MR, Pulse ME, Weiss
473		WJ, Bonomo RA. 2017. Can Ceftazidime-Avibactam and Aztreonam Overcome beta-Lactam
474		Resistance Conferred by Metallo-beta-Lactamases in Enterobacteriaceae? Antimicrob Agents
475		Chemother 61.
476	31.	Suay-Garcia B, Perez-Gracia MT. 2019. Present and Future of Carbapenem-resistant
477		Enterobacteriaceae (CRE) Infections. Antibiotics (Basel) 8.
478	32.	Biedenbach DJ, Kazmierczak K, Bouchillon SK, Sahm DF, Bradford PA. 2015. In vitro activity
479		of aztreonam-avibactam against a global collection of Gram-negative pathogens from 2012 and
480		2013. Antimicrob Agents Chemother 59:4239-48.
481	33.	Lutgring JD, Balbuena R, Reese N, Gilbert SE, Ansari U, Bhatnagar A, Boyd S, Campbell D,
482		Cochran J, Haynie J, Ilutsik J, Longo C, Swint S, Rasheed JK, Brown AC, Karlsson M. 2020.
483		Antibiotic Susceptibility of NDM-Producing Enterobacterales Collected in the United States in
484		2017 and 2018. Antimicrob Agents Chemother 64.
485	34.	Contreras DA, Fitzwater SP, Nanayakkara DD, Schaenman J, Aldrovandi GM, Garner OB, Yang
486		S. 2020. Coinfections of Two Strains of NDM-1- and OXA-232-Coproducing Klebsiella
487		pneumoniae in a Kidney Transplant Patient. Antimicrob Agents Chemother 64.
488	35.	Kazi M, Shetty A, Rodrigues C. 2015. The carbapenemase menace: do dual mechanisms code
489		for more resistance? Infect Control Hosp Epidemiol 36:116-7.
490	36.	Meletis G, Chatzidimitriou D, Malisiovas N. 2015. Double- and multi-carbapenemase-producers:
491		the excessively armored bacilli of the current decade. Eur J Clin Microbiol Infect Dis 34:1487-
492		93.
493	37.	Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. 2013. Evaluation of the Carba NP test for
494		rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa.
495		Antimicrob Agents Chemother 57:4578-80.
496	38.	Karlowsky JA, Lob SH, Kazmierczak KM, Badal RE, Young K, Motyl MR, Sahm DF. 2017. In
497		Vitro Activity of Imipenem against Carbapenemase-Positive Enterobacteriaceae Isolates
498		Collected by the SMART Global Surveillance Program from 2008 to 2014. J Clin Microbiol
499	•	55:1638-1649.
500	39.	Woodworth KR, Walters MS, Weiner LM, Edwards J, Brown AC, Huang JY, Malik S, Slayton
501		RB, Paul P, Capers C, Kainer MA, Wilde N, Shugart A, Mahon G, Kallen AJ, Patel J, McDonald
502		LC, Srinivasan A, Craig M, Cardo DM. 2018. Vital Signs: Containment of Novel Multidrug-
503		Resistant Organisms and Resistance Mechanisms - United States, 2006-2017. MMWR Morb
504	40	Mortal Wkly Rep 67:396-401.
505	40.	Prevention HIC. CDC Investigators Report Pseudomonas Superbug - VIM CRPA.
506		https://www.reliasmedia.com/articles/144501-cdc-investigators-report-ipseudomonasi-superbug.
507		Accessed

508	41.	Kracalik I, Ham C, Smith AR, Vowles M, Kauber K, Zambrano M, Rodriguez G, Garner K,
509		Chorbi K, Cassidy PM, McBee S, Stoney R, Brown AC, Moser K, Villarino ME, Walters MS.
510		2019. Notes from the Field: Verona Integron-Encoded Metallo-beta-Lactamase-Producing
511		Carbapenem-Resistant Pseudomonas aeruginosa Infections in U.S. Residents Associated with
512		Invasive Medical Procedures in Mexico, 2015-2018. MMWR Morb Mortal Wkly Rep 68:463-
513		464.
514	42.	Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G,
515		Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P,
516		Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. 2013. Clinical
517		epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect
518		Dis 13:785-96.
519	43.	Patel G, Bonomo RA. 2013. "Stormy waters ahead": global emergence of carbapenemases. Front
520		Microbiol 4:48.
521	44.	Ransom E, Bhatnagar A, Patel JB, Machado MJ, Boyd S, Reese N, Lutgring JD, Lonsway D,
522		Anderson K, Brown AC, Elkins CA, Rasheed JK, Karlsson M. 2020. Validation of Aztreonam-
523		Avibactam Susceptibility Testing Using Digitally Dispensed Custom Panels. J Clin Microbiol
524		58.
525	45.	Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. 2020. Infectious
526		Diseases Society of America Guidance on the Treatment of Extended-Spectrum beta-lactamase
527		Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and
528		Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis
529		doi:10.1093/cid/ciaa1478.
530	46.	Bhatnagar A BS, Sabour S, Bodnar J, Nazarian E, Peinovich N, Wagner C, Craft B, Snippes
531		Vagnone P, Simpson J, Stone VN, Therrien M, Bateman A, Lower D, Huang JY, Gumbis S,

Vagnone P, Simpson J, Stone VN, Therrien M, Bateman A, Lower D, Huang JY, Gumbis
Lonsway D, Lutgring JD, Karlsson M, Brown AC. 2021. Pilot Program for Antimicrobial
Susceptibility Testing of Aztreonam-Avibactam in the Antibiotic Resistance Laboratory
Network.

535