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SARS-CoV-2, the causative agent of COVID-19, has resulted in more than 3,000,000 infections and
200,000 deaths. There are currently no approved drugs or vaccines for the treatment or prevention of COVID-
19. Enhanced understanding of SARS-CoV-2 infection and pathogenesis is critical for the development of
therapeutics. To reveal insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2
we performed single-cell RNA sequencing of experimentally infected human bronchial epithelial cells (HBECs)
in air-liquid interface cultures over a time-course. This revealed novel polyadenylated viral transcripts and
highlighted ciliated cells as the major target of infection, which we confirmed by electron microscopy. Over
the course of infection, cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal
and club cells. Infection induces cell intrinsic expression of type I and type III IFNs and IL6 but not IL1.
This results in expression of interferon stimulated genes in both infected and bystander cells. Here, we have
conducted an in-depth analysis of SARS-CoV-2 infection in HBECs and provide a detailed characterization
of genes, cell types, and cell state changes associated with the infection.

1 Introduction

In December 2019, a novel viral pneumonia, now referred to as Coronavirus Disease 2019 (COVID-19),
was observed in Wuhan, China [1]. Severe Acute Respiratory Syndrome (SARS)- Coronavirus (CoV)-2,
the causative agent of COVID-19, has caused more than 3, 000, 000 infections and 200, 000 deaths in 187
countries. There are currently no approved drugs or vaccines for the treatment or prevention of COVID-
19. Enhanced understanding of viral pathogenesis at the cellular and molecular level is critical for enhanced
prognostic tools and novel therapeutics. Presentation is highly variable ranging from asymptomatic infection
to acute respiratory distress syndrome and death [2].
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CoVs are enveloped viruses with positive-sense, single-stranded RNA genomes ranging from 26–30 kb
[3]. Six human CoVs have been previously identified: HCoV-NL63 and HCoV-229E, which belong to the Al-
phacoronavirus genus; and HCoV-OC43, HCoV-HKU1, SARS-CoV, and Middle East Respiratory Syndrome
CoV (MERS-CoV), which belong to the Betacoronavirus genus [4]. In the past two decades, CoVs have
become a major public health concern due to potential zoonotic transmission, as revealed by the emergence
of SARS-CoV in 2002, which infected 8, 000 people worldwide with a mortality rate of 10–15%, and MERS-
CoV in 2012 and 2019, which infected 2, 500 people with a mortality rate of 35%, and now SARS-CoV-2
(WHO).

Tissue and cell tropism are key determinants of viral pathogenesis. SARS-CoV-2 entry into cells depends
on the binding of the viral spike (S) protein to its cognate receptor angiotensin-converting enzyme II (ACE2)
on the cell surface [2]. ACE2 is also the receptor for SARS-CoV and HCoV-NL63, yet these viruses induce
profoundly different morbidity and mortality suggesting unknown determinants of coronavirus pathogenesis
[5, 6]. Additionally, proteolytic priming of the S protein by host proteases is also critical for viral entry
[7]. The cellular serine protease Type II transmembrane (TMPRSS2) is used by SARS-CoV-2 for S protein
priming [8, 7, 9, 10]. This is also used by SARS-CoV alongside the endosomal cysteine proteases cathepsin
B and L [11, 12]. Another host protease, furin, has been suggested to mediate SARS-CoV-2 pathogenesis;
however, the precise role of host proteases in SARS-CoV-2 entry remains to be determined [13, 10].

SARS-CoV and MERS-CoV caused fatal pneumonia associated with rapid virus replication, elevation of
proinflammatory cytokines, and immune cell infiltration [14]. These characteristics are similarly observed
in SARS-CoV-2 infection. COVID-19 patients have increased levels of proinflammatory effector cytokines,
such as TNFα, IL1B, and IL6, as well as chemokines, such as CCL2 and CXCL10, especially in those who
are critically ill [15, 16, 17, 18]. These studies suggest that an over exuberant immune response characterized
by cytokine storm rather than direct virus-induced damage may be responsible for COVID-19 pathogenesis.
The cell types and mechanisms underlying this immune response are unclear for SARS-CoV-2.

Our knowledge of SARS-CoV-2 biology and pathogenesis is limited. To address this gap, we performed
single-cell (sc) RNA sequencing (RNA-seq) on organotypic human bronchial epithelial cells (HBECs) infected
with SARS-CoV-2. This culture system supports epithelial cell differentiation and mimics key aspects of the
mucosal epithelium. By utilizing scRNA-seq and electron microscopy, we revealed that ciliated cells are a
major target of SARS-CoV-2 infection. During the course of infection, cell tropism of SARS-CoV-2 extend
to other epithelial cells including basal and club cells. Furthermore, SARS-CoV-2 infection elicited intrinsic
expression of type I and type III interferons and IL6 but not IL1 transcripts. Interferon stimulated gene
(ISG) expression was observed in both infected and bystander cell populations. Here, we provide a detailed
analysis of SARS-CoV-2 infection in HBECs, characterizing SARS-CoV-2 transcription, cell tropism, host
gene expression and cell state related to infection.

2 Results

2.1 Viral infection dynamics

To characterize SARS-CoV-2 interactions with the human airway, we performed single-cell RNA sequencing
of SARS-CoV-2 infected airway epithelium. We cultured primary HBECs at an air-liquid interface (ALI)
for 28 days and then challenged the apical surface of the epithelium with 104 plaque forming units (PFU)
of SARS-CoV-2 (Fig 1A). Exponential viral replication over the course of the experiment was demonstrated
by qRT-PCR of cell lysate for the SARS-CoV-2 nucleocapsid (N) gene (Fig 1B). At 1, 2, and 3 days post-
infection (dpi), a single cell suspension was generated and 3’ single-cell RNA sequencing was performed on
77,143 cells across four samples cells per sample with an average of 31,383 reads per cell (Fig 1C, S1A).
To define SARS-CoV-2 infected cells, we mapped reads to the viral reference genome and quantified viral
transcript abundance on a per cell basis (Fig 1D). We defined productively infected cells as those with
at least ten viral transcripts per cell, which controls for background due to misaligned reads in the mock
sample. Consistent with the viral genome replication (Fig 1B), we observed a time-dependent increase in
the abundance of infected cells from 1 to 3 dpi (Fig 1E, S1B).

We first characterized the SARS-CoV-2 transcriptome at the single-cell level. In addition to the reads
expected to align immediately upstream of the canonical SARS-CoV-2 poly-A tail, our results show additional
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reads aligning elsewhere in the genome suggesting the existence of non-canonical, poly-adenylated sub-
genomic RNAs (sgRNAs) (Fig 1F, G). The distribution of polyadenylated viral transcripts shifts from 3’ to
5’ during the infection time-course (Fig 1F,G,S1C). Mapping of productive infected cells reveals multiple
infected cell clusters that expand over time and are not present in the mock sample (Fig 1H). Using RT-
PCR, we successfully validate two unique peaks, one that mapped in the middle of the Open Reading Frame
(ORF)1ab region, and a second peak that mapped near the ORF6 boundary (Fig S1D, top panel). Our
results confirm that RT-PCR products corresponding to each of the two peaks appears after 2 dpi (Fig S1D,
bottom panel, red arrows). Importantly, the absence of these RT-PCR bands in the mock and 1 dpi samples
suggests they are not the result of non-specific oligo-d(T) priming of cellular or viral RNAs. We included two
positive controls, amplifying RT-PCR products of increasing length from the canonical SARS-CoV-2 poly-A
tail (Fig S1D, bottom panel, green arrows). These RT-PCR bands appear as early as 1 dpi, are specific to
infected cells and run at their expected lengths. These positive controls validate that we are able to capture
known poly-adenylated viral transcripts with this RT-PCR priming strategy.

2.2 Identification of the cell tropism of SARS-CoV-2

The human airway is comprised of diverse epithelial cell types with critical functions in gas exchange,
structure, and immunity. We sought to determine the cellular tropism of SARS-CoV-2 in the bronchial
epithelium, as the airway is a critical target of viral pathogenesis. Clustering a BB-kNN graph by Louvain
community detection resulted in identification of eight major clusters comprising canonical epithelial cell
types: ciliated cells, basal cells, club cells, goblet cells, neuroendocrine cells, ionocytes, and tuft cells (Fig
2A, S2A). We also observed a cell population intermediate between basal cells and club cells (BC/Club)
likely representing basal stem cells differentiating into club cells. Analysis of differentially expressed genes
reveal these cell clusters express classical epithelial cell type-specific markers (Fig 2B). Mapping viral infected
cells within specified epithelial cell types reveals that ciliated, basal, club, and BC/Club cells are susceptible
to SARS-CoV-2 infection whereas goblet, neuroendocrine, tuft cells, and ionocytes are relatively resistant
to infection (Fig 2C,D). At 1 dpi, ciliated cells represent 83% of infected cells and continue to comprise the
majority of infected cells throughout infection (Fig 2E,F). However, during productive infection, the number
of infected basal, club, and BC/Club cells also increases, suggesting that these cells are major secondary
targets (Fig 2E,F). The distribution of polyadenylated viral transcripts along the length of the genome is
similar across infected cell types (Fig S2C).

To independently verify SARS-CoV-2 cell tropism, HBECs cultured under identical conditions as for
scRNA-seq were assessed by transmission electron microscopy. At 2 dpi, we observed numerous virus particles
approximately 80 nm in size in ciliated cells (Fig 2G). This is consistent with the known size distribution
of coronaviruses [19]. These particles were not observed in a mock control sample (Fig 2G). Together, this
confirms that ciliated cells are a major target of SARS-CoV-2 infection in the human bronchus.

2.3 Determinants of cell tropism

Next, we sought to determine the host transcriptional correlates of SARS-CoV-2 cell tropism. As viral
entry is the major determinant of cell tropism, we first investigated whether expression of the SARS-CoV-2
receptor ACE2 predicted infection. We observed ACE2 expression at low levels across ciliated, basal, club
and BC/club cells in the mock condition (Fig 3). Surprisingly, ACE2 expression was poorly correlated with
SARS-CoV-2 infection on a per cell basis (Spearman’s r between viral genome and ACE2 in ciliated cells,
-0.06, and between ACE2 and infection score in ciliated cells, 0.09). However, ACE2 expression was increased
in the four susceptible cell populations: ciliated, basal, club, and BC/club relative to the non-susceptible cell
types: neuroendocrine, ionocytes, goblet, and tuft cells (Fig S3). Notably, expression of ACE and CLTRN
which are structural homologs of ACE2 and the aminopeptideases ANPEP and DPP4 (the MERS receptor)
were also poorly correlated with SARS-CoV-2 susceptibility (Fig 3B-E).

ACE2 was recently demonstrated to be an ISG [20]. Here we observe a modest increase in ACE2 expres-
sion in both infected and bystander cells relative to the mock sample consistent with dynamic regulation
of ACE2 expression by the host innate immune response to SARS-CoV-2 (Fig 3B-E). To examine whether
expression of other potentially pro-viral genes explain SARS-CoV-2 cell tropism, we assessed the expression
of the proteases that may potentiate SARS-CoV-2 infection. The transmembrane serine protease TMPRSS2
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and cathepsin L have been implicated in SARS-CoV-2 entry [21]. We also examined the related protease
TMPRSS4 which cleaves influenza hemaglutinin, similar to TMPRSS2, and may also play a role in SARS-
CoV-2 entry [21, 22]. TMPRSS2 and CTSL were expressed predominantly in basal, club and ciliated cells
while TMPRSS4 was broadly expressed in all epithelial cell types. The specific role of proteases in governing
SARS-CoV-2 tropism in the human airway epithelium remains to be further elucidated.

2.4 Innate immune response to SARS-CoV-2 infection

We investigated the transcriptome to assess the host immune response to SARS-CoV-2 infection at single-cell
resolution in the human airway epithelium. We observed robust induction of both type I interferon (IFNB1)
and type III interferons (IFNL1, IFNL2, and IFNL3) in ciliated, basal, club, and BC/club cells co-expressing
SARS-CoV-2 transcripts (Fig 4). Interestingly, the kinetics of IFNB1 induction were delayed relative to type
III interferon. In contrast, there was scant IFN induction in uninfected ciliated, basal, club, and BC/club
cells. We also did not observe IFN induction in neuroendocrine, ionocytes, goblet, or tuft cells consistent
with these cell types not being major target cells of SARS-CoV-2 (Fig S4). This demonstrates direct viral
infection of a given cell is critical for interferon induction. Type I and III interferons signal through IFNAR
and IFNLR, respectively, resulting in expression of hundreds of ISGs. Consistent with this, we observed
broad ISG induction (IFI27, IFITM3, IFI6, MX1, and ISG15) in both infected and bystander cells of all cell
types (Fig 4, S4) suggesting IFN from infected cells is actingin trans on both infected cells and uninfected
bystander cells.

The host anti-viral response also results in chemokine induction leading to recruitment of immune cells,
a hallmark of severe COVID-19. Here, we observe induction of CXCL9, CXCL10, and CXCL11 which
propagate signals through the cognate CXCR3 receptor to recruit activated T cells and NK cells (Fig 4).
This induction was evident in infected but not bystander cells (Fig 4). In contrast, CCL2 and CXCL16 which
recruit monocytes and T cells, respectively, were not dynamically regulated over the conditions evaluated (Fig
4 and S4). We also observed substantial induction of the pro-inflammatory cytokine IL-6 in infected ciliated,
basal, club, and BC/club cells but not in uninfected bystander cells of these same populations. Interestingly,
expression of pro-inflammatory IL-1 was modestly downregulated in all cell types after infection whereas
IL-10 and TNFα expression were not significantly regulated by infection in this system (Fig 4).

2.5 Differentially expressed genes in response to SARS-CoV-2 infection

To determine how SARS-CoV-2 infection perturbed the cellular transcriptome, we computationally pooled
the three infected samples and analyzed the top 100 differentially expressed genes between infected and
uninfected bystander cells of a given cell type within the 1, 2, and 3 dpi samples (Fig 5A). PANTHER
gene ontology analysis revealed infected ciliated cells had increased expression of genes involved in apoptosis
(e.g. PMAIP1, SQSTM1, ATF3), translation initiation and viral gene expression (e.g. RPS12, RPL37A)
and inflammation (e.g. NFKBIA and NFKBIZ) compared to bystander cells (Fig 5B,C and differentially
expressed gene lists in Supplemental Files). Similar genes are enriched in other infected cell populations
(Fig S5). In contrast, infected ciliated cells showed significant downregulation of genes included in biological
processes involved in cilium function (e.g. DYNLL1), calcium signaling (e.g. CALM1, CALM2), and iron
homeostasis (e.g. FTH1, FTL; Fig 5B,C and S5). Together this suggests that SARS-CoV-2 infection
reprograms the cellular transcriptome, resulting in promotion of viral infection and potentially resulting in
cell dysfunction and apoptosis that contributes to COVID-19 pathogenesis.

3 Discussion

To effectively treat COVID-19, we must first understand how SARS-CoV-2 causes disease and why the
clinical presentation varies from asymptomatic infection to lethal disease. Here, we report the first longitu-
dinal single-cell transcriptomic analysis of SARS-CoV-2 infected respiratory epithelium using an established
organoid model that reproduces the orientation of airway epithelium. The transcriptional data generated is
of high quality, with an average of between 2,400 to 3,600 unique genes detected per condition. Our data
reveals several novel viral transcripts and our methodology differentiates infected from bystander cells. Fur-
ther, we demonstrate that ciliated cells are the major target cell of SARS-CoV-2 infection in the bronchial
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epithelium at the onset of infection and that cell tropism expands to basal, club, and BC/club cells over time.
We also reveal that SARS-CoV-2 potently induces IFN in infected cells resulting in broad ISG expression in
both infected and bystander cells. We also observe potent induction of the pro-inflammatory cytokine IL-6
and chemokines, which likely contribute to the inflammatory response in vivo.

Single-cell transcriptomics enabled us to elucidate the SARS-CoV-2 transcriptome at single-cell resolu-
tion in multiple primary cell types over time. We developed a novel method to differentiate productively
infected cell types by the distribution of the sub-genomic and genomic viral transcripts. We also identified
polyadenylated viral transcripts remote from the 3’ end of the viral genome, which was unexpected given
our sequencing method. Our RT-PCR validation experiments confirm the production of at least two unique,
TRS-independent transcripts with poly-A tails that do not appear to result from non-specific oligo-d(T)
priming. As the reported recombination rate for coronaviruses is high [23, 24] it is possible these short reads
correspond to non-specific polymerase jumping. However, recent studies have identified TRS-independent
chimeric RNAs produced during SARS-CoV-2 infection of Vero cells, a small portion (1.5%) of which are
fused in frame [25]. Taken together with our results, this may suggest non-canonical sub-genomic RNAs
with coding potential are produced during SARS-CoV-2 infection; however, this would require further val-
idation. HCoV-299E non-structural protein 8 (nsp8) was recently shown to possess template-independent
adenyltransferase activity [26]. Because poly-A tails play important roles in the stability and translation
potential of canonical SARS-CoV-2 sgRNAs, it is interesting to speculate that coronaviruses might rely on
the production of non-canonical, poly-adenylated sgRNAs to serve as decoys for cellular deadenylases. This
would result in preservation of the poly-A tails of the genomic and subgenomic RNAs. Indeed, the produc-
tion of sgRNAs during flaviviral infections is important for resistance to cellular exoribonucleases and innate
immune evasion [27, 28].

Identification of the cell types infected by SARS-CoV-2 informs pathogenesis. We find that SARS-CoV-2
infects ciliated cells, basal, club, and BC/club cells. This may result in aberrant function of these critical
cell types. Ciliated cells, which are abundant in the respiratory epithelium, propel mucus and associated
foreign particles and microbes proximally away from the lower airway. Our finding that ciliated cells are the
predominant target cell of SARS-CoV-2 infection in the bronchial epithelium has several important impli-
cations. First, dysfunction of ciliated cells by infection by SARS-CoV-2 may impair mucociliary clearance
and increase the likelihood of secondary infection. Second, asthma, chronic obstructive pulmonary disease,
and smoking are associated with both cilia dysfunction and increased severity of COVID-19. Whether these
underlying conditions alter ciliated cells and thus increase their susceptibility to infection remains unclear.
The cell tropism of SARS-CoV-2 in the nasal epithelium and lower airway remain important areas of future
investigation which will further enhance our understanding of COVID-19 pathogenesis.

Disease in COVID-19 patients is characterized by a lag following transmission with symptom onset at
day seven and disease severity peaking 14 days post infection [29, 30]. This is in contrast to seasonal human
coronaviruses and implicates an important role for the host immune response in COVID-19 progression.
Several recent studies have revealed seemingly contradictory roles regarding SARS-CoV-2 induced innate
immunity [31, 32]. Here, we show that the innate response to SARS-CoV-2 is intact and rapid, as charac-
terized by interferon, chemokine, and IL-6 induction. Interestingly, while we do not observe broad depletion
of virus-susceptible cell populations, we detect increased expression of cell-death associated genes, which
suggests the host anti-viral response is cytotoxic and may contribute to disease pathogenesis. Consistent
with this, IL-6 is a potent pro-inflammatory cytokine and serum IL-6 levels predict respiratory failure [33].
Therapies targeting the IL-6 receptor are currently in clinical trials for the treatment of COVID-19. This
work raises a number of important future directions including whether other airway and endothelial tissues
similarly interact with SARS-CoV-2 and how these interactions vary in vitro.

4 Methods

4.1 Air-liquid interface culture of HBECs

HBECs, from Lonza, were cultured in suspension in PneumaCult-Ex Plus Medium according to manufacturer
instructions (StemCell Technologies, Cambridge, MA, USA). To generate air-liquid interface cultures, HBECs
were plated on collagen-coated transwell inserts with a 0.4-micron pore size (Costar, Corning, Tewksbury,
MA, USA) at 5x104 cells/ml per filter and inserted into 24 well culture plates. Cells were maintained for
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the first 3 days in PneumaCult-Ex Plus Medium, then changed to PneumaCult-ALI Medium (StemCell
Technologies) containing the ROCK inhibitor Y-27632 for 4 days. Fresh medium, 100 µl in the apical
chamber and 500 µl in the basal chamber, was provided every day. At day 7, medium at the apical chambers
were removed, while basal chambers were maintained with 500 µl of PneumaCult-ALI Medium. HBECs were
maintained at air-liquid interface for 28 days allowing them to differentiate. Medium in the basal chamber
was changed every 2-3 days (500 µl).

4.2 Viral infection

SARS-CoV-2 isolate USA-WA1/2020 was obtained from BEI reagent repository. All infection experiments
were performed in a Biosafety Level 3 facility, licensed by the State of Connecticut and Yale University.
Immediately prior to infection, the apical side of the HBEC ALI culture was gently rinsed three times with
200 µl of phosphate buffered saline without divalent cations (PBS-/-). 104 plaque forming units (PFU) of
SARS-CoV-2 in 100 µl total volume of PBS was added to the apical compartment. Cells were incubated
at 37◦C and 5% CO2 for 1 hour. Unbound virus was removed and cells were cultured with an air-liquid
interface for up to three days. Infections were staggered by one day and all four samples were processed
simultaneously for single-cell RNA sequencing, as described below.

4.3 Sample preparation for single-cell RNA sequencing

Inoculated HBECs were washed with 1X PBS-/- and trypsinized with TrypLE Express Enzyme (Ther-
moFisher, Waltham, MA, USA) to generate single-cell suspensions. 100µl of TrypLE was added on the
apical chamber, incubated for 10 min at 37◦C in a CO2 incubator, and was gently pipetted up and down
to dissociate cells. Harvested cells were transferred in a sterile 1.5 ml tube and neutralized with DMEM
containing 10 percent FBS. An additional 100 µl of TrypLE was placed on the apical chamber repeating the
same procedure as above for a total of 30 min to maximize collection of cells. Cells were centrifuged at 300 x
g for 3 min and resuspended in 100 µl DMEM with 10 percent FBS. Cell count and viability was determined
using trypan blue dye exclusion on a Countess II (ThermoFisher Scientific). The targeted cell input was
10,000 cells per condition. The Chromium Next GEM (Gel Bead-In Emulsion) Single Cell 3’ Gel beads v3.1
kit (10X Genomics, Pleasanton, CA, USA) was used to create GEMs following manufacturer’s instruction.
All samples and reagents were prepared and loaded into the chip and ran in the Chromium Controller for
GEM generation and barcoding. GEMs generated were used for cDNA synthesis and library preparation
using the Chromium Single Cell 3’ Library Kit v3.1 (10X Genomics) following the manufacturer’s instruc-
tion. Generated libraries were sequenced on NovaSeq 6000 system using HiSeq 100 base pair reads and dual
indexing. Cells were sequenced to an average depth of 31,383 reads per cell. The human genome, Ensembl
GRCh38.98.gtf, and the SARS-CoV-2 genome, NCBI Genome database accession MT020880.1, were com-
bined and used for alignment. We ran the standard 10x Genomics cellranger pipeline with a combined human
and SARS-CoV-2 genome to obtain count matrices for each of the 4 growth conditions. Per condition, there
were an average of between 10,000 to 15,000 counts per cell or an average of 2,400 to 3,600 unique genes
detected per condition.

4.4 Quantitative RT-PCR of SARS-CoV2

Viral RNA from SARS-CoV-2 infected HBEC cell lysates was extracted using TRIzol (Life Technologies)
and purified using Direct-zol RNA MiniPrep Plus according to manufacturer’s instructions (Zymo Re-
search, Irvine, CA, USA). A two-step cDNA synthesis with 5 µl RNA, random hexamer, and ImProm-
II Reverse Transcriptase (Promega, Madison, WI, USA) was performed. The qPCR analysis was per-
formed in duplicate for each of the samples and standard curves generated using SARS-CoV-2 nucleocapsid
(N1) specific oligonucleotides from Integrated DNA Technologies (Coralville, IA, USA): Probe: 5’ 6FAM
ACCCCGCATTACGTTTGGTGGACC-BHQ1 3’; Forward primer: 5’ GACCCCAAAATCAGCGAAAT 3’;
Reverse primer: 5’ TCTGGTTACTGCCAGTTGAATCTG 3’. The limit of detection was 10 SARS-CoV-
2 genome copies/µl. The virus copy numbers were quantified using a control plasmid which contain the
complete nucleocapsid gene from SARS-CoV-2.
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4.5 Validation of polyadenylated SARS-CoV-2 transcripts

Huh7.5 cells grown in DMEM containing 10 percent FBS were infected with 104 PFU of SARS-CoV-2 and
cell lysates were harvested at 0, 1, 2, and 3 dpi. Using 0.3 µg total RNA extracted from mock or SARS-
CoV-2-infected Huh7.5 cells at different time points, reverse transcription was performed with oligo-d(T)20
(ThermoFisher) and MarathonRT, a highly processive group II intron-encoded RT. MarathonRT purification
and RT reactions were performed as previously described [34]. PCR (NEBNext Ultra II Q5 R©Master Mix,
NEB, Ipswich, MA, USA) was performed with a gene-specific forward primer designed 700-nt upstream of
the apparent boundary between the SARS-CoV-2 genome body and the putative poly-A tail. Oligo-d(T)20
was used as a reverse primer. Touchdown PCR cycling was used to enhance specificity of the PCR reaction.
RT-PCR products were resolved on a 1.3% agarose gel with ladder (100 bp DNA Ladder, 1 kb Plus DNA
Ladder, Invitrogen). Forward PCR oligonucleotides used in this experiment are below, which includes two
positive controls.

Primer Name Position on Genome 5’-3’ Sequence:
F Val 1 7700 GAGAGACTTGTCACTACAGTTTAAA
F Val 2 26650 AATTTGCCTATGCCAACAGGA
F Val (+)ve 1 28600 AGATCTCAGTCCAAGATGGTA
F Val (+)ve 2 29000 GGTAAAGGCCAACAACAACAA

4.6 Electron microscopy

The cells were fixed using 2.5% glutaraldehyde in 0.1M phosphate buffer, osmicated in 1% osmium tetroxide,
and dehydrated in increasing ethanol concentrations. During dehydration, 1% uranyl acetate was added to
the 70% ethanol to enhance ultrastructural membrane contrast. After dehydration the cells were embedded
in Durcupan. 70 nm ultrathin sections were cut on a Leica ultramicrotome, collected on Formvar coated
single-slot grids, and analyzed with a Tecnai 12 Biotwin electron microscope (FEI).

4.7 ScRNA-seq data analysis

4.7.1 Cell type annotation

We used the standard scRNA-seq analysis pipeline for clustering [35]. Briefly, to account for transcript
dropout inherent to scRNA-seq, we removed genes that were expressed in fewer than 3 cells and removed
cells that expressed fewer than 200 genes. Next, we filter out cells with more than 10 percent of mitochondrial
genes. We did not find a correlation between viral copy number and mitochondrial expression. The resulting
raw unique molecular identifier (UMI) counts in each cell were normalized to their library size. Then,
normalized counts were square-root transformed, which is similar to a log transform but does not require
addition of a pseudo count. Data pre-processing was performed in Python (version 3.7.4) using Scanpy
(version 1.4.6) [36].

We visually observed batch effects between conditions in 2-dimensional cellular embeddings. To remove
these batch effects for clustering, cell-type annotation, and visualization, we used an approximate batch-
balanced kNN graph for manifold learning (BB-kNN batch-effect correction) using Scanpy’s fast approxi-
mation implementation [37, 36]. BB-kNN assumes that at least some cell types are shared across batches
and that differences between batches for a same cell type are lower than differences between cells of different
types within a batch. For each cell, the 3-nearest neighboring cells in each condition were identified by
Euclidean distance in 100-dimensional Principal Component Analysis (PCA) space. This kNN graph was
used as the basis for downstream analysis.

To visualize the scRNA-seq data we implemented various non-linear dimension reduction methods and
used the BB-kNN batch-corrected connectivity matrix as input for Uniform Manifold Approximation and
Projection (UMAP) [38] and Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE)
[39]. UMAP projections were generated using a minimum distance of 0.5. PHATE projections were generated
with a gamma parameter of 1.

For cell clustering we used the Louvain community detection method [40] with the BB-kNN graph. We
used high-resolution community detection and merged clusters based on expression of bronchial epithelium
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cell-type markers in order to isolate some rare cell types, e.g. Tuft cells [41, 42]. To annotate the different cell
types present in HBECs we analyzed expression of a range of marker genes that were reported in a molecular
cell atlas from Travaglini et al. [41]. We focused on 8 cell types: (i) Basal cells (KRT5, DAPL1, TP63),
(ii) Ciliated cells (FOXJ1, CCDC153, CCDC113, MLF1, LZTFL1), (iii) Club cells (SCGB1A1, KRT15,
CYP2F2, LYPD2, CBR2), (iv) BC/club (KRT4, KRT13), (v) Neuroendocrine cells (CHG1, ASCL1), (vi)
Tuft cells (POU2F3, AVIL, GNAT3, TRPM5), (vi) Ionocytes (FOXI1, CFTR, ASCL3) and (viii) goblet cells
(MUC5AC, MUC5B, GP2, SPDEF).

4.7.2 Infection threshold and infection score

Counting a viral transcript in a cell does not mean the cell is infected, as this count can come from virus
attached to the surface of the cell, ambient virus in the suspension, or from read misalignment. Given the
reported shared 3’ poly(A) tail in coronavirus transcripts [43], we were unsure whether we could correctly
capture the different ORFs using the 10x Genomics 3’ gene expression library. Therefore, we aligned the
viral reads to a genome-wide single ”exon,” i.e., a count is given for a read mapped to SARS-CoV-2 ORFs
and intergenic regions. These counts were used to infer individual cells’ infectious state. To filter out cells
with viral genome transcript counts that may result from viral-cell surface attachment, ambient virus in the
droplet suspension, or read misalignment, we considered infected cells to have ≥ 10 viral transcripts counts.
This value was determined by a threshold of viral counts in the mock condition. While the mock condition
is not expected to have viral counts, we did observe a small number that we attribute to misalignment. We
observed only 5 mock cells with full SARS-CoV-2 viral genome transcript counts ≥ 10 transcripts. These
criteria allowed us to find 144 infected cells at 1 dpi, 1428 cells at 2 dpi and 3173 cells at 3 dpi.

To quantify the extent to which an individual cell is transcriptionally similar to an infected cell, we used
a previously developed graph signal processing approach called Manifold Enhancement of Latent Dimensions
(MELD) [44]. We encoded a raw experimental score for each cell in the dataset such that -1 represents a
bystander or uninfected cell and +1 represents an infected cell. Using the kernel from the BB-kNN graph
(described above), these raw scores were smoothed in the graph domain, yielding an ”infection score” per
cell that represents the extent to which an individual cell is transcriptionally similar to infected cells. For
summary statistics, this score was stratified by cell type and condition.

4.7.3 Viral genome read coverage analysis

To visualize the viral read coverage along the viral genome we used the 10X Genomics cellranger barcoded
binary alignment map (BAM) files for every sample. We filtered the BAM files to only retain reads mapping
to the viral genome using the bedtools intersect tool. We converted the BAM files into sequence alignment
map (SAM) files in order to filter out cells that were removed in our single cell data preprocessing pipeline.
The sequencing depth for each base position was calculated using samtools count. To characterize read
distribution along the viral genome we counted transcripts of 10 different ORFs: ORF1ab, Surface glycopro-
tein (S), ORF3a, Envelope protein (E), Membrane glycoprotein (M), ORF6, ORF7a, ORF8, Nucleocapsid
phosphoprotein (N) and ORF10.

4.7.4 Differential Expression Analysis

To find differentially expressed genes across conditions, we used a combination of three metrics: the Wasser-
stein or Earth Mover’s distance, an adjusted p-value from a two-sided Mann-Whitney U test with continuity
and Benjamini-Hochberg correction, and the binary logarithm of fold change between mean counts. Signifi-
cance was set to padjusted ≤ 0.01. The Earth Mover’s distance, or 1-dimensional Wasserstein distance can be
defined as the minimal cost to transform of distribution to another, and was previously used to assess gene
expression that significantly differ between conditions [45, 46]. We performed several binary comparisons for
each timepoint and for pooling 1, 2, and 3 dpi: infected vs. bystander, infected vs. mock cells, and bystander
vs. mock cells. The 30 most differentially expressed genes (up- or downregulated, ranked by Wasserstein dis-
tance) in each condition, cell type, and analysis were represented in heatmaps. To identify putative cellular
functions changed across conditions, we performed PANTHER-GO [47] statistical over-representation tests
for up-regulated genes in each cell type and condition separately, using the default Human PANTHER-GO
reference list as a background.
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5 Code and Data Availability

All differential gene expression analyses and their associated metrics are publicly available at the Van Dijk
Lab GitHub: https://github.com/vandijklab. The scRNA-seq data will be made publicly available around
two weeks after pre-print submission, to allow time for finalizing the manuscript. The data will be deposited
in the NCBI Geo database.
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Figure 1: Caption next page.
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Figure 1: scRNA-seq reveals SARS-CoV-2 infection of HBECs. A. Schematic of the experiment. Human
bronchial epithelial cells (HBECs) were cultured and infected or not (mock) with SARS-CoV-2. Infected
cultures were collected for scRNA-seq at 1, 2 and 3 days post infection (dpi). B. RT-qPCR in cultured
HBEC to detect viral transcripts at each dpi (copies/well). C. UMAP visualization of the scRNA-seq gene
counts after batch correction. Each point represents a cell, colored by sample. D. Normalized counts of
viral counts in each condition. For each cell, viral counts were determined by aligning reads to a single,
genome-wide reference. E. Percent of cells infected by SARS-CoV-2, based on a viral genes count threshold
(see Materials and Methods) F. Normalized heatmap of the viral Open Reading Frame (ORF) counts in each
condition. Reads were aligned to each 10 SARS-CoV-2 ORFs. G. Coverage plot of viral reads aligned to
SARS-CoV-2 genome. The sequencing depth was computed for each genomic position for each condition. As
infection progresses, coverage becomes more dispersed on the genome. H. UMAP visualizations of infected
and bystander cells in each condition after batch correction. Bystander cells are defined as cells that remained
uninfected in infected HBEC samples.
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Figure 2: Caption next page.
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Figure 2: SARS-CoV-2 cell tropism. A. UMAP visualization of the cell clusters manually annotated. Cells
were first clustered with the Louvain algorithm, then annotated according to a panel of marker genes.
B. Violin plot of annotation marker genes and SARS-CoV-2 putative relevant genes based on the recent
literature. C. Uniform Manifold Approximation and Projection (UMAP) visualization of the normalized
counts of SARS-CoV-2 reads. Reads were determined here as in Figure 1D.D. Proportion of infected cells
across conditions and cell types. E. Histogram of the number of infected cells per cell type across conditions.
F. Infection score inferred from Manifold Enhancement of Latent Dimensions (MELD) showing extent of
infection per cell stratified by cell time. G. Transmission electron microscopy image of mock (left) and
SARS-CoV-2 human bronchial epithelial cell (HBEC) at 2 days post infection (dpi) (right). Scale (bottom)
corresponds to 500 nm. Red arrows denoted virus particles and black arrows cilia.

16

.CC-BY-NC 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 7, 2020. . https://doi.org/10.1101/2020.05.06.081695doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081695
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: Caption next page.
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Figure 3: Expression of known entry determinants across bronchial epithelial cell types. A. UMAP visual-
izations, colored by expression of four receptors and proteases expressed in human bronchial epithelial cells
(HBECs): ACE2, TMPRSS2, TMPRSS4 and CTSL. B-E. Heatmaps of receptors and proteases in ciliated
(B.), basal (C.), club (D.) and BC/Club cells (E.).

Figure 4: Caption next page.
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Figure 4: Innate immunity markers in SARS-CoV-2 infection. A-D. Heatmaps of cytokines, chemokines,
interferons and interferon-stimulated genes in ciliated (A.), basal (B.), club (C.) and BC/Club cells (D.)

Figure 5: Expression of differentially expressed genes. A. Schematic of the differential expression analysis.
Two main cell populations are observed : bystander cells that were not infected by the virus at 3 days post
infection (dpi) and infected cells that contain active viral replication and transcription at 3 dpi. B. Volcano
plots highlighting the most differentially expressed genes between infected and bystander cells in ciliated cells
at 3 dpi as measured by earth mover’s distance (EMD). C. Heatmap of the most differentially expressed
genes between uninfected, infected and bystander cells in ciliated cells in all conditions.
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Figure S1: Caption next page.
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Figure S1: SARS-CoV-2 viral genome transcript counting to determine infections state. A. PHATE vi-
sualization of the scRNA-seq gene counts after batch correction. Each point represents a cell. Cells were
colored according to their samples. B. UMAP visualization of the mock sample, 1 dpi, 2 dpi and 3 dpi are
represented in Figure 1. C. Histograms of viral transcript counts per cell on a logarithmic scale for each
condition. D. Top panel: Schematic of reads aligning across the SARS-CoV-2 genome. Red boxes indicate
mapped reads validated with RT-PCR, including two previously unreported poly-adenylated transcripts (A,
B). Bottom panel: RT-PCR spanning the junctions between poly-A tails and SARS-CoV2 genome body
for non-canonical transcripts (Peaks A, B) and two positive controls (Peaks C, D). The products were run on
agarose gels. Red arrowheads denote the expected amplicons for novel transcripts, while green arrowheads
denote amplicons for the natural viral 3’end.
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Figure S2: Caption next page.
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Figure S2: SARS-CoV-2 cell tropism and SARS-CoV2 sub-genomic expression across bronchial epithelial cell
types. A. PHATE visualization of the cell types. B. Histogram of the average raw counts of viral transcripts
per cell type across conditions. C. Normalized heatmap of the viral Open Reading Frame (ORF) counts in
each cell type across three conditions: 1 dpi, 2 dpi and 3 dpi. D. Heatmap displaying expression of marker
genes for each cell types and SARS-CoV-2 putative relevant genes.

Figure S3: Caption next page.

Figure S3: Expression of known entry determinants across bronchial epithelial cell types. A-D. Heatmaps
of receptors and proteases in neuroendocrine cells cells (A.), ionocytes (B.), goblet cells (C.) and tuft cells
(D.).
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Figure S4: Innate immunity markers in SARS-CoV-2 infection. A-D. Heatmaps of cytokines, chemokines,
interferons and interferon-stimulated genes in neuroendocrine (A), ionocytes (B), goblet (C) and tuft cells
(D).
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Figure S5: Caption next page.
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Figure S5: Expression of differentially expressed genes. A. Normalized heatmaps of the 30 most differentially
expressed genes between uninfected, bystander and uninfected cells across cell types and conditions. Left to
right : basal cells, BC/Club cells, club cells, neuroendocrine cells, ionocytes, goblet cells and tuft cells. B.
Volcano plots highlighting the most differentially expressed genes between bystander and uninfected cells in
ciliated cells.
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