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Abstract  22 

Background: The rise of gonococcal antimicrobial resistance highlights the need for strategies that extend the 23 

clinically useful lifespan of antibiotics. As there is limited evidence to support the current practice of switching 24 

empiric first-line antibiotic when resistance exceeds 5% in the population, our objective was to compare the 25 

impact of alternative strategies on the effective lifespans of antibiotics and the overall burden of gonorrhea.  26 

Methods and Findings: We developed and calibrated a mathematical model of gonorrhea transmission among 27 

men who have sex with men (MSM) in the United States. We calibrated the model to the estimated prevalence of 28 

gonorrhea, the rate of gonorrhea cases, and the proportion of cases presenting symptoms among MSM in the 29 

United States. We used this model to project the effective lifespan of antibiotics and the number of gonorrhea 30 

cases expected under current and alternative surveillance strategies over a 50-year simulation period. We 31 

demonstrate that compared to the current practice, a strategy that 1) uses quarterly (as opposed to yearly) 32 

surveillance estimates and 2) incorporates both the estimated prevalence of resistance and the trend in the 33 

prevalence of resistance to determine treatment guidelines could extend the effective lifespan of antibiotics by 34 

0.83 years without increasing the number of gonorrhea cases. This is equivalent to successfully treating an 35 

additional 86.8 (95% uncertainty interval: [51.7, 121.2]) gonorrhea cases per 100,000 MSM population each year 36 

with the first-line antibiotics without worsening the burden of gonorrhea. 37 

As our model describes the transmission of gonorrhea among the U.S. MSM population, our conclusions might 38 

not be generalizable to other settings. Furthermore, to better capture the uncertainty in the characteristics of 39 

current and future antibiotics, we chose to model hypothetical drugs with characteristics similar to the antibiotics 40 

commonly used in gonorrhea treatment. 41 

Conclusions: Our results suggest that use of data from surveillance programs could be expanded to prolong the 42 

clinical effectiveness of antibiotics without increasing the burden of the disease. This highlights the importance of 43 

maintaining effective surveillance systems and the engagement of policy makers to turn surveillance findings into 44 

timely and effective decisions.    45 
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Author Summary  46 

Why Was This Study Done?  47 

• Gonorrhea is the second most common notifiable disease in the United States and has developed 48 

resistance to all first-line antibiotics.  49 

• The selection of antibiotics used for gonorrhea treatment is almost always empiric and based on guideline 50 

recommendations.  51 

• There is limited evidence to support the current practice of switching the first-line antibiotic after 52 

resistance to it exceeds 5% in annual surveillance estimates. 53 

• Our objective was to project how alternative strategies to inform the first-line treatment recommendations 54 

impact the lifespan of antibiotics and the overall burden of gonorrhea. 55 

What Did the Researchers Do and Find?  56 

• We developed a mathematical model that describes the key characteristics of gonorrhea transmission 57 

among men who have sex with men (MSM) in the United States.   58 

• Our model estimates the lifespan of antibiotics and the incidence of gonorrhea under current and 59 

alternative strategies for changing first-line empiric antibiotic treatment.  60 

• We found that compared to the current practice, a strategy that 1) uses quarterly surveillance estimates 61 

and 2) incorporates both the estimated prevalence of resistance and the trend in the prevalence of 62 

resistance to determine treatment guidelines could extend the effective lifespan of antibiotics without 63 

worsening the burden of gonorrhea. 64 

What Do These Findings Mean?  65 

• This work suggests an opportunity to optimize the use of surveillance systems to slow the spread of 66 

antibiotic-resistant strains and control the burden of gonorrhea.  67 

• This requires enhancing the surveillance systems (for example, by allowing for more frequent reporting of 68 

estimates and a larger number of observations) and the engagement of policy makers to turn surveillance 69 

findings into timely decisions.  70 

• Further studies are needed to investigate the generalizability of these conclusions.  71 

  72 



 

4 

 

 

Introduction 73 

Gonorrhea remains a globally significant sexually transmitted infection (550,000 reported cases in 2017 in the 74 

United States [1] and an estimated 87 million cases worldwide in 2016 [2]), and the recent descriptions of 75 

resistance to standard treatments has raised concern about the global emergence of untreatable infections [3,4]. 76 

The threat of spread of untreatable gonococcal infections highlights the need for strategies to maximize the 77 

lifespan of existing antibiotics while providing effective treatment for infected individuals.   78 

The selection of antibiotics used for gonorrhea treatment is almost always empiric and based on guideline 79 

recommendations, as the diagnosis is usually made by nucleic acid amplification test which does not inform on 80 

antibiotic susceptibility [5-7]. Even when culture is available, patients likely receive first-line empiric antibiotic 81 

treatment while awaiting drug-susceptibility results. In the United States, current treatment guidelines are based 82 

on the prevalence of antimicrobial resistance estimated by the Gonococcal Isolate Surveillance Project (GISP) [8],  83 

a sentinel surveillance system that monitors trends in antimicrobial susceptibilities of gonococcal strains in the 84 

United States [9]. 85 

Once the point estimate for prevalence of resistance to the first-line antibiotic exceeds 5% [8,10], the WHO 86 

guideline recommends switching to another antibiotic for empiric treatment [10]. However, there is limited 87 

evidence to support this 5% threshold. Increasing the threshold may extend the lifespan of second-line antibiotics 88 

by minimizing the use of these agents but at the cost of decreasing the probability that any given individual with 89 

gonorrhea receives effective first-line therapy. This could be associated with greater individual morbidity and may 90 

also lead to longer durations of infectiousness, facilitating further transmission of gonorrhea. In contrast, 91 

decreasing the switching threshold may increase the probability that each individual receives effective first-line 92 

therapy, but also would lead to earlier and more extensive use of second-line regimens, which would be expected 93 

to shorten their lifespan. Beyond the cross-sectional resistance proportion, other easily observed features of 94 

resistance emergence, such as tempo of change, could also be considered in designing optimal switching policy. A 95 

rapid rise in resistance proportion, for example, might prompt an earlier switch in recommended antibiotics than a 96 

slow increase [11].  97 

In this study, we used a transmission dynamic model to compare the performance of different decision rules that 98 

could inform the recommendations for the first-line therapy of gonococcal infections. Specifically, we considered 99 

whether the current switching strategy based on the 5% threshold from annually reported surveillance efforts is 100 

outperformed by policies that i) use different thresholds for the percentage of isolates that are resistant; ii) 101 

incorporate information on the trend in the percentage of isolates that are resistant; iii) and increase the frequency 102 

and/or size of drug resistance surveys. 103 
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Methods 104 

Treatment of gonococcal infections 105 

We considered a scenario in which three antibiotic drugs (Drug A, Drug B, and Drug M) are available for 106 

treatment of gonorrhea. Drug A represents first-line therapy, such as ceftriaxone or azithromycin [12], and Drug B 107 

represents an alternative antibiotic that may be suitable for the first-line treatment of gonorrhea, such as 108 

zoliflodacin [13] or gepotidacin [14], both of which have been over 95% effective against urogenital gonococcal 109 

infections in phase 2 trials. Drug M represents the last-line antibiotic for gonorrhea.   110 

We assumed that Drug B would be initially reserved for treatment of cases that fail treatment with Drug A. The 111 

selective pressure for resistance to Drug A increases as more cases of gonorrhea are treated with this drug  112 

Following the current strategy [8,10], one would remove Drug A from clinical use and replace it with Drug B 113 

once a specific threshold for resistance to Drug A is exceeded. Subsequently, those who fail first-line treatment 114 

with Drug B will be retreated with Drug M. Likewise, when the prevalence of resistance to Drug B reaches a pre-115 

defined threshold, Drug B will be removed from the first-line therapy and Drug M will be used for both first-line 116 

and second-line therapy.   117 

Adaptive guidelines to inform first-line treatment recommendations 118 

An efficient strategy to guide the first-line treatment recommendations strikes a balance between the need to 119 

maximize the effective lives of Drugs A and B with the goal of treating gonococcal infections with the most 120 

effective drug available. An adaptive guideline identifies the first-line therapy drug based on cumulative 121 

observations on the resistance characteristics of the ongoing gonorrhea epidemic. In this study, we compared the 122 

performance of four types of adaptive guidelines in terms of their ability to prolong the effective life of Drugs A 123 

and B, and to prevent gonorrhea (Table 1).  124 

Strategies ‘Threshold-Annual’ and ‘Threshold-Quarterly’ represent the guidelines that recommend switching to a 125 

new first-line drug once the resistance prevalence passes a certain threshold (e.g., 5%) [8,10]. They differ in how 126 

frequently the estimates of resistance prevalence are obtained and treatment recommendations are updated. The 127 

strategy ‘Threshold-Annual’ with a value of 5% represents the current practice as the estimates of resistance 128 

prevalence from surveillance systems (such as GISP in the United States) become available on yearly basis. The 129 

‘Threshold-Quarterly’ policy relies on the same annual number of susceptibility tests as in ‘Threshold-Annual,’ 130 

but it distributes them over four quarters. Therefore, it might be able to detect trends in resistance more quickly 131 

but at the expense of lowering the precision in the estimates of resistance prevalence.  132 

Strategy ‘Threshold + Trend’ seeks to detect the emergence of resistance to the first-line drug more proactively by 133 

using both estimates of resistance prevalence and the change in the resistance prevalence since the last year. 134 

Strategy ‘Enhanced Threshold + Trend’ is the same as strategy ‘Threshold + Trend’ except that the evaluation of 135 

resistance prevalence is performed quarterly with twice as many annual susceptibility tests as in the strategy 136 

‘Threshold + Trend’. Compared to the ‘Threshold + Trend’ strategy, the ‘Enhanced Threshold + Trend’ strategy 137 
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benefits from more frequent and a larger number of observations, which might facilitate the detection of 138 

statistically significant trends.  139 

A gonorrhea transmission dynamic model  140 

To evaluate the impact of these strategies on the overall burden of gonorrhea and antibiotic lifespans, we 141 

developed a stochastic compartmental model that describes the transmission of N. gonorrhoeae among men who 142 

have sex with men (MSM) in the United States (Fig. 1). About 42% of gonorrhea cases in 2017 were among 143 

MSM and the emergence of resistance among this population is of particular concern [1,5]. The model is adapted 144 

from Tuite et al (2017) [15] with additional details necessary to evaluate the strategies described in Table 1.  145 

In our model, susceptible individuals are at risk of infection with gonorrhea, and this risk varies by the prevalence 146 

of infection. Infected cases can be symptomatic or asymptomatic (Fig. 1A). Infected individuals are further 147 

divided to represent the resistance profile of the infecting strain: drug-susceptible infection (I0), infection resistant 148 

to Drug A (IA), infection resistant to Drug B (IB), and infection resistant to both Drugs A and B (IAB) (Fig. 1B). 149 

Asymptomatic cases do not seek treatment and remain infectious until they recover spontaneously or get detected 150 

through active screening (Fig. 1A). All symptomatic cases are assumed to seek treatment with some delay. Cases 151 

who seek treatment or are detected through screening will receive treatment with either Drug A, B, or M, 152 

depending on the current recommendation for the first-line therapy. If treated with an antibiotic to which the 153 

infecting strain is susceptible, the individual returns to the susceptible state. A portion of symptomatic individuals 154 

who fail the first-line treatment (due to receiving ineffective treatment or developing resistance) will seek 155 

retreatment with some delay. As soon as effective treatment is initiated, we assume that infected individuals no 156 

longer contribute to the force of infection (due to either negligible infectiousness and/or reduced sexual activity).  157 

Resistance may arise while an individual receives antibiotic treatment (Fig. 1B). To account for the fitness cost 158 

associated with resistance, we assumed that compared to susceptible strains, resistant strains are less transmissible 159 

[15], at least initially. Data from GISP indicate that despite the decrease in the use of tetracycline, penicillin, 160 

ciprofloxacin, cefixime, ceftriaxone, and azithromycin in recent years, the prevalence of resistance to these 161 

antibiotics has been fairly stable [1]. To produce simulated trajectories that allow for this persistence despite 162 

reduced use of these antibiotics, we allow the fitness cost of resistance to gradually decrease, consistent with the 163 

idea that the fitness costs may be compensated (see §S1.3 of the Supplementary Information) [16]. Additional 164 

details about the model are provided in the Supplementary Information. 165 

Model calibration and validation  166 

We used a Bayesian approach to calibrate our model against estimates of gonorrhea prevalence, the rate of 167 

reported gonorrhea cases in 2017, and the proportion of gonorrhea cases with symptoms. This calibration 168 

approach seeks to estimate the probability distributions of unknown parameters that result in simulated 169 

trajectories with good fit to the available epidemiological data [17]. We chose prior parameter distributions based 170 

on the available data, estimates and plausible ranges extracted from the literature, and expert opinion when 171 

estimates were unavailable (see Supplementary Information for additional details).  172 
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Comparing the performance of guidelines to inform first-line treatment recommendations 173 

We compare the performance of strategies to inform the first-line treatment recommendations (Table 1) based on 174 

the number of gonorrhea cases that could be averted with respect to the status quo (the “Threshold-Annual” 175 

strategy in Table 1 with 5% switch threshold) and the increase in the effective life of Drugs A and B. To measure 176 

the effective life of antibiotics, we note that the consumption of Drug M is inversely related to the effective 177 

lifespan of Drugs A and B. If resistance to Drug A and B rises quickly, implying a short effective lifespan for 178 

these drugs, all future cases of gonorrhea will be treated with Drug M. We therefore defined the effective lifespan 179 

of Drugs A and B as the area under the curve of the annual percentage of gonorrhea cases that are successfully 180 

treated with Drugs A or B over 50 years of simulation (i.e. ∑
𝑁𝐴(𝑡)+𝑁𝐵(𝑡)

𝑁𝐴(𝑡)+𝑁𝐵(𝑡)+𝑁𝑀(𝑡)
50
𝑡=1 , where 𝑁𝐴(𝑡), 𝑁𝐵(𝑡) and 181 

𝑁𝑀(𝑡) are the number of gonorrhea cases treated successfully with Drugs A, B, or M in simulation year 𝑡).  182 

If a strategy extends the effective lifespan of Drugs A and B by Δ𝐿 years, we estimate the number of additional 183 

cases of gonorrhea that would be treated successfully with first-line antibiotics under this strategy with 𝑆Δ𝐿

𝐿
, where 184 

𝑆 is the number of cases successfully treated with Drugs A or B, and 𝐿 is the effective lifespan of Drugs A and B 185 

under the status quo.   186 

The simulation window of 50 years was selected to ensure enough time for the resistance to emerge against Drug 187 

A and Drug B (in a sensitivity analysis, we set the simulation window at 25 years). We summarized results using 188 

the mean and 95% uncertainty interval (i.e. the interval between 2.5th and 97.5th percentiles of realizations) 189 

across 500 simulated trajectories. For the ‘Threshold + Trend’ and ‘Enhanced Threshold + Trend’ strategies 190 

(Table 1), the two thresholds used to inform switching (i.e. threshold for resistance prevalence and the threshold 191 

for change in the resistance prevalence) are determined using the optimization algorithm described in §S4 of the 192 

Supplementary Information text. 193 

Results 194 

We fitted our model against gonorrhea prevalence, the rate of reported gonorrhea cases in 2017, and the 195 

proportion of gonorrhea cases with symptoms, and estimated the proportion of cases resistant to Drugs A, B or 196 

both when 5,000 annual gonorrhea cases are tested for drug resistance during each simulation (Fig. 2). We used 197 

5,000 annual cases based on how many N. gonorrhoeae isolates were collected and tested through GISP in 2014 198 

(5,093 isolates) [5]. 199 

In Fig. 3(A), we report the trade-off between increasing the effective lifespan of antibiotics and reducing the 200 

annual incidence of gonorrhea. The origin in this figure represent the status quo in which switching policies are 201 

triggered when greater than 5% of the isolates tested are resistant [8,10]. Increasing this resistance-prevalence 202 

threshold for switching to new antibiotic drugs (moving toward top-right corner of Fig. 3(A)) increases the 203 

effective lifespan of Drugs A and B by using the existing drugs for a longer period. Increasing this switching 204 

threshold, however, leads to increases in the expected number of annual gonorrhea cases, since delaying the 205 

switch to a new antibiotic drug lowers the probability of receiving an effective first-line therapy, thereby 206 

extending the expected duration of infectiousness while these cases await detection of treatment failure and 207 
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treatment with effective second-line therapy. The blue curve in Fig. 3(A) has a slope of 15.3 at the origin. This 208 

implies that the 5% switch threshold represents a sacrifice of the effective lifespan of Drugs A and B by 1 year to 209 

avert an additional 15.3 gonorrhea cases per 100,000 MSM population per year.  210 

Fig. 3(A) also demonstrates that increasing the frequency at which first-line therapy recommendations are 211 

revisited could lead to a substantial increase in the effective lifespan of Drugs A and B without increasing the 212 

number of gonorrhea cases. Compared to the current policy, the ‘Threshold-Quarterly’ strategy could increase the 213 

effective lifespan of Drugs A and B by 0.82 years without increasing the number of gonorrhea cases (this is 214 

measured as the horizontal distance between the points where the curves in Fig. 3(A) crosses the x-axis). This is 215 

equivalent to successfully treating an additional 79.6 (47.4, 111.2) gonorrhea cases per 100,000 MSM population 216 

each year with Drugs A and B without worsening the burden of gonorrhea. 217 

Fig. 3(B) shows that the ‘Threshold + Trend’ strategy, which uses both the resistance prevalence and the change 218 

in resistance prevalence since the last year, outperforms the ‘Threshold-Annual’ strategy. Compared to the status 219 

quo, the ‘Threshold + Trend’ strategy could increase the effective lifespan of Drugs A and B by 0.83 years (which 220 

is equivalent to successfully treating an additional 80.1 (47.7, 111.9) gonorrhea cases per 100,000 MSM 221 

population each year with Drugs A and B) without increasing the incidence of gonorrhea. Specifically, the 222 

‘Threshold + Trend’ strategy which removes an antibiotic from the first-line therapy either when the resistance 223 

prevalence exceeds 10.1% or when the increase in the resistance prevalence from last year is greater than 1.6 224 

percentage points is expected to increase the effective life of Drugs A and B while preventing gonorrhea cases 225 

compared with the status quo.  226 

Fig. 3(C) demonstrates that the benefits of the ‘Threshold + Trend’ strategy can be enhanced when the evaluation 227 

of resistance prevalence is performed quarterly, and the annual number of gonorrhea cases tested for drug 228 

susceptibility is doubled. Compared to the current approach, the ‘Enhanced Threshold + Trend’ strategy could 229 

increase the effective lifespan of Drugs A and B by 0.88 years (which is equivalent to successfully treating an 230 

additional 85.6 (51.0, 119.5) gonorrhea cases per 100,000 MSM population each year with Drugs A and B) 231 

without worsening the burden of gonorrhea. 232 

Discussion 233 

We used a mathematical model of gonorrhea transmission to evaluate how different strategies to inform 234 

recommendations for the first-line treatment of gonorrhea would impact the effective lifespan of antibiotics and 235 

the incidence of gonorrhea in the U.S. MSM population. We used a Bayesian approach to calibrate the model to 236 

the estimated prevalence of gonorrhea, the rate of gonorrhea cases, and the proportion of cases presenting 237 

symptoms among MSM in the United States. We examined alternative strategies to inform the timing of shifts in 238 

first-line treatment regimen. These strategies respond to the data from surveillance systems 1) by revisiting the 239 

treatment guidelines more frequently (quarterly vs. annually), or 2) by considering not only the current resistance 240 

prevalence but also the increase in resistance prevalence since the last decision point to inform the first-line 241 

treatment recommendations. Our analysis showed that these adaptive strategies could extend the effective 242 

lifespans of existing antibiotics for the treatment of gonorrhea without exacerbating the burden of gonorrhea.  243 



 

9 

 

 

In the absence of rapid drug-susceptibility testing to determine the resistance profile of a gonococcal infection, the 244 

treatment of gonorrhea remains empiric and based on population surveillance. Historically, once the estimated 245 

resistance prevalence for the recommended first-line antibiotic exceeds 5%, it is replaced in the guidelines by a 246 

regimen with lower levels of population-wide resistance [8,10]. Our analysis suggests that the optimal choice of 247 

this threshold requires a tradeoff between the effective lifespan of antibiotics and the incidence of gonorrhea. 248 

Increasing this switch threshold would increase the effective lifespan of existing antibiotics but could also 249 

increase the burden of gonorrhea; conversely, decreasing this switch threshold would prevent more gonorrhea 250 

cases but the at the expense of reducing the effective lifespan of existing antibiotics. Using our mathematical 251 

model, we estimated that the 5% switch threshold currently used represents a tradeoff of forgoing a year of the 252 

effective life of existing antibiotics to avert an additional 15.3 cases of gonorrhea per year per 100,000 MSM 253 

population. Different decision rules could improve this relationship.  254 

Our analysis has a number of limitations. Our mathematical model describes the transmission of N. gonorrhoeae 255 

only among men who have sex with men (MSM) in the United States. The burden of gonorrhea and drug-resistant 256 

gonorrhea is particularly high in this sub-population [1,5] and hence, our conclusions might not be generalizable. 257 

For populations with lower burden of the disease, the benefits of adaptive strategies might diminish as the 258 

consequences of making suboptimal decisions would be less severe. While data from surveillance systems 259 

indicate an upward trend in the rate of gonorrhea cases among the MSM [1], we assumed that the incidence and 260 

prevalence of gonorrhea among this population are expected to be relatively stable around the 2017 estimates 261 

(Fig. 2). We did not model specific antibiotics and instead chose to model hypothetical drugs with characteristics 262 

similar to the antibiotics commonly used in treatment of gonorrhea. This allowed us to better capture the 263 

uncertainty in the characteristics of current and future antibiotics drugs (e.g. probability of resistance from 264 

treatment).  265 

Current CDC treatment guidelines for gonorrhea recommend dual therapy with ceftriaxone and azithromycin, but 266 

our decision model assumes that first-line therapy consists of only one antibiotic, such as those now in place in 267 

the UK [18]. Although our approach considers single antibiotic treatment for clarity, it can be extended to 268 

scenarios in which combination therapy is the first-line gonorrhea treatment. We assumed that once an antibiotic 269 

treatment for gonorrhea is abandoned because of the level of resistance, it will not be reintroduced. However, 270 

alternative stewardship and diagnostic strategies (e.g. the use of sequence-based diagnostics to identify the 271 

resistance profile [19]) suggest the possibility of reintroduction of these antibiotics. For example, a recent 272 

modeling study suggests that cefixime, which had previously been removed from clinical use due to increasing 273 

levels of resistance, could be reintroduced to treat a minority of cases, assuming that cefixime resistance incurs a 274 

fixed fitness cost [20].  275 

Our model did not account for site-specific infections although the percent of infections that are asymptomatic 276 

varies by anatomic sites [21-23]. While we assumed that estimates of resistance prevalence calculated from GISP 277 

data are representative of the MSM population, GISP includes isolates from the first 25 men (not only MSM) who 278 

have been diagnosed with urethral gonorrhea after attending sexually transmitted disease clinics in select U.S. 279 

cities. Our model assumes complete adherence to the first-line treatment guidelines. While the actual treatment 280 

regimens used in the population may differ from the recommended guidelines, recent studies estimate the 281 
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adherence to the CDC guideline for the treatment of gonorrhea to be around 80% [24]. Relaxing these 282 

assumptions could improve the accuracy of projections made by our model, but it is not expected to significantly 283 

affect the comparative evaluation of strategies considered here.  284 

Enhancing surveillance systems to enable more frequent reporting and evaluation of more gonococcal isolates 285 

would increase the cost of surveillance. While the cost-effectiveness of these proposed changes needs to be 286 

studied, the analysis presented here highlights the importance of maintaining effective surveillance systems and 287 

the engagement of policy makers to turn surveillance findings into timely decisions to better control the spread of 288 

drug-resistant gonorrhea [25]. In the future, decision support tools like the one we proposed in this paper could 289 

help policymakers to respond more efficiently to the rise of antibiotic-resistant gonorrhea, in a way that could 290 

prolong the effective lifespan of existing antibiotics and control the burden of the disease.  291 

While we await a breakthrough (new antimicrobial agents, novel molecular assays to determine susceptibility to 292 

antimicrobial agents, or a gonococcal vaccine), it is important to optimize the use of surveillance systems to 293 

minimize the burden of gonorrhea and to slow the spread of antibiotic-resistant strains. We demonstrated the 294 

potential for data from surveillance programs to be used in a more efficient and active way to prolong the 295 

effective lifespans of existing antibiotics without increasing the burden of the disease.  296 
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Figures 309 

 310 

 311 

 

Fig. 1: A stochastic gonorrhea transmission model. Dotted arrows represent new infection and red arrows represent 

resistance acquisition while under treatment. S represents susceptibles, I0 represents drug-susceptible infections, and IA, IB, 

and IAB represent infections resistant to Drug A, B, and both. Tx A, Tx B, and Tx M denote treatment with drugs A, B, and 

M. The expanded model structure is provided in the Supplementary Information (Fig. S1). The model is adapted from [15] 

with additional details necessary to evaluate the strategies in Table 1. 
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Fig. 2: Displaying 100 simulated trajectories from the calibrated model. The green dots in panels A-C 

represent the data or estimates the model is calibrated against: gonorrhea prevalence (2.0% [1.2%, 2.8%] [26,27] 

of MSM), the estimated rate of gonorrhea cases in 2017 (5,241.8 cases per 100,000 MSM [1]), and the proportion 

of gonorrhea cases among MSM that are symptomatic (67.9% [64.4-71.4%] [28]). In these simulated trajectories, 

the first-line treatment is changed when more than 5% of the annual gonorrhea cases are resistant to the first-line 

drug. 
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Fig. 3: Comparing the performance of policies in Table 1 with respect to the current policy. The origins in 

these figures reflect the current policy that recommends switching the antibiotic used for empiric treatment once 

the estimated resistance prevalence exceeds 5% [8,10]. The numbers on the curves of ‘Threshold-Annual’ and 

‘Threshold-Quarterly’ strategies represent the threshold of resistance prevalence to switch the first-line therapy of 

gonorrhea, and the two numbers on the curves of ‘Threshold+Trend’ and ‘Enhanced Threshold+Trend’ strategies 

represent the two thresholds used to inform switching: resistance prevalence (first %) and percentage point change 

in the resistance prevalence (second %).  
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Tables 314 

  315 

Table 1: Adaptive guidelines to inform first-line treatment recommendations for gonorrhea  

Strategies 

Frequency of 

Decision 

Making 

Annual 

Number of 

Tests for 

Resistance 

Epidemiolocal 

Estimates Used for 

Decision Making Policy Examples 

Threshold-

Annual 

Annually 5,000 Estimate of resistance 

prevalence 

Switch to a new first-line drug when the point 

estimate of the proportion of resistant isolates 

exceeds 𝜏%. 

Threshold-

Quarterly  

Quarterly 5,000 Same as Threshold Same as Threshold 

Threshold + 

Trend 

Annually 5,000 Estimate of resistance 

prevalence and change 

in the estimate of 

resistance prevalence  

Switch to a new first-line drug when point estimate 

of the proportion of resistant isolates exceeds 𝜏% or 

the change in the estimate of resistance since the last 

decision point exceeds 𝜃 percentage point.  

Enhanced 

Threshold + 

Trend  

Quarterly 10,000 Same as ‘Threshold + 

Trend’ 

Same as ‘Threshold + Trend’  
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Supplementary Information 407 

S1 Additional model details  408 

S1.1 Model population 409 

We developed a stochastic compartmental model to simulate the transmission of gonorrhea among the MSM 410 

population of age 14 or older in the United States (Fig. S1). A meta-analysis of U.S. population-based surveys 411 

estimated the proportion of MSM among male 13 and older at 3.9% [1]. According to the 2015 U.S. Census, the size 412 

of the male population of age 14 and older is 125,092,000 [2]. Therefore, we approximate the MSM population of 413 

age 14 and older at 4,878,588. We assumed that an individual stays in the model for an average of 35 years 414 

(representing the period when an individual could be sexually active).  415 

S1.2 Simulation approach  416 

To construct the model, we introduce the following notation:  417 

– 𝑖 ∈ {0, 𝐴, 𝐵, 𝐴𝐵}: resistance profile an infection (𝑖 = 0, drug-susceptible; 𝑖 = 𝐴, resistance to Drug A; 𝑖 = 𝐵, 418 

resistance to Drug B; and 𝑖 = 𝐴𝐵, resistance to both Drug A and Drug B); 419 

– 𝑠 ∈ {0,1}: symptom status (𝑖 = 0, asymptomatic, and 𝑖 = 1, symptomatic); 420 

– 𝑡: epidemic time; 421 

– 𝑁(𝑡): population size at time 𝑡; 422 

– 𝑆(𝑡): number of susceptibles at time 𝑡; 423 

– 𝐼(𝑖,𝑠)(𝑡): number of infected cases with resistance profile 𝑖 and symptom status 𝑠 at time 𝑡; 424 

– 𝑊(𝑖,𝑠)(𝑡): number of diagnosed cases at time 𝑡 waiting to receive the first-line therapy; 425 

– 𝑊(𝑖,𝑠)
′ (𝑡): number of diagnosed cases at time 𝑡 waiting to receive the second-line therapy. 426 

The state of the gonorrhea epidemic at any given time 𝑡 can be identified by a discrete-time Markov chain 427 

{(𝑆(𝑡), 𝐼(𝑖,𝑠)(𝑡), 𝑊(𝑖,𝑠)(𝑡), 𝑊(𝑖,𝑠)
′ (𝑡), 𝑖 ∈ {0, 𝐴, 𝐵, 𝐴𝐵}, 𝑠 ∈ {0,1}: 𝑡 = 0, Δ𝑡, 2Δ𝑡, 3Δ𝑡, … }, where Δ𝑡 is the time-step of 428 

the simulation (e.g. Δ𝑡 = 1 day). To generate epidemic trajectories for this model, we use Monte Carlo simulation to 429 

sample from this Markov chain using the following approach. Consider a particular compartment Z in which 430 

members depart due to 𝐽 events each of which is occurring at the rate 𝜇𝑗 , 𝑗 ∈ {1,2, … , 𝐽} . For example, members of 431 

Susceptible compartment may leave due to 1) infection with the susceptible strain, 2) infection with Drug-A resistant 432 

strain, 3) infection with Drug-B resistant strain, or 4) infection with a strain resistant to both drugs (i.e. 𝐽 = 4) (see 433 

Fig. S1). If the number of individuals in compartment Z at time 𝑡 is 𝑍(𝑡), then the number of individuals that leave 434 

this compartment due to events 𝑗 ∈ {1,2, … , 𝐽} follows a multinomial distribution with total counts of 𝑍(𝑡) and 435 

probabilities (𝑝0, 𝑝1, 𝑝2, … 𝑝𝐽), where 𝑝0 = 1 − 𝑒
∑ 𝜇𝑗𝛥𝑡

𝐽
𝑗=1  is the probability of not leaving the compartment Z during 436 

[𝑡, 𝑡 + Δ𝑡], and 𝑝𝑗 =
𝜇𝑗

∑ 𝜇𝑘𝛥𝑡
𝐽
𝑘=1

𝑒∑ 𝜇𝑘𝛥𝑡
𝐽
𝑘=1  is the probability of leaving the compartment Z during [𝑡, 𝑡 + Δ𝑡] due to the 437 

event 𝑗 ∈ {1,2, … , 𝐽}.  438 
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To identify the new epidemic state at the next time step, we first sample from the multinomial distributions 439 

associated to each compartment and then use these realizations to calculate the new epidemic state given the current 440 

epidemic state. The events that drive the epidemic are represented by black arrows in Fig. S1. For example, the 441 

number of susceptibles at time 𝑡 + Δ𝑡 can be calculated as:  442 

 

Fig. S1: Expanded model of gonorrhea transmission among the MSM population in the United States.  
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𝑆(𝑡 + Δ𝑡) = 𝑆(𝑡) 443 

− new infections susceptible to Drugs A and B  444 

− new infections resistant to Drug A 445 

− new infections resistant to Drug B 446 

− new infections resistant to Drug A and Drug B 447 

+ new population members . 448 

S1.3 Calculating the rate of infection  449 

We calculate the daily rate of infection with resistance profile 𝑖 ∈ {0, 𝐴, 𝐵, 𝐴𝐵} at time 𝑡 as: 450 

ℱ𝑖(𝑡) = 𝛽𝑖(𝑡) ∑
𝐼(𝑖,𝑠)(𝑡) + 𝑊(𝑖,𝑠)(𝑡) + 𝑊(𝑖,𝑠)

′ (𝑡)

𝑁(𝑡)
𝑠∈{0,1}

, (1) 451 

where 𝛽𝑖(𝑡) is the transmission parameter for resistance profile 𝑖 ∈ {0, 𝐴, 𝐵, 𝐴𝐵}. We let 𝛽0(𝑡) = 𝛽 and 𝛽𝑖(𝑡) =452 

𝛾𝑖(𝑡)𝛽 for 𝑖 ∈ { 𝐴, 𝐵, 𝐴𝐵}, where 0 ≤ 𝛾𝑖(𝑡) ≤ 1 represents the fitness cost associated with the resistance profile 𝑖 ∈453 

{𝐴, 𝐵, 𝐴𝐵}. To allow fitness cost to decrease over time, we let the relative transmissibility of the resistance profile 𝑖 ∈454 

{𝐴, 𝐵, 𝐴𝐵} increase over time according to: 455 

𝛾𝑖(𝑡) = 𝑏𝑖,𝑚𝑖𝑛 +
1 − 𝑏𝑖,𝑚𝑖𝑛

1 + 𝑒−𝑏𝑖(𝑡−𝑡𝑖,0)
. (2) 456 

Here, 𝑏𝑖,𝑚𝑖𝑛 ≥ 0, 𝑏𝑖 ≥ 0, and  𝑡𝑖,0 ≥ 0,. Fig. S2 displays how 𝛾(𝑡) changes over time and how the parameters of this 457 

function (i.e. 𝑏𝑖,𝑚𝑖𝑛, 𝑏𝑖, and  𝑡𝑖,0) impact this behavior. These parameters are determined through the calibration 458 

procedure described below.  459 

  

Fig. S2: Behavior of function 𝛾(𝑡) (defined in Eq. (2)) over time. In these figures, the non-varying parameters 

are set at the default values (𝑏𝑚𝑖𝑛, 𝑏, 𝑡0) = (0.3, 0.2, 25). 
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S2 Sampling error in estimating the resistance prevalence  460 

The decision about which antibiotic to include in the first-line treatment recommendation is based on estimates of 461 

resistance prevalence obtained from surveillance systems, such as GISP [3], by evaluating a limited number of 462 

gonorrhoeae isolates for drug susceptibility. Hence, the estimates of resistance prevalence are affected by sampling 463 

error. To account for this sampling error when evaluating the policies of Table 1 using our simulation model, we use 464 

the following approach. Let 𝑦𝑡 be the proportion of gonorrhea cases in the simulation year 𝑡 that are resistant. Since 465 

not all cases are tested for drug-susceptibility, we assumed that 𝑝𝑡  can be observed with some noise:  466 

�̂�𝑡 = 𝑦𝑡 + 𝜖𝑡 . 467 

Here we assume that 𝜖𝑡  follow a normal distribution with mean 0 and standard deviation √𝑦𝑡(1 − 𝑦𝑡)/𝑁, where 𝑁 is 468 

the number of gonorrhea cases tested for drug-susceptibility. Fig. 2D-F displays the estimated proportion of cases 469 

resistant to Drugs A, B or both when 𝑁 = 5,000 of annual gonorrhea cases are tested for drug resistance during each 470 

simulation. This assumption is informed by how many N. gonorrhoeae isolates are collected and tested through GISP 471 

in 2014 (5,093 isolates) [3]. 472 

S3 Model calibration  473 

The model is calibrated against estimates of gonorrhea prevalence (2.0% [1.2%, 2.8%] [4,5]), the annual gonorrhea 474 

rate in 2017 (5,241.8 cases per 100,000 MSM [6]), and the proportion of gonorrhea cases with symptoms (67.9% 475 

[64.4-71.4%] [7]). To approximate the likelihood of these observations given a simulated trajectory, we chose a 476 

pseudolikelihood function consisting of three components: 477 

S3.1 Component 1: Likelihood of gonorrhea prevalence 478 

We assume that the 2.0% [1.2%, 2.8%] [4,5] prevalence estimate is obtained by confirming gonorrhea in �̂� 479 

individuals out of a total of �̂� individuals evaluated for gonorrhea (hence, �̂� �̂�⁄ =0.02 and �̂� ). To calculate the likelihood 480 

of observing this outcome in year 𝑡 if a given simulated trajectory represents the reality, we assumed that �̂� follows a 481 

binomial distribution with �̂� trials and success probability 𝜏𝑡, where 𝜏𝑡 is the prevalence of gonorrhea in year 𝑡 of the 482 

simulation:  483 

𝐿1 = ∑ (�̂�
�̂�

) 𝜏𝑡
�̂�(1 − 𝜏𝑡)�̂�−�̂�

10

𝑡=1

. 484 

Here �̂� can be approximated by noting that the half-length of the confidence interval for the estimated prevalence is: 485 

𝐻𝐿 = 𝑡�̂�−1,𝛼/2√
𝜇(1 − 𝜇)

�̂�
, 486 

where 𝜇 = �̂� �̂�⁄   and 𝑡�̂�−1,𝛼/2 is the upper 𝛼/2  critical point for the t-distribution with �̂� − 1 degrees of freedom. By 487 

using 𝐻𝐿 =
0.028−0.012

2
= 0.08, 𝛼 = 0.05, and �̂� �̂�⁄ =0.02 in the above equation, we estimate �̂� at 1176.  488 
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S3.2 Component 2: Likelihood of annual rate of reported gonorrhea cases 489 

No confidence interval was reported for the estimated 5,241.8 cases of gonorrhea per 100,000 MSM in 2017 [6]. We 490 

assume that this estimate was with 20% error which is equivalent to having a reported confidence interval of [4193.4 491 

- 6290.2]. We assume that the estimate of 5,241.8 cases of gonorrhea per 100,000 MSM in 2017 [6] is calculated as 492 

�̂�/�̂� × 100,000, where �̂� is the number of gonorrhea cases observed in a sample MSM population of size �̂�. To 493 

calculate the likelihood of observing this outcome in year 𝑡 if a given simulated trajectory represents the reality, we 494 

assumed that �̂� follows a binomial distribution with �̂� trials and success probability 𝜌𝑡, where 𝜌𝑡 is the proportion of 495 

the simulated population year 𝑡 that got diagnosed with gonorrhea:  496 

𝐿2 = ∑ (�̂�
�̂�

) 𝜌𝑡
�̂�(1 − 𝜌𝑡)�̂�−�̂�

10

𝑡=1

. 497 

Here �̂� can be approximated by noting that the half-length of the confidence interval for the estimated annual rate of 498 

reported gonorrhea cases is: 499 

𝐻𝐿 = 100,000 × 𝑧𝛼/2√
𝜇(1 − 𝜇)

�̂�
,  502 

where 𝜇 = �̂�/�̂�  and 𝑧𝛼/2 is the upper 𝛼/2  critical point for the standard normal distribution. By using 𝐻𝐿 =500 

6290.2−4193.4 

2
= 1048.4, 𝛼 = 0.05, and �̂�/�̂� = 0.05242 in the above equation, we estimate �̂� at 1736. 501 

S3.3 Component 3: Likelihood of proportion of gonorrhea cases that are symptomatic 503 

The estimate for the proportion of gonorrhea cases with symptoms (67.9% [64.4-71.4%] [7]) is obtained from a study 504 

where �̂� = 466 of �̂� = 686 gonorrhea cases presented symptoms. To calculate the likelihood of observing this 505 

outcome in year 𝑡 if a given simulated trajectory represents the reality, we assumed that �̂� follows a binomial 506 

distribution with �̂� trials and success probability 𝑦𝑡, where 𝑦𝑡 is the proportion of gonorrhea cases in year 𝑡 of the 507 

simulation that are symptomatic: 508 

𝐿3 = ∑ (�̂�
�̂�

) 𝑦𝑡
�̂�(1 − 𝑦𝑡)�̂�−�̂�

10

𝑡=1

. 509 

S3.4 Total pseudolikelihood   510 

To summarize, we calculate the natural logarithm of the likelihood of observations given a simulated trajectory as: 511 

ln 𝐿 = ln 𝐿1 + ln 𝐿2 + ln 𝐿3. 512 

To improve the efficiency of the calibration procedure, we terminate the simulation of a trajectory once any of the 513 

following conditions is met:  514 

1. Gonorrhea prevalence falls out of the range [0.5%, 5%]. 515 

2. Annual rate of reported gonorrhea cases falls out of the range [1,000, 8,000],  516 

3. Annual percentage of gonococcal infections that are symptomatic less than 50%.  517 

Also, to make sure that resistance to Drugs A and B emerges during the simulation horizon (50 years), we eliminate 518 

trajectories where the prevalence of resistance to Drug A never reached 5%.  519 
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S3.5 Projections and estimating posterior distributions 520 

To build a set of trajectories to evaluate the performance of strategies in Table 1, we used a sampling / importance 521 

sampling algorithm to approximate the posterior distributions of model parameters [13,14]. We first simulate 𝑁0 =522 

 100,000 epidemic trajectories, each of which uses parameter values that are randomly drawn from the prior 523 

probability distribution of epidemic parameters listed in Table S1. These prior distributions are mainly informed by 524 

Table S1: Prior distributions and posterior intervals of model parameters  

Parameter Prior Distribution 

(All Uniform) 

95% Posterior 

Interval 

Sources to Inform Prior 

Distribution 

Transmission parameter (𝛽) [0, 10] (1.92, 6.41) Assumption 

Duration of infection (without treatment) 

(months) 

[1, 60] (5.1, 58.4) [8] 

Time until screened for infection (years) [0.5, 5.0] (0.6, 2.0) [8,9] 

Time until seeking treatment for a 

symptomatic infection (days) 

[1, 14] (1.4, 13.7) [7,8,10] 

Time until retreatment (days) [1, 14] (1.7, 13.6) [7,8] 

Probability that an infection will be 

symptomatic  

[10%, 90%] (38.1%, 67.9%) [8,9,11] 

Probability of retreatment after treatment 

failure with symptomatic infection 

[80%, 100%] (81.7%, 98.9%) [9] 

Probability of developing resistance while 

receiving Drug A 

10[−6, −4]  10(-5.98, -4.02) [9] 

Probability of developing resistance while 

receiving Drug B 

10[−6, −4] 10(-5.95, -4.02)  [9] 

Relative transmissibility of the strain resistant 

to Drug A (𝛾𝐴(𝑡)) 

   

𝑏𝐴,𝑚𝑖𝑛 [0, 1] (0.06, 0.98)  

𝑏𝐴 [0, 0.2] (0.006, 0.182)  

𝑡𝐴,0 [0, 30] (1.0, 29.3)  

Relative transmissibility of the strain resistant 

to Drug B or both drugs (𝛾𝐵(𝑡) and 𝛾𝐴𝐵(𝑡)) 

   

𝑏𝐵,𝑚𝑖𝑛 and 𝑏𝐴𝐵,𝑚𝑖𝑛   [0, 1] (0.05, 0.97)  

𝑏𝐵 and 𝑏𝐴𝐵 [0, 0.2] (0.013, 0.190)  

𝑡𝐵,0 and 𝑡𝐴𝐵,0 [0, 40] (1.3, 37.8)  

Initial gonorrhea prevalence [1%, 5%] (1.3%, 4.3%) [4,5] 

Initial proportion of gonococcal infections that 

are symptomatic 

[0%, 50%] (1.2%, 47.2%) Assumption 

Initial proportion of gonococcal infections 

resistant to Drug A 

[0%, 4%] (0.1%, 3.9%) [3,12] 

Initial proportion of gonococcal infections 

resistant to Drug B 

[0%, 4%] (0.2%, 3.9%) [3,12] 
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estimates extracted from existing scientific literature. When such estimates are not available, we identified prior 525 

distributions by experimenting with the model (“hand-fitting”) to ensure the model can produce simulated trajectories 526 

that are consistent with past observations.  527 

Let ln 𝐿𝑖 be the total pseudolikelihood for the simulation trajectory 𝑖 ∈ {1,2, . . 𝑁0}.  We calculated the likelihood 528 

weight of this trajectory as:  529 

𝑤𝑖 =
𝑒ln 𝐿𝑖

∑ 𝑒ln 𝐿𝑗𝑁0
𝑗=1

. 530 

After calculating 𝑤𝑖 for each simulated trajectory, we draw 500 trajectories, with replacement and based on 531 

likelihood weights 𝑤𝑖. We used the parameter values associated with these 500 trajectories to calculate the mean and 532 

  

Fig. S3: Displaying an illustrative simulated trajectory from the calibrated model. The green dots in panels 

A-C represent the data or estimates the model is calibrated against: gonorrhea prevalence (2.0% [1.2%, 2.8%] 

[4,5] of MSM), the estimated rate of gonorrhea cases in 2017 (5,241.8 cases per 100,000 MSM [6]), and the 

proportion of gonorrhea cases among MSM that are symptomatic (67.9% [64.4-71.4%] [7]). In these simulated 

trajectories, the first-line treatment is changed when more than 5% of the annual gonorrhea cases are resistant to 

the first-line drug. 
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95% posterior intervals of model parameters (Table S1).  Fig. S3 displays an illustrative simulation run from the 533 

calibrated model. 534 

S4 Identifying ‘Threshold- Trend’ strategies  535 

Here we propose an algorithm to identify parameters of ‘Threshold-Trend’ strategies, 𝜏 and 𝜃 (see Table 1) that 536 

result in a superior performance compared to the ‘Threshold-Annual’ strategy.  537 

Let 𝑞(𝜏, 𝜃) and 𝑣(𝜏, 𝜃) denote, respectively, the change in gonorrhea cases and in the effective lifespan of Drugs A 538 

and B under the ‘Threshold-Trend’ strategy with parameter (𝜏, 𝜃) compared to the ‘Threshold-Annual’ strategy with 539 

𝜏 = 5%. As discussed in the main text, minimizing 𝑞(𝜏, 𝜃) (i.e. averting more cases) may lead to decreasing 𝑣(𝜏, 𝜃) 540 

(i.e. lowering effective lifespan of Drugs A and B), and vice versa. To construct a single objective function that could 541 

be optimized, we use the net monetary benefit framework [15] and defined our objective function as 𝜔𝑞(𝜏, 𝜃) −542 

𝑣(𝜏, 𝜃), where 𝜔 represents the decision maker’s willingness to increase the consumption of Drug M by one dose to 543 

avert an additional gonorrhea case over the next 50 years.  544 

The slope of the curve at the origin of Fig. S4, which is 5.5, could be an estimate for 𝜔 if a decision maker chooses to 545 

follow the ‘Threshold-Annual’ strategy with 5% switch threshold. Higher switch thresholds correspond to lower  𝜔 546 

(moving to the lower left corner of Fig. S4) and higher switch thresholds correspond to higher 𝜔 (moving toward the 547 

upper right corner of Fig. S4). We use 𝜏(𝜔) and 𝜃(𝜔) to make it explicit that these thresholds are functions of 𝜔. 548 

Assuming that 𝜔 takes value over [𝜔𝐿 , 𝜔𝑈], our goal is to characterize functions 𝜏(𝜔) and 𝜃(𝜔) that minimizes: 549 

∫ [𝜔𝑞(𝜏(𝜔), 𝜃(𝜔)) − 𝑣(𝜏(𝜔), 𝜃(𝜔))]𝑑𝜔.
𝜔𝐻

𝜔𝐿

 550 

  

Fig. S4: The impact of chaning the switch threshod of the ‘Threshold’ policy (Table 1)  on the consumption of Drug M and 

the cases of gonorrhea averted over the 50 years of simulation. 
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Assuming that 𝜏(𝜔) = 𝜏0𝑒𝜏1𝜔 with 𝜏0 ≥ 0, and 𝜏1 ≤ 0, and 𝜃(𝜔) = 𝜃0𝜏(𝜔) with 0 ≤ 𝜃0 ≤ 1, we solve the 551 

following optimization problem to characterize 𝜏(𝜔) and 𝜃(𝜔): 552 

min
𝜏0,𝜏1,𝜃0

∫ [𝜔𝑞(𝜏(𝜔), 𝜃(𝜔)) − 𝑣(𝜏(𝜔), 𝜃(𝜔))]𝑑𝜔
𝜔𝐻

𝜔𝐿

(1) 553 

Subject To: 𝜏(𝜔) = 𝜏0𝑒𝜏1𝜔, 554 

𝜃(𝜔) = 𝜃0𝜏(𝜔), 555 

𝜏0 ≥ 0, 556 

𝜏1 ≤ 0, 557 

0 ≤ 𝜃0 ≤ 1. 558 

We solve the optimization problem (1) using a stochastic approximation algorithm described below.  559 

S4.1 Stochastic approximation algorithms  560 

The goal of stochastic approximation (SA) algorithms [16,17] is to find the minimizer of a function 561 

𝑓(𝑥) = E𝜉[𝐹(𝑥, 𝜉)], (2) 562 

which is the expected value of a stochastic function 𝐹(⋅) that depends on a random variable 𝜉. An example of 𝐹(⋅) 563 

could be the total number of gonorrhea cases during the next 20 years. It is a stochastic function since its value 564 

depend on many random events (represented by 𝜉) that may occur during this period. A simple version of SA 565 

algorithms generates the sequence of iterates: 566 

𝑥𝑛+1 = 𝑥𝑛 − 𝑝𝑛
𝑦𝑛

‖𝑦𝑛‖
, (3) 567 

where 𝑦𝑛 is an unbiased estimate of the derivative of 𝑓 at 𝑥 (i.e. ∇𝑓(𝑥𝑛)), ‖𝑦‖ is the Euclidean norm of the vector 𝑦, 568 

and 𝑝𝑛 is a sequence of positive step sizes with the properties that 𝑝𝑛 → 0 and ∑ 𝑝𝑛𝑛 = ∞ (e.g., 𝑝𝑛 =
𝑎0𝑏

𝑛+𝑏
, with 𝑎0 ≥569 

0 and 𝑏 ≥ 1).  570 

The derivative estimate 𝑦𝑛 = (𝑦𝑛
1, 𝑦𝑛

2, … , 𝑦𝑛
𝐾) can be obtained by:  571 

𝑦𝑛
𝑖 =

𝐹(𝑥𝑛
𝑖 + 𝜖𝑛𝑒𝑖 , 𝜉) − 𝐹(𝑥𝑛

𝑖 − 𝜖𝑛𝑒𝑖 , 𝜉)

2𝜖𝑛
, 𝑖 = 1,2, … , 𝐾, (4) 572 

where 𝑒𝑖 is a vector with 1 in the ith element and 0 elsewhere and 𝜖𝑛 is a sequence of positive step sizes with the 573 

property that 𝜖𝑛 → 0. 𝜖𝑛 is selected such that it approaches 0 at a slower rate than 𝑝𝑛 (e.g., 𝜖𝑛 = 𝑐0 √𝑛
−4

, with 𝑐0 ≥574 

0). One way to reduce the noise in estimating the derivatives is to use the same stream of random numbers in 575 

generating the realizations 𝐹(𝑥𝑛
𝑖 + 𝜖𝑛𝑒𝑖 , 𝜉) and 𝐹(𝑥𝑛

𝑖 − 𝜖𝑛𝑒𝑖 , 𝜉) when calculating 𝑦𝑛
𝑖 ’s. The pseudo-code of this 576 

algorithm is provided in Table S2. 577 

S4.2 Optimization settings 578 

To find (𝜏0, 𝜏1, 𝜃0) that optimizes problem (1), we applied the stochastic approximation algorithm in Table S2 with 579 

the following settings:  580 

𝐹(𝜏0, 𝜏1, 𝜃0; 𝜉) = 𝑄(𝜏0, 𝜏1, 𝜃0; 𝜉) + Υ([neg(𝜏0)]2 + [neg(−𝜏1)]2 + [neg(𝜃0)]2 + [neg(1 − 𝜃0)]2), (5) 581 
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where neg(𝑥) = 𝑥 if 𝑥 < 0, and neg(𝑥) = 0 if 𝑥 ≥ 0, Υ is the penalty factor to penalize a (𝜏0, 𝜏1, 𝜃0) that violates 582 

the feasibility constraints of the optimizes problem (1), and   583 

𝑄(𝜏0, 𝜏1, 𝜃0; 𝜉) =
1

3
∑ [𝜔𝑖𝑞(𝜏(𝜔𝑖), 𝜃(𝜔𝑖); 𝜉) − 𝑣(𝜏(𝜔𝑖), 𝜃(𝜔𝑖); 𝜉)]

3

𝑖=1
(6) 584 

is an approximation for the objective function (1). 585 

In Eq. (6), we set 𝜔1, 𝜔2, 𝜔3 to the slope of the curve in Fig. S4 at the smallest threshold, the 5% threshold, and the 586 

largest threshold, respectively (3.5, 5.5, 7.5).  For the results presented here, we applied stochastic approximation 587 

algorithm in Table S2 with 𝑁 = 1000, 𝑀 = 200 and selected Υ = 106 for the penalty factor in Eq. (5). To optimize 588 

a policy, we ran the algorithm with 𝑎0 ∈ {0.05, 0.1} , 𝑏 ∈ {10, 25, 50} and 𝑐0 ∈ {0.05, 0.1} and selected (𝜏0, 𝜏1, 𝜃0) 589 

that resulted in the highest  𝑓∗ across all combinations of  𝑎0, 𝑏, and 𝑐0. 590 

 
Fig. S5: A ‘Threshold-Trend’ Policy uses two thresholds to inform switching: resistance prevalence (𝝉) and percentage point 

change in the resistance prevalanece (𝜽). Here 𝝎 represents years of the effective lifespan of Drugs A and B that a decision 

maker is willing to sacrifice to avert an additional gonorrhea case per 100,000 MSM population per year. 

Table S2: Stochastic Approximation algorithm to find the minimum (𝒙∗) of a function 𝒇(𝒙) = E𝝃[𝑭(𝒙, 𝝃)] 

1. Choose the number of iterations 𝑁. 

2. Choose an initial value for 𝑥 (denoted by 𝑥0) 

3. Choose step size rule: 𝑝𝑛 =
𝑎0𝑏

𝑛+𝑏
, with 𝑎0 ≥ 0 and 𝑏 ≥ 1. 

4. Choose Step size rule for derivatives: 𝜖𝑛 = 𝑐0 √𝑛
−4

, with 𝑐0 ≥ 0. 

5. For 𝑛 = 0 to 𝑁: 

a. Set 𝑓𝑛 to a realization of 𝑓(𝑥) at 𝑥𝑛 (i.e. 𝐹(𝑥𝑛, 𝜉)). 

b. Estimate the derivative of 𝑓 at 𝑥𝑛 according to Eq. (4). 

c. Set 𝑥𝑛+1 ← 𝑥𝑛 − 𝑝𝑛
𝑦𝑛

‖𝑦𝑛‖
. 

6. Return 𝑥∗ = ∑ 𝑥𝑛
𝑁
𝑛=𝑁−𝑀 /𝑀 and  𝑓∗ = ∑ 𝑓𝑛

𝑁
𝑛=𝑁−𝑀 /𝑀, where 𝑀 is the number of last iterations to use to 

calculate 𝑥∗ and 𝑓∗ (e.g., 𝑀 = 0.2𝑁). 

 



 

11 
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