

Expanding the universe of cancer therapies by targeting aneuploidy

Our team – experienced biotech veterans and leaders in studying aneuploidy

Ali Fattaey, PhD. Formerly the CEO of Metabomed, formerly the CEO of Curis.

Rameen Beroukhim, MD PhD. PI at Dana-Farber. SAB at Scorpion Therapeutics.

Jason Sheltzer, PhD. PI at Yale. Cofounder of Meliora Therapeutics, SAB at Tyra Biosciences and BioIO.

Teresa Davoli, PhD. PI at NYU. SAB at io9.

Matthew Meyerson, MD PhD. Pl at Dana-Farber. Co-founder of Foundation Medicine.

Alison Taylor, PhD. Pl at Columbia.

Most cancer patients cannot currently be treated with a targeted therapy

Flaherty et al., JCO 2020

90% of cancers have massive chromosome copy number changes - a condition called aneuploidy

Normal genome

8

9

10

6

Cancer genome

12

Aneuploidy is ubiquitous in cancer but rare in normal tissue

We have made breakthroughs that allow us to model and target aneuploidy for the first time

Davoli Lab, Cell 2023 Beroukhim and Taylor Labs, Nature 2023 Sheltzer Lab, Science 2023

We have developed:

- Tools to generate cell line and organoid models with <u>specific aneuploid chromosomes</u>.
- Computational modeling to uncover the <u>genes</u> <u>that drive high-frequency aneuploidies</u>.
- Experimental and computational techniques to identify <u>tractable therapeutic vulnerabilities</u> in aneuploid cancers.

Targeting aneuploidy to tackle undruggable tumors

We now have an unprecedented opportunity to develop a coordinated, systematic attack on aneuploidy in cancer

Proof of principle: UCK2 substrates are selectively toxic to cancer cells with a trisomy of Chromosome 1q

of US cancer patients per year: >200,000

Sheltzer Lab, Science 2023

De-risking: genetic validation and generation of a tool compound to target cells with a specific aneuploidy

- We identified a druggable dependency that exhibits a 95% correlation with a specific aneuploidy.
- This aneuploidy is present in ~9% of all cancers.

Cellular validation (\$10k)

1q-disomy tumor

Happy to answer any questions!

"Aneuploidy addictions" - an evolutionary trap for drug resistance

- Certain aneuploidies are required for tumor formation.
- Therapies could select against specific aneuploidies but the resulting aneuploidy-loss cells will have lower tumor-forming potential!
- This creates an evolutionary trap, pushing cells toward a non-malignant state.

"Aneuploidy addictions" - an evolutionary trap for drug resistance

Aneuploidies: the most common genetic events in cancer

Shih et al., Nature 2023

Proof of principle - 7p gains

Chemical screen top hit in same pathway

