

udy Center, Yale University School of Medicine; ²Duke Center for Autism and Brain Development, Duke University; ³Department of Pediatrics, Children's Hospital Los Angeles; ⁴Emergency Medicine, Yale University School of Medicine; ⁵Center for Child Health, Behavior, and Development, Seattle Children's Research Institute; ⁶Department of Psychiatry and Behavioral Science, University of Washington School of Medicine; ⁹Center On Human Development and Disability, University of Washington; ⁸Department of Radiology, University of Washington; ⁸Department of Rediology, University of Washington School of Medicine; ⁹Center On Human Development and Disability, University of Washington; ⁸Department of Rediology, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁸Department of Rediology, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁸Department of Rediology, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, University of Washington; ⁹Center On Human Development and Disability, ⁹Center On Human Development and Disability, ⁹Center On Human Dev Radiology, University of Washington School of Medicine; ¹⁰Department of Biostatistics, University of California Los Angeles; ¹¹Department of General Pediatrics, University of Washington School of Medicine; ¹²Center for Brain and Mind Health, Yale University School of Medicine

Background

- Autistic individuals exhibit different patterns of resting-state EEG power spectra compared to neurotypical individuals.¹
- These differences (i.e., elevations in resting gamma power and reductions in relative alpha power) are thought to represent possible biomarkers for autism spectrum disorder (ASD).¹
- Distinct power spectra have also been observed in Major Depressive Disorder and Anxiety Disorder.^{2,3}
- Anxiety and depression frequently co-occur in ASD; thus, understanding relationships among anxiety and depression and resting EEG in ASD could inform biomarker development.^{4,5}

Objectives

- Examine how resting-state EEG power varies as a function of parentreported anxiety and depressive symptoms in autistic participants.
- 2. Investigate possible differential relationships between resting EEG power and parent-reported anxiety and depressive symptoms in autistic versus neurotypical children.

Methods

Participants

 Participants included 260 autistic children and 116 neurotypical children between the ages of 6 and 11 (N=376) (**Table 1**).

	Age (±SD)	Female (%)	Full-Scale IQ Score (±SD
ASD (n=260)	9.1 (±1.6 years)	62 (24%)	99.57 (±18.7)
TD (n=116)	9.0 (±1.6 years)	36 (31%)	118.5 (±13.9)

Table 1. Participant demographics across diagnostic groups. Age (in years)

 and full-scale IQ scores reported as mean (standard deviation). Sex reported as number of female participants (percentage).

• Participants were recruited and seen as part of the Autism Biomarkers Consortium for Clinical Trials (ABC-CT) study.

Measures

- Parents completed the Child and Adolescent Symptom Inventory-5 (CASI-5).
 - Subscales from the CASI-5 captured individual differences associated with symptoms of major depression (MD), persistent depression (PD), and general anxiety (GA).
 - Persistent depressive disorder is a more mild and chronic form of major depressive disorder.⁶
- Full-scale IQ (FSIQ) was assessed by the *Differential Ability Scales-II* (DAS-II).
- Eyes-open resting EEG data was collected with a 128 electrode EGI Hydrocel Geodesic Sensor Net.
- Participants watched non-social visual stimuli in three one-minute blocks (Figure 1).

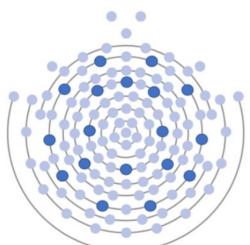
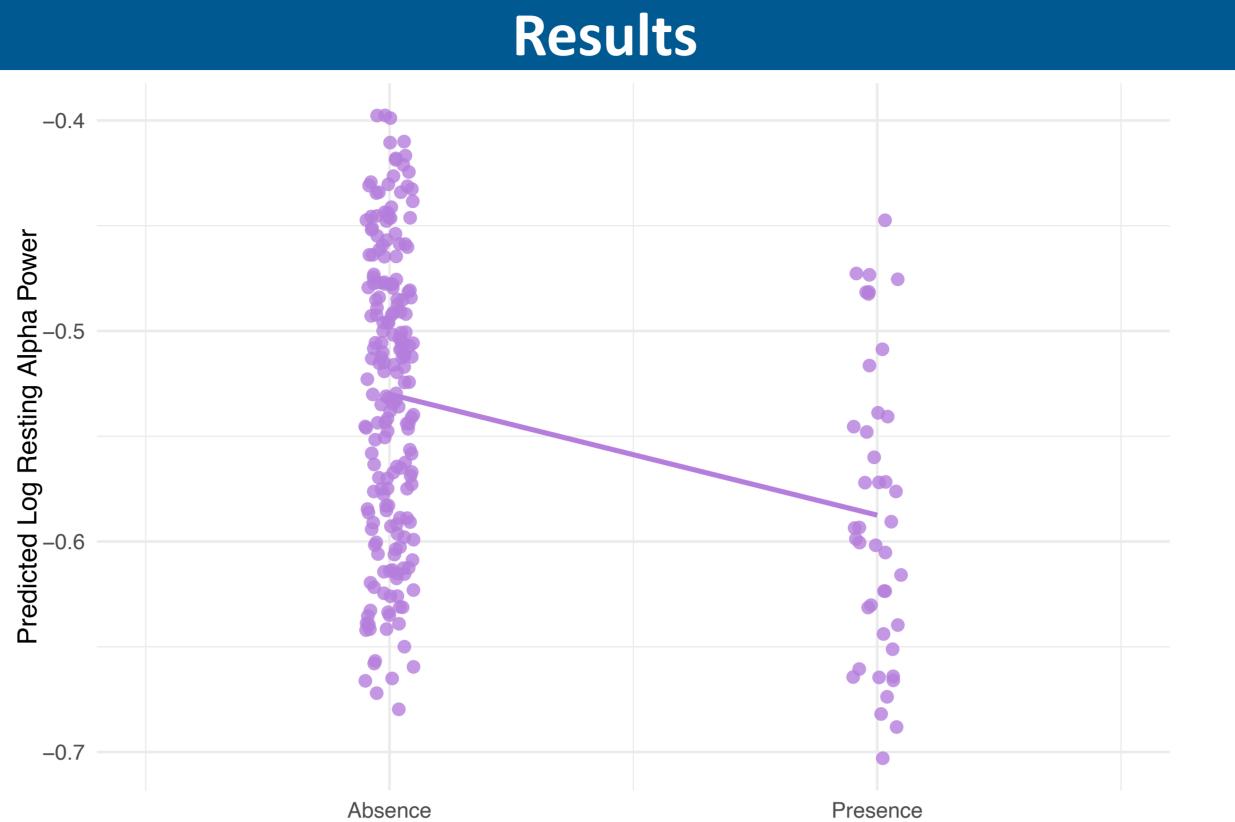


Figure 1. Example images from resting EEG video stimuli.

- Resting EEG slope was averaged across 18 electrodes (Figure 2).
- Alpha power was defined as 9 to 12.99 Hz.
- Gamma power was defined as 35 to 54.99 Hz.

Statistical Analysis

- CASI-5 psychiatric symptom scores and diagnostic group were used to predict log-scaled power spectral density EEG values in linear regression models. Age, sex, FSIQ, and number of valid EEG trials were included as nuisance variables in all models.
- 9 total linear regression models were run, including symptoms of persistent depression, major depression, and general anxiety as independent variables with resting-state alpha, theta, and gamma power as dependent variables.



used for resting EEG a 128 electrode net.

Symptoms of Persistent Depression but not General Anxiety or Major Depression Predict Resting Alpha Power for Autistic Children: Results from the Autism Biomarkers Consortium for Clinical Trials (ABC-CT)

I. Rodden¹, J. Momsen¹, A. Naples¹, K. Chawarska¹, G. Dawson², S. Jeste,³ J. Dziura⁴, S. Webb^{5,6}, S. Faja⁷, N. Kleinhans^{8,9}, C. Sugar¹⁰, F. Shic^{5,11}, J. McPartland^{1,12}

Figure 2. 18 electrodes slope calculation from

CASI-5 Persistent Depression Symptom

Figure 3. Plot depicting the relationship between parent-reported CASI-5 persistent depression symptoms and resting-state alpha power values for autistic participants. Values were adjusted for sex, age, FSIQ, and EEG data quality. The trendline represents the best-fit regression line.

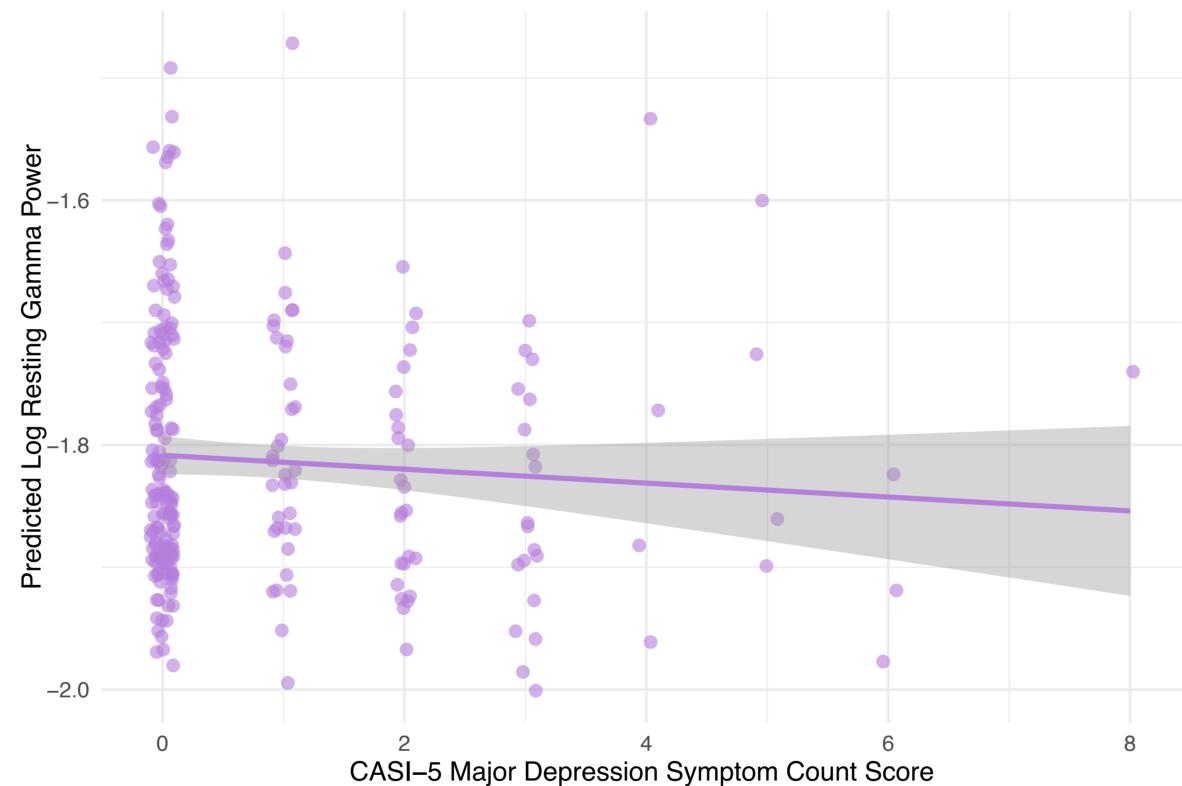


Figure 4. Plot depicting the relationship between parent-reported CASI-5 major depression symptoms and resting-state gamma power values for autistic participants. Values were adjusted for sex, age, FSIQ, and EEG data quality. The trendline represents the best-fit regression line.

Alpha Power

- Omnibus regression models revealed a significant main effect of CASI-5 PD score on resting-state alpha power (β =-0.34, *p*=.011). It also revealed a significant interaction between CASI-5 PD scores and diagnostic group on measures of resting alpha power, indicating that the association between PD symptoms and alpha power differed for autistic and neurotypical children (β =0.28, *p*=.022).
 - Follow-up models within each diagnostic group revealed a main effect of PD symptom report on alpha power for autistic participants (β =-0.07, p=.049), such that PD symptoms were negatively associated with resting alpha power (**Figure 3**).
- MD (*p*=.447) and GA (*p*=.458) symptom scores did not exhibit significant relationships with resting alpha power.

Gamma Power

- Omnibus regression models found a significant main effect of CASI-5 MD scores on resting-state gamma power (β =-0.12, *p*=.024). A significant interaction between MD scores and diagnostic group revealed that the relationship between MD scores and resting gamma power differed as a function of diagnostic status (β =0.12, p=.023).
 - Follow-up models within the ASD group demonstrated that there was no significant effect of MD scores on gamma power for autistic children (p=.512) (Figure 4).

Gamma Power

- $(\beta = 0.38, p = .007).$
- (p=.696).

Other Analyses

- results.

- reported in prior work.^{2,3}
- with resting alpha power in autistic children.
- children.^{2,3}
- evaluating EEG biomarkers for autism.

Limitations and Future Directions

- their scores.
- children with autism.

. Neo, W. S., Foti, D., Keehn, B., & Kelleher, B. (2023). Resting-state EEG power differences in autism spectrum disorder: a systematic review and meta-analysis. Translational psychiatry, 13(1), 389. https://doi.org/10.1038/s41398-023-02681-;

- depressive disorder and anxiety disorder. Frontiers in psychiatry, 13, 827536. https://doi.org/10.3389/fpsyt.2022.827536
- resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biological psychology, 85(2), 350–354.
- 1ttps://doi.org/10.1016/j.biopsycho.2010.08.0 Review Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s40489-023-00427-w
- Child Psychology, 47(1), 165–175. https://doi.org/10.1007/s10802-018-0402-
- conditions/persistent-depressive-disorder/symptoms-causes/syc-20350929

The Autism Biomarkers Consortium for Clinical Trials is funded through NIH U19 MH108206 (McPartland); NIMH R01 MH100173 (McPartland)

McPartland Lab mcp-lab.org mcp.lab@yale.edu mcpartland.lab on Instagram

Results

• Omnibus regression models revealed a significant main effect of CASI-5 PD scores on resting-state gamma power (β =-0.39, *p*=.011) in addition to a significant interaction between PD symptoms and diagnostic group on resting gamma power, indicating that the relationship between PD symptom report and resting gamma power differed between diagnostic groups

• Follow-up models within the ASD group revealed that there was no significant effect of PD symptoms on gamma power for autistic children

• GA scores exhibited no significant interactions with gamma power (p=.199).

• Follow-up analyses within the neurotypical group revealed significant main effects of PD symptom report with both alpha power (β =0.20, p=.048) and gamma power (β =-0.43, *p*=.019), in addition to a positive relationship between MD symptom scores and gamma power (β =0.11, *p*=.021). • All comparable analyses investigating theta band activity produced null

Conclusions

 The experience of depression symptoms was reflected in quantitative differences in the magnitude of resting-state EEG activity, confirming trends

• This study shows that the relationship between these psychiatric symptoms and resting-state EEG activity varied across autistic and neurotypical children. • Parent-reported persistent depression symptomology was negatively associated

• Contrary to previous literature, general anxiety and major depression symptoms were unrelated to resting state alpha or theta power in our sample of autistic

• Results highlight the importance of considering co-occurring conditions when

 Neurotypical participants were initially excluded based on elevated clinical symptomatology of any psychiatric disorder, rendering their little variability in

• These analyses were limited by the low number of neurotypical children whose parents reported depression and anxiety symptoms, thus models pertaining to our neurotypical cohort should be interpreted with caution. • Future research could explore these relationships among measures that can provide more insight into the severity of comorbid psychological disorders for

References

2. Zhang, Y., Lei, L., Liu, Z., Gao, M., Liu, Z., Sun, N., Yang, C., Zhang, A., Wang, Y., & Zhang, K. (2022). Theta oscillations: A rhythm difference comparison between major 3. Kemp, A. H., Griffiths, K., Felmingham, K. L., Shankman, S. A., Drinkenburg, W., Arns, M., Clark, C. R., & Bryant, R. A. (2010). Disorder specificity despite comorbidity

4. Thiele-Swift, H. N., & Dorstyn, D.-S. (2024). Anxiety prevalence in youth with autism: A systematic review and meta-analysis of methodological and sample moderators

5. Hudson, C. C., Hall, L., & Harkness, K. L. (2018). Prevalence of depressive disorders in individuals with autism spectrum disorder: A meta-analysis. Journal of Abnormal 6. Mayo Foundation for Medical Education and Research. (2022, December 2). Persistent depressive disorder. Mayo Clinic. https://www.mayoclinic.org/diseases-

Funding Sources

