Identifying novel behavioral and protein biomarkers in addiction-related behaviors

Stephanie Groman, Ph.D. Department of Psychiatry Yale University

Addiction: a disorder of poor decision-making

- Taking drug in larger and longer amounts than intended
- Wanting to cut down or quit but not being able to
- Difficulty stopping or reducing drug use despite negative consequences

Ersche et al., 2008; Fillmore and Rush, 2003

Addiction: a disorder of poor decision-making

- Taking drug in larger and longer amounts than intended
- Wanting to cut down or quit but not being able to
- Difficulty stopping or reducing drug use despite negative consequences

Jentsch et al., 2002; Schoenbaum et al., 2003

Decision-making: a risk-factor for addiction?

Cervantes et al. 2013

Decision-making as a biomarker of addiction?

???

Poor decision-making

Addiction

Decision-making in the rat: Probabilistic reversal learning

Investigating decision-making in addiction pathophysiology

PRL assessments

Investigating decision-making in addiction pathophysiology

(saline or meth)

Investigating decision-making in addiction pathophysiology

Decision-making as a biomarker of addiction?

???

Poor decision-making

Addiction

PRL performance predicts earlystages of meth use

Decision-making as a biomarker of addiction?

Poor decision-making

Addiction

Self-administration of meth disrupts decision-making in PRL

Time x group: $F_{(1,16)}=4.81$; p=0.04Group: $F_{(1,16)}=16.94$; p=0.0008Time: $F_{(1,16)}=1.70$; p=0.21

Disruptions in PRL caused by experimenter administered meth

Groman et al., 2017

Decision-making: a biomarker of addiction

Poor decision-making

Delineating decision-making processes

Reinforcement learning model (Barraclough et al., 2004):

If trial is rewarded: $V(t) = \alpha * V(t) + \Delta_1$

If trial is unrewarded: $V(t) = \alpha * V(t) + \Delta_2$

Unchosen actions: $V(t) = \alpha * V(t)$ Three free parameters: **α = forgetting rate**

 retain action values longer

Δ_1 = appetitive strength of rewards

- f greater influence of rewards on choices
- Δ_2 = aversive strength of no reward
- greater influence of no rewards on choices

Decision-making processes that influence addiction vulnerability ???

Addiction

Appetitive strength of rewards predicts future drug use

Decision-making process disrupted by drugs

Poor decision-making

Addiction

???

Effects of meth on decisionmaking

 α parameter

Decision-making: a biomarker of addiction

 Δ_1 parameter

Poor decision-making

Addiction

 Δ_2 parameter

Decision-making and addiction interventions

Protein discovery with proteomics

Sample collection

Sample preparation

Protein digest (Trypsin) to create unique peptides for mass spec analysis

<u>Data analysis</u>

Compare protein measurements to decision-making phenotypes

Data processing

Matching peptides to protein sequences

Processing protein digests

Liquid chromatography for peptide separation Tandem mass spec to identify and quantify each peptide

Identifying behavior-protein correlates

Behavior-protein correlates (N=16)

PRL assessments

Tissue collection (ventral striatum)

Protein expression (LC-MS/MS)

Post-drug behavioralprotein correlates (N=18)

PRL assessments

Meth self-administration (6 h/day for 14 days)

PRL assessments

Tissue collection (ventral striatum)

Protein expression (LC-MS/MS)

Data processing

Proteins must be detected in at least 25% of samples. Abundance lower threshold was set at 10⁶

Protein-behavior correlates

p<0.05; not corrected for *multiple comparisons*

Isolating protein targets involved in addiction vulnerability

Criterion:

- Correlates with Δ₁ parameter in drugnaïve rats
- Correlates with Δ_1 parameter in drug-exposed rats
- Is NOT disrupted in rats exposed to meth

Protein targets involved in addiction vulnerability

Gene	Protein	Function	Link to addiction?
Ndufb10	NADH: ubiquinone oxidoreductase subunit B10	Subunit of mitochondrial membrane respiratory	Altered in alcohol preferring rats (McClintick et al., 2017)
Dpp10	Inactive dipeptidyl peptidase 10	Promotes surface expression of KCND2	
Setd7	Histone-lysine N- methyltransferase SETD7	Monomethylates Lys-4 of histone 3 (methylates nkkb and histones – wb hlk4); histone extraction; histone here repssive at lysine9	Genetic association with smoking behaviors (Thorgeirsson et al., 2010)
Sort1	Sortilin	Sorting receptor in the Golgi compartment	Low expression in high novelty seeking rats (Kabbaj et al., 2004)
Ryr2	Ryanodine receptor 2	Channel that mediates Ca2+ release from sarcoplasmic reticulum	Genetic association with impulsivity and gambling (Khadka et al., 2014; Lind et al., 2012)
Snx1	Sorting nexin-1	Intracellular trafficking	Reduced following meth CPP (Yang et al., 2008)
Gamt	Guanidinoacetate N- methyltransferase	Converts guanidoacetate to creatine	Reduced in alcohol dependent individuals (Sokolov et al., 2003)
Naa15	N(alpha)- acetyltransferase 15	Subunit of NatA complex; important for neuron growth	Gene expression disrupted in rats prenatally exposed to alcohol (Downing et al., 2012)
Atxn2l	Ataxin 2-like	Involved in stress granule and P- body formation	Genetic association with lifetime THC use (Pasman et al., 2018)

Addiction vulnerability proteins

- Ryr2 (ryanonide receptor 2): forms channels that transport Ca2+
 - Target for heart disease (might be difficult to target systemically)
- Snx1 (sorting nexin 1): involved in intracellular trafficking
 Possible role in regulating GIRK channels
- Atxn2I (Ataxin-2 like): unknown function but part of the spinocerebellar ataxia family
 - Seems to be important in dopamine signaling (Atxn2 KO mice have lower D2 receptors)

Isolating behaviorally relevant protein targets altered by meth

Criterion:

- Correlates with the Δ₂ parameter in drugnaïve rats
- Correlates with the Δ_2 parameter in methexposed rats
- Disrupted in rats exposed to meth

Rab3B: a mechanism for druginduced impairments?

Ras-related protein (Rab-3b)

- Monoameric GTPase protein enriched in synaptic vesicles
 - Involved in synaptic transmission and vesicle trafficking
- Knock down of Rab3B in the hippocampus impairs inhibitory LTD and improves reversal learning (Tsetsenis et al., 2011)
- Overexpression of Rab3B protects DA neurons from 6-OHDA insults (Chung et al., 2009)

Future studies

Reduce addiction vulnerability

- Increase expression of Ryr2, Snx1, or Atxn2I (via viral techniques)
 - Improve decision-making \rightarrow reduce drug taking

Restore decision-making

- Reduce Rab3B expression
 - Improve decision-making → reduced relapserelated behaviors

Summary

Ndufb10 Setd7 Dpp10 Ryr2 Sort1 Naa15 Gamt Snx1 Atxn2I

Addiction

Poor decision-making

Acknowledgements

Taylor Lab

Jane R. Taylor, Ph.D. Nathaniel Smith, Ph.D. Colby Keistler, Ph.D. Stacey Quick, Ph.D. Carol Gianessi Dayshalis Ofray

Nairn Lab

Angus Nairn, Ph.D. *Becky Carlyle, Ph.D.* (MGH) Rashaun Wilson, Ph.D.

<u>Yale/NIDA Proteomics Center</u> Jean Kanyo

