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Biological shapes such as the brain are difficult to regidtex to their complicated
geometry. To deal with this, registration methods oftery r@h a transformation
model consisting of a dense regular grid such as a free foforrdation or B-spline
grid. However, very dense grids or meshes are usually neededgjister images with
convoluted shapes, and a regular mesh structure is not wigdidsfor the irregular
structure of the brain. What is therefore needed is a meslajsproach such as a radial
basis function transformation model. Unfortunately, hesearadial basis functions
are typically non-compact, using them with large numberpaihts is fraught with

numerical difficulties and, as a result, their use in imaggsteation is not prevalent.

The goal of this work is to overcome these computationalaiffies so that radial
basis function transformations can be used efficientlynewéh large numbers of
points. To achieve this, a new registration framework waglbped based on automatic
differentiation and the fast multipole method. Automatiifetdentiation is useful since
an important component of registration is computing thelignat of the similarity metric
which is to be optimized. Automatic differentiation allowse to efficiently calculate
gradients without having to write any gradient code expliciAlthough the technique
of automatic differentiation is well established, it doed appear to be used for image

registration. The fast multipole method was developedficieftly evaluate large sums



such as radial basis functions but its use in image registrét still minimal. With the
integration of these algorithms within a complete regtgtraframework, it should be

possible to obtain a truly meshfree registration.



Computational Strategies for Meshfree

Nonrigid Registration

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Eliezer Gershon Kahn

Dissertation Director: Lawrence Hamilton Staib

December 2006



Copyright(© 2006 by Eliezer Gershon Kahn

ALL RIGHTS RESERVED



Acknowledgments

| would like to express my deepest appreciation to my adyiBoofessor Lawrence
Staib, for his teaching and guidance throughout my yearsiat ¥is support, patience,

and kindness motivated me to do my best work.

| am grateful to Professors James Duncan and Hemant Tagarsdful discussions and

for sitting on my thesis committee.

| would also like to thank Dr. Bill Crum of the University Cellje London for serving

as the external reader and for providing help with some oé#periments in this work.

The members of the IPAG lab contributed to an exciting anellettually stimulating
environment. Many thanks to Xenois Papademetris, Maragha¥eski, Sudha Che-
likani, James Beaty, Debayan Datta, Bill Greene, Chrissipii@azo, Deepti Bathula,
Xaining Qian, Jing Yang, Hirohito Okuda, Gang Liu, Ping Y&ian Yang, Yun Zhu,
Stathis Hadjidemetriou, Ning Lin, Reshma Munbodh, Zhong, Meichuan Yu, Gary
Ho, Yongmei Wang, Oskar Skrinjar, Choukri Mekkaoui, MariodRiguez-Bosquez,

and Carolyn Meloling.

This work was supported in part by grant EBO311 from the Nmetidnstitute of



Biomedical Imaging and BioEngineering.

Finally, I would like to thank my wife Idith for all her love ahsupport. Without her

help, I could not have finished this work.



Contents

Acknowledgements i
List of Figures iX
List of Tables Xiii
1 Introduction 1
1.1 RadialBasisFunctions . ... .. .. ... ... .. ... .....
1.2 Computational Difficulties when Using Radial Basis Riorts . . . . . 4
1.3 Main Contributions . . . . .. .. ... ...
1.4 Outline of the Dissertation . . . . .. ... ... ... .. ....... 6
2 Review of Image Registration 8
2.1 Applications of Registration . . . . ... ... ... ......... 8

2.1.1 Rigid Registration



2.2

2.3

2.1.2 Nonrigid Registration. . . . . ... ... .....

How is the Registration Problem Solved?

The Four ComponentsinDetail . .. ... ........

231 FeatureSpace. .. ... ... ... ........

2.3.2 Space of Transformations . . . ... ... .. ..

2.3.3 Similarity Metric . . . .. ... ... ..

2.3.4 Searchstrategy . .. ................

3 Automatic Differentiation

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Introduction . . . . . . . .. ...

Matrix Approach . . . . .. ... ... ... ... ... .

Directed Acyclic Graph Approach . . . . . ... ... ..

331 Example ... .. .. .. .. ... ... .. ...

“The Cheap GradientRule” . . . . .. .. ... ......

Branches in the Objective Function. . . . . ... ... ..

Checkpointing . . . . . . .. ... ... ... ... ...

Implementation . . . . ... ... ... ..........

3.7.1 Implementing Automatic Differentiation

Vi

27



3.7.2 Implementing Checkpointing . . . ... ... ......... 41

4 Radial Basis Functions and the Fast Multipole Method 43
4.1 Fast Evaluation of Radial Basis FunctionSums . . . ... ... . 43
4.1.1 Analytical Form of the Expansions and Translations ..... . 49
4.1.2 TheO(Nlog N)andO(N) Algorithms . . . . . ... .. ... 54
4.2 Solving for the RBF Coefficients . . . . . ... ... ... ...... 55
4.2.1 ThelinearSystem . . ... ... ... . ... . ... ..... 56

4.2.2 Fast Iterative Solutions of Radial basis functiorth\Wirecondi-

tionedGMRES . . . . . . . ... ... 57
4.3 Other Approaches: Compact Support Radial Basis Furgtio. . . . . 59
5 Using Automatic Differentiation with Registration 61
5.1 WhentoUse Checkpointing . . . .. ... .. ... .. ........ 61
5.2 Interpolation. . . . . . . ... .. 63
5.3 Histograms . . . . . . ... 64
6 Nonrigid Registration with Radial Basis Function Transformations 67
6.1 Preliminaries . . . . . . . . . . ... 67
6.2 TheSimilarityMetric . . . . . .. ... .. ... .. .. .. .. ..., 69

Vil



7 Results

7.1 Experiments to Evaluate Accuracy of Automatic Diffdraton with

Registration . . . . . . . . . . .

7.2 Experiments with Synthetic Shapes . . . . . . . .. ... ... ...

7.2.1 Registration of a Sphere and a “Planet” . . .. .. .. ...

7.2.2 Reqgistration of a Sphereanda3D“C” . . . .. .. .. ...

7.2.3 Registration of a Star and a Flower Shaped Image . . . . . .

7.3 Registration Evaluation with the IBSR Database . . . . ...... . . .

7.3.1 Comparison to Affine and B-Spline . . . . .. .. ... ..

7.3.2 Registration Evaluation with Added Noise . . . . . . . ...

7.3.3 RBF Registration with Control Points Placed on a Grid... .

7.3.4 Comparison of RBF Registration with and without theNFM .

7.4 DISCUSSION . . . . . . o o e e e e

8 Conclusion

Bibliography

viii

75

121

124



List of Figures

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

6.1

6.2

6.3

7.1

Directed acyclicgraphexample . . . . . . .. .. ... ... ...... 32
Reverse modeexample . . . . . . . . . . ... .. ... .. 33
Checkpointingexample . . . . . . . . .. ... ... .. . o 38
Top four levels of the FMM hierarchy . . . .. ... ... ... ... 45
Interaction listexample . . . . . .. . ... ... L. 46
FMM algorithm pseudocode. . . . . . .. .. ... ... ........ 48
Polynomialgeneratorin3D . . . . . . ... ... ... ......... 25
Cardinal functionexample . . . .. ... .. ... ... ........ 85
Slice of gradient magnitudeimage . . . . .. ... ... ... ... . 68
SSD metricpseudocode . . . . . ... .. 70
Similarity metric as a directed acyclicgraph . . . . .. .... ... 71
Image of “planet” with “mountains” and “craters” . . . . .... . ... 82



7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

Result of sphere registered to “planetk@x8 B-splinegrid) . .. ..

Result of sphere registered to “planet” (512 points RBF) . . . . . .

Result of sphere registered to “planet” {I2x 12 B-spline grid)

Result of sphere registered to “planet” (1728 points RBE . . . . . .

Result of sphere registered to “planet” £165x 16 B-spline grid)

Result of sphere registered to “planet” (4096 points RBE . . . . . .

Result of sphere registered to “planet” £ZDx 20 B-spline grid)

Result of sphere registered to “planet” (8000 points RBEF . . . . . .

Image of “C” . . . . . .

Result of sphere registered to “C*(8x8 B-splinegrid) . . . . .. ..

Result of sphere registered to “C” (512 points RBF) . ...... . . ..

Result of sphere registered to “C” (d0D0x 10 B-spline grid) . . . . . .

Result of sphere registered to “C” (1000 points RBF) ...... . . ..

Result of sphere registered to “C” d22x 12 B-spline grid) . . . . . .

Result of sphere registered to “C” (1728 points RBF) ...... . . ..

Result of sphere registered to “C” (d66x 16 B-spline grid) . . . . . .

Result of sphere registered to “C” (4096 points RBF) ...... . . ..

Result of sphere registered to “C” (200x 20 B-spline grid) . . . . . .

83

83

83

84

84

84

87

87

87

88

88

88

89



7.20

7.21

71.22

7.23

7.24

7.25

7.26

1.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

7.36

7.37

Result of sphere registered to “C” (8000 points RBF) ...... . . ..

Imageofflower . . . . . ... ... .. ...

Imageofstar . . .. .. .. ... .. ... ..

Result of star registered to flower(8x8 B-splinegrid) . . .. ...

Result of star registered to flower (512 points RBF) . ...... . . ..

Result of star registered to flower (100x 10 B-spline grid) . . . . .

Result of star registered to flower (1000 points RBF)

Result of star registered to flower @P2x 12 B-spline grid) . . . . .

Result of star registered to flower (1728 points RBF)

Result of star registered to flower {dB6x 16 B-spline grid) . . . . .

Result of star registered to flower (4096 points RBF)

Result of star registered to flower (220x 20 B-spline grid) . . . . .

Result of star registered to flower (8000 points RBF)

Sample image from IBSR database . . . . ... .. ... .....

Overlap measure (1000 points RBK,1®x 11 B-spline grid, SSD) . . .

Overlap measure (2000 points RBFx12x 14 B-spline grid, SSD) . .

Overlap measure (4000 points RBFx1%x 18 B-spline grid, SSD) . .

Overlap measure (8000 points RBFx28x 23 B-spline grid, SSD) . .

Xi

95

96

96

96

97

97

97

98

105

106

107



7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

7.46

1.47

7.48

Overlap measure (16000 points RBFx25x 28 B-spline grid, SSD)

Overlap measure (1000 points RBK,1®x 11 B-spline grid, Ml)

Overlap measure (2000 points RBFx12x 14 B-spline grid, MI) . . .

Overlap measure (4000 points RBFx15x 18 B-spline grid, MI) . . .

Overlap measure (8000 points RBFxP8x 23 B-spline grid, MI) . . .

Overlap measure (16000 points RBFx25x 28 B-spline grid, MI) . .

Slices of images from IBSR database with added noise . . . . . .

Overlap measure, (8000 points RBF, with and withouseydsSD) . . .

Overlap measure, (8000 points RBF, with and withouweadul) . . . .

Overlap measure (8000 points RBFxP®x23 RBF grid, SSD) . . . .

Overlap measure (8000 points RBFx2®x23 RBF grid, MI) . . . . .

Xil

. 108

. 109

110

111

112

113

115

116

117

118



List of Tables

7.1 Running times and other values for registration (SSD). .. .. . . ... 79
7.2 Running times and other values for registration (MIl) . ..... . ... 79
7.3 Runningtimes and other values for sphere registergulanét” (B-spline) 81
7.4 Running times and other values for sphere registereplémét” (RBF) 85
7.5 Running times and other values for sphere registere@'t¢B-spline) . 90
7.6 Running times and other values for sphere registere@t¢RBF) . . . 90
7.7 Running times and other values for star registered tcefl@¢®-spline) . 92

7.8 Running times and other values for star registered tcefld®BF) . . . 92

7.9 Keytobrainlabels . .. .. ... .. ... .. .. ... .. ... ... 103

7.10 Running times and other values for IBSR brain registnafB-spline,

7.11 Running times and other values for IBSR brain regisindRBF, SSD) 114

7.12 Running times and other values for IBSR brain registngB-spline, M1)114

Xiii



7.13 Running times and other values for IBSR brain regisingRBF, MI) . 115

7.14 Registration accuracy with and withoutFMM . . . . . .. .. ... 120

Xiv



Chapter 1

Introduction

Biological shapes such as the brain are difficult to regidtex to their complicated
geometry. As a result, registration methods often rely omaasformation model
consisting of a dense regular grid such as a free form detosmar a B-spline grid.
However, because of the convoluted nature of biologicapebaa regular mesh is
not well suited for the irregular structure of the brain. Wisadesired is aneshfree
approach so as to entirely bypass the problem of choosingsa.miehis work focuses

on developing such a registration system for meshfreetragn.

1.1 Radial Basis Functions

Radial basis functions (RBFs) are an alternative to griccbastrategies. RBFs are
constructed by placing control points at arbitrary locasion space rather than on a

regular grid. As a result, they are entirely meshfree. Matdgcally, RBFs have the



form,

N
f(@) = Zdi¢i(|f_ i) (1.1)
i=0

whered; are scalar coefficients;; are the locations of the control points, ang-),
r > 0, is known as thdernel Popular kernels include the thin plate splin€log r, in

2D orr in 3D, and the multiquadricgy? + 72)%/2,

These functions are very smooth and provide very visualgagihg interpolating
functions. They also have interesting energy minimizapooperties. For instance,

it can be shown that the 2D thin plate spline minimizes thedbenenergy:

AN Of\>  [2F\?
//<@) +2<8x8y) +<0—y) dx dy. (1.2)

Although counterintuitive, studies have shown that desphie fact that RBFs do not

have compact support, they make excellent interpolantsnide;, 1982). They are
infinitely differentiable unlike B-splines or compact s@ppRBFs. Furthermore, having
an analytical function is useful in deformation analysisl anorphometric studies as

various differential operators on the transformation dan be modeled analytically.

Additionally, RBFs are global since the basis functionsidgfty are not compactly
supported. Although some might view the global nature ofs¢héunctions as a
disadvantage, it can be argued that global functions arédted way to model brain
variability, since, biologically, the growth and changelablogical structures is, to a
certain extent, a global process, not a local one. Henceafgloinctions would be

more appropriate. As the main goal of nonrigid registrai®mo further understand



the structure, function, development, and degeneratiagheobrain—a very important

goal—we need to use the best available mathematical fursctio

Another advantage of radial basis functions is that theyhash free since the control
points can be placed anywhere in space. Other types of transfsuch as free form
deformations or B-splines rely on a regular mesh of contootis placed in space. This
is usually a rectangular grid of points. Other grid schemeh s cylindrical grids are
also possible (Coquillart, 1990). Such control grids ariéegiufor only certain classes
of problems, namely when the shapes in the image are sirillaetshape of the grid.
For example, if the image contained box or cube shaped steg;tthen a rectangular
grid would be appropriate. Similarly, if the image contalspherical shaped structures,

than a spherical grid would be more suited.

However, in medical imaging, many biological shapes arey vamplicated and
deciding on a grid that best matches the shapes in the imagdsficult, if not
impossible. For example, although the brain is roughlypsdidal, it contains numerous
folds that have no specific shape. Hence an ellipsoidal tragh perhaps better than
a rectangular grid, is still not an adequate match for thargery of the brain. Of
course, we can decrease the spacing of the grid to that ofatked 8pacing, but then
we would have far too many points to deal with leading to nucaginstabilities in the
transformation. Many control points would also be unneagsdaving been placed in

homogeneous regions.
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1.2 Computational Difficulties when Using Radial Basis

Functions

Unfortunately, although, in theory, RBFs would appear tothe ideal interpolation
functions to use, in practice several numerical difficsltieust be dealt with if they are
to be used efficiently. First, it is necessary to solve a lisyatem in order to compute
the coefficientsl; in Eq. (1.1). Solving such systems directly requitEsV?) operations

which is prohibitive for large numbers of points.

Second, it is necessary to evaluate the transformatiortibbmat every voxel in the
image. This would requir€(N) operations for each voxel. I#/ is the number
of voxels in the image, then the total number of operationS(i8’ M) which is also

extremely large.

Third, computation of the gradient for optimization is atsamputationally expensive.
Finite differences are clearly too expensive for such a tsiskke each gradient
component would require the solution of a large linear syste well as summing over
the entire image. For example, suppose we use the sum ofeshjddierences as the

metric (to be discussed more fully later),

F(@) =) (M(u(@), (@), w(@) - F), (1.3)

)

whereF' is the fixed image)/ is the moving image, andgis the vector of independent



variables. Then, a single component of the gradient is

o = St oo @) F) (G g+ G e e )+ (@)
Here (OM/0u,0M/0v,0M/0w) is the image gradient atu,v,w) which can be
computed easily. The remaining partiads,/dq;, dv/0q;, anddw/dq;, depend on the
type of transformation being used. However, for an RBF fi@nsation such as given
in EQ. (4.1) which first requires the solution of a linear systand does not have local
support, it is unlikely that an analytical expression tlsatemputationally feasible can
be found. To our knowledge, none has been published yet ititénature. The same

problem occurs with other metrics such as mutual infornmatio

The remainder of this work presents our proposal to solvsetipgoblems by drawing
upon two techniques which have not seen widespread use im#étkcal imaging
literature: fast multipole methods (Greengard and Rokhli87) and automatic

differentiation (Griewank, 2000).

1.3 Main Contributions

To overcome these difficulties and achieve a truly meshigesiration, this dissertation
presents a new registration framework based on automéfigcettiation (AD) and the

fast multipole method (FMM).

Automatic differentiation is useful for computing gradierof complicated functions.

As we will discuss later, optimization is a major componeiegistration. In order to



optimize a function it is usually necessary to compute gnaidi. This, however, is often
difficult and sometimes even impossible. Furthermore, #edrto compute gradients
makes it difficult to implement and design new objective tiorts. Fortunately, the
technique of automatic differentiation removes the buraletomputing gradients from
the programmer to the computer (Griewank, 2000). Unforteigait has not been
exploited for use in image registration. Our new registrafiramework uses AD for

computing gradients.

The fast multipole method was developed to efficiently estddarge sums such as
(1.1) but their use in image registration is still minimalherlfast multipole method
is important because it can be shown that the complexity afuawing Eq. (1.1) for
a singleZ is reduced fromO(NV) to O(log N) or evenO(1). With the integration of
these algorithms within a complete registration framewbikpossible to obtain a true

meshfree registration.

1.4 Outline of the Dissertation

In the next chapter, chapter 2, we review the literature ofliced image registration.
We discuss the four components of any registration algordk well as applications of
registration. Although we are mainly concerned in this @itgion with the nonrigid

case, we also describe the rigid case as well.

Next, chapters 3 and 4 contain an overview of automatic rdiffeation and the fast

multipole method. These algorithms have not been of muchrugeage processing



and, therefore, we discuss them in these chapters.

In the next two chapters, chapters 5 and 6, we describe howrlitee FMM can be

used in combination for doing intensity based nonrigid strgtion. In chapter 5 we
discuss general issues that arise when integrating AD widge registration and how
to overcome them. We describe the use of various similar#jrics such as the sum
of squared differences and mutual information and sevgpds of transformations.
Chapter 6 continues the discussion of the previous chapttdascribes one specific
transformation used in registration, namely, radial b&smnctions such as thin plate

splines.

Chapter 7 presents results to validate the methodology isfwrk and chapter 8

concludes with a summary and future work.



Chapter 2

Review of Image Registration

In this chapter, we provide the relevant background on na¢ditage registration. For a
more thorough review, we refer the reader to other revievepsagnd books (Bankman,
2000; Brown, 1992; Crum et al., 2004a; Fitzpatrick et al.Q@0Hajnal et al., 2001,

Hill et al., 2001; Lester and Arridge, 1999; Maintz and Vievgr, 1998; Maurer and
Fitzpatrick, 1993; Pluim et al., 2003; Toga, 1999; Zitoval &lusser, 2003). Although
we are mainly concerned in this dissertation with the nodra@ase, for completeness

we also describe the rigid case.

2.1 Applications of Registration

Image registration is typically divided into two areas:idigind nonrigid registration.
Rigid registration is a very mature area and is considereanbyy to be a solved

problem (Hajnal et al., 2001). This is no doubt due to the lemeahsionality of the



problem. As a result, rigid registration algorithms hawvarfd their way into commercial
products. Nonrigid registration, however, is still an aetfield of research, and it is to
this topic that this dissertation is addressed. This segifovides a partial list of some

applications where the need for rigid and nonrigid imagesteation arises in medicine.

2.1.1 Rigid Registration

1. Registration of preoperative images with intra-opgegfilanning.

2. Fusion of images of different modalities (e.g. MRI and Gd)that radiologists

can compare them more easily.

3. Registration of time series data. In such situationsgesare taken immediately

after each other, so no deformation needs to be accounted for

2.1.2 Nonrigid Registration

There are two broad areas where nonrigid registration id:uséersubject registration
and intrasubject registration.
Intersubject Registration

1. Spatial normalization of images for statistical paramoehapping.

2. Brain mapping and the creation of digital anatomic atase
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Intrasubject Registration

1. Comparing images taken over long periods of time sinceigiondeformations

may have taken place.

2. Brain-shift compensation during neurosurgery. Whensthdl is opened during
neurosurgery, the brain shifts slightly. Hence, the imaglksn prior to the surgery

may no longer be valid.

2.2 How is the Registration Problem Solved?

The goal of registration is to find an optimahansformationthat best matches the
moving image with the fixed image. Such a transformation cardéscribed by a
set of V parameters. To solve the registration problem, it is typioadesign an
objective function orsimilarity metricas a function of the transformation parameters.
The similarity metric measures how well the moving and fixedges correspond, and
such a correspondence is based on comparing vaieatisreschosen from the images.
Our goal is tesearchthrough the possible candidate transformations until we faund
the optimal one. When these transformation parameter®analf our similarity metric

is optimized.

More formally, following the work of Brown (1992), any regyation algorithm can
be understood as consisting of four basic components. Tpkes to both rigid and

nonrigid registration.



11

1. Feature space: First, we need to choose the featuresithdrive the registration.
Nonrigid registration algorithms have typically been ded into two classes
depending on whether they use structural features such iasspaourves, or
surfaces to drive the registration or simply gray level eslu Most algorithms
have usually incorporated either structural features ay dgvel values but not
both, but recently there have been efforts to combine bgibsyf information

(Collins et al., 1998; Papademetris et al., 2004; Wang aaith S2000).

2. Space of transformations: Next, we need to choose the gfaansformations.
The goal of any registration algorithm is to find a transfaiiorathat best maps
the moving image to the fixed image. We prefer to somehow lihgtclass of
transformations in which we will search in order to make @dible to find the best
transformation. For instance, in affine registration thacgpof transformations
would be limited to those only consisting of translationtatmn, scale, and
shear. Nonrigid transformations transformation such aspeetive, polynomial,
piecewise polynomial, basis functions, and regularizati@nsformations are
more general (Wolberg, 1990). In general, the more parasete allow in the
transformation, the harder the problem will be. Additidpah some applications
the class of transformations used consists of those thain&-¢o-one (invertible).
Methods have been developed for making a transformatioriaaee (Fujimura

and Makarov, 1998; Lee et al., 1996; Tiddeman et al., 2001).

3. Similarity metric: Next, we need to choose the metric usedetermine how
well the transformed moving image matches the fixed imagemeSpopular

similarity metrics are sum of squared differences (SSD) mntual information
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(MI). Mutual information is particularly good in multi-madiimage registration.

4. Search strategy: The final component is the search sgratdgst registration
algorithms search for the best transformation by optingizhre similarity metric
whose independent variables correspond to the transfammparameters and
whose minimum corresponds to the best transformation. Peweethod and the
conjugate gradient method are two popular optimizatiorhadds that are often
used. Other methods do not use optimization but insteaduiaten a system of
partial differential equations where the correct transfation is the solution of

the PDE.

2.3 The Four Components in Detalil

Once we have selected something for each of these componentsin then use them
to solve the registration problem. This section discusaeh ef the components one by

one in more detail.

2.3.1 Feature Space

As mentioned above, features normally chosen are the voiehsities, or structural
features such as points, curves or surfaces. Thus, whesteggg the brain, points
such as the anterior commissure (AC) or posterior commeg®(€) cab be used. Curve
features can be sulcal or gyral lines. Surfaces can inchelewter cortical surface, the

surfaces of the ventricles, and the gray-matter white-enatbundary. It is also possible
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that instead of considering curves and surfaces one carysgample them at several
points and just consider the points. Thus, points can betsamntiude both curves and

surfaces (Chui, 2001).

Curvature is another feature that can be used. Curvatureisperty of curves and

surfaces. For curves, the curvature is

|0 (s)] (2.1)

whereq is a curve parameterized by arc length (do Carmo, 1976). ltaces, there is
more than one type of curvature. The two principal curvatatea poingy’ can be found
by intersecting the surface with a plane that is normal totéimgent plane af. The
minimum and maximumk; andk, respectively, of the resulting curve for all possible
orientations of this normal plane are the two principal etmves. The mean curvature
is then defined agk; + k2)/2 and the Gaussian curvaturefas,. Curvature extrema

can be used to identify points (or curves) for registration.

2.3.2 Space of Transformations

Transformations used in registration range from simpl@ray affine transformations
with few parameters to complex deformable transforms vindusands or even millions
of parameters that can warp the space in quite arbitrary wa@ut of the four

components of registration, it is the space of transforomatiwhich distinguishes

nonrigid registration from affine or rigid registrationnee unlike the transformation,
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the other three components can often be used in both rigichandgid registration.
When doing nonrigid registration, one usually performs fiimexregistration first and

then initializes the nonrigid registration with the resoiithe affine registration.

As mentioned above, the goal of nonrigid registration is nal fa transformation that
best maps the moving image to the fixed image. Therefore, iw8[@an describe the

most general transformation function as the mapgingR® — R? or

(0 Fy(21, 29, z3)
Yo | = | Fo(1, 29, x3) (2.2)
_y3_ _F3($1, T2, $3)_

where the pointxy, x5, x3) is mapped tdy;, ys, y3)-

Low Dimensional Transformations

The linear transformation can be represented as a sinyB3en3atrix:

Y1 a11 Q12 a3 T

Yo| = @21 ago agz| |22 - (2.3)

Y3 a31 Q32 as3 x3
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The affine transformation is almost the same as the lineawyitlu an extra translational

term: o ) o -
n a;i; G2 13 x1 t1
Yo| = |am aga ass| |x2| T+ |taf - (2.4)
Ys agy asy asz| |3 t3

If one is interested in a purely rigid transformation, fosti@nce, when registering two
images of the same person at the same time of two differenalitied (no deformation),

then the transformation would be of the form:

A C:BQC:BS + Sml Smg S:BS Cmg S:BS + Sml Smgcmg C:vl Smg Tl tl

ya | = —Cyy Sy CayCos Sey o | T [ to (2.5)

y3 Smlcmg S:BS - S:BQC:BS _Smlc:vgczvg - S(EQ S(Eg szlcrz x3 t3
wherec,, = coS ¢y, Czy = COSPyy, Cpy = COSPuyy Spy = SN Gy, Spy = SN Guy,

Sz, = sin ¢,,, ande,,, ¢.,, and¢,, are the rotation angles around thg x5, andx;

axes, respectively.

High Dimensional Transformations

For higher dimensional nonrigid transformations, one papalass of transformation
functions uses free form deformations (Coquillart, 1996cd&berg and Parry, 1986)
such as B-splines (Rueckert et al., 1999). This involvesiptpa rectangular grid

of points on the image domain and interpolating, using Baggl to other points.
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Mathematically, this transformation can be expressed as

3 3 3
yi (w1, w2, 23) = 21 + Z Z Z Bi(r) By (8)Bn(t) @it j+mptn (2.6)

=0 m=0 n=0

yZ(xla X2, 1'3) = X2+ Z Z Z Bl(T)Bm(S)Bn(t)bi-i-l,j-i-m,k-i-n (27)

3 3 3
Ya(T1, T2, 23) = a3 + Z Z Z Bi(r) By (8)Bn(t)Cist,jtm jetn (2.8)

=0 m=0 n=0

where the B-spline basis functions are

Bo(u) = (1 —u)3/6 (2.9)
Bi(u) = (3u® — 6u* +4)/6 (2.10)
By(u) = (—3u® +3u® + 3u+1)/6 (2.11)
Bs(u) = u*/6 (2.12)

andi = || —1,j = |z — 1L,k = |z3] — 1,7 = 21 — [21], s = 22 — |22,
t =3 — @3], aNAa;11 jm ktns Diti jtm ktns ANACi 11 j1m k+n are the displacements of

the control points.

Another type of transformation uses radial basis functilBF) such as thin plate

splines (Bookstein, 1989) or multiquadrics (Hardy, 199@athematically, these can be
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expressed as

N m

yi(z1, w2, 23) = 21 + Zai¢(|($1>$2, r3) — (T1i, T2, T3:)|) + Zuipi(%’ T3, T3)
i=1 i=1

(2.13)

N m

yo(21, T2, T3) = 22 + Z bid(|[(w1, T2, ¥3) — (215, Tai, ¥3:)|) + Zﬂipi(xh T2, T3)
i=1 i=1

(2.14)

N m

Ys(z1, T2, 23) = T3 + Zci¢(|(xlv Tg, 3) — (T14, Toi, T3;)|) + sz‘pi(l'hxz,x?,)
i=1 i=1

(2.15)

wherea;, b;, ¢;, u;, v;, andw; are coefficients which are computed by solving three
linear systems, the third term on the right hand side of eddhase three equations
are optional low order polynomial, anglr), » > 0, is a basis kernel which can have
several forms. Popular kernels include the 2D thin platiaept? log r, the 3D thin plate
spline,r, and the multiquadricgy? +72)%/2, wherer is any real number ankis an odd
integer. Such radial basis function transformations atengbreferred because they are
very smooth, and experiments have shown them to be bettentbat other interpolants
(Franke, 1982). Unfortunately, when the number of pointtaige, computing the
coefficients of the basis functions becomes costly due tdattethat in order to find
the coefficients it is necessary to solvelsink N linear system wheré/ is the number
of points. Solving such systems using a direct linear sakguiresO(N?) operations.
Clearly, it is desirable to use as many points as possibtedime more points used to
define the mapping, the more flexible the transformatiomatig finer accuracy in the

registration. This problem has led many to abandon radisisifanctions in favor of
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B-splines. One main goal of this work is to show that we canfact, develop fast

algorithms even for large number of points. We will returritis later.

How do we Actually Warp an Image?

Supposing we have a transformation that we would like toyafgpan input image, how
do we actually go ahead and warp the image? This is a verytisskie which is often

not addressed in the literature.

In general when we try to warp an image we have two optionsvdaodt mapping or
inverse mapping (Wolberg, 1990). In the forward mappingraggh, our mapping
function is such that given any poit in the input image, an output poift will be

computed. The problem with this approach, however, is thafpbints from the input
image may get mapped to points that are in between pixelsitfput image. This

results in a complicated scattered data interpolationlprolwvhich is non-trivial.

Inverse mapping solves this problem. In inverse mappingp@apping function is such
that given a pointJ in the output image, the poir in the input image which was
mapped tc@ will be computed. Therefore, to compute the pixel value éarnlp@ in the

output image we need to interpolate the input image at poirkhis is easier since this

time we are interpolating a regular grid, not scattered tsoin

If we only have a forward mapping function, we can still apiplyerse mapping to warp
the image by inverting the transformation. This can be donediving the system of
nonlinear equations, Eq. (2.2), fat, =5, x3 using, for example, Newton’s method.

Such a method needs to be performed for each pixel in the butige. Convergence
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to a solution is possible if and only if the Jacobian of thesfarmation (2.2) is nonzero.

In the context of image registration we, therefore, have ewtions for warping. One
option is to optimize for the best forward mapping and thea Newton’s method

to solve for the inverse mapping and warp the moving imageh#fixed image.
Unfortunately using Newton’s method is expensive, eveh d¢bnverges quickly. The
second option is to directly optimize for the inverse trangsf so that we do not need
to use Newton’s method since we already have the inverse.ioGdly, the second
approach is better. Thus, when we say that the goal of imagstration is to “find

a transformation that best maps the moving image to the fixedje,” what we really
mean is “findthe inverse ofa transformation that best maps the moving image to the

fixed image.”

Combining Transformations: Serial vs. Additive

When one does an affine registration prior to the nonrigid, tnoev do we actually

integrate it into the nonrigid registration? One simple vi@ycombine two transfor-
mations would be to resample the moving image and treat #sampled image as
the new moving image. Hence we do not directly deal with tlimeftransformation

when doing the nonrigid registration since the affine tramaftion is accounted for
when performing the resampling. The problem with this méthad course, is that the
process of resampling may introduce undesirable apprdinmsand aliasing artifacts
in the resampled image. There remain two other ways whichomsider: serial and

additive. These two approaches are applicable whenevebioorg more than one
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transformation.

The serial way, is as follows. Suppose the first transfommnat of the formy = ¢(%)
and the second is of the formi= f(¢) whereZ, , andz are points inR?3, then the

combined transformatiorf, is

Z=F(7) = f(9(7))- (2.16)

The additive way is as follows. Suppose the two transforomatiare agairy and g
and we wish to combine them into a single transformatibn, Then this combined
transformation is

7= F(&) =7+ (f(&) — ©) + (9(Z) — 7). (2.17)

Note that this time botlf andg are evaluated at the same paihfrather thanf being
evaluated at/ and g at z). In other words, we view botlf and g as independent

displacements which are addeditto produce the transformed point.

The serial way is probably what most people intuitively hiameind when we talk about
combining transformations: We apply the first transformmtio pointP to get”’ and
then apply the second transformationitbto get. The additive way can be slightly
confusing since both transformations are applied to theesaput point?. However,
the additive way has the advantage of being more efficientotopute since only

addition is involved whereas the serial way usually recquaématrix) multiplication.
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2.3.3 Similarity Metric

Perhaps the two most popular similarity metrics used fosteggion are sum of squared

differences (SSD) and mutual information (MI).

SSD

The sum of square differences (SSD) in 3D is (Fitzpatrick.e2&00)

(@) = Z w(@) = F)° (2.18)

whereF' is the fixed image)/ is the moving image, andgis the vector of independent
variables. Notice that each of three components of the flsemation depends on the

independent variablep

Mutual Information

One of the most important developments in the 1990’s was pipication of infor-
mation theory to image registration (Collignon et al., 199®la and Wells, 1995).
One result was a similarity metric known as the mutual infation (MI) which can be

expressed as (Mattes et al., 2003)

pll,k; Q)
ZZplkd)log o) (2.19)



22

where( is the vector of independent variables/, k; ¢) is the joint histogram of the
fixed image and the transformed moving image(/; ) is the histogram of transformed
moving image, angx(k) is the histogram of the fixed image. The double sum is over

all bins in the histograms which are indexed/landk.

2.3.4 Search strategy

Finding the transformation is usually accomplished byring the similarity metric

over the transformation parameters. The values of the gmlignt variables at the
minimum correspond to the desired transformation. Comnyped of optimization

strategies used are non-gradient and gradient based msetjlobal methods such as
simulated annealing and genetic algorithms, and PDE basttoas. For gradient
based method, the question is, of course, how do we compeitgrédient? We return
to this in the next chapter. In the remainder of this chapterdiscuss each of these

methods in greater detail.

Non-gradient Based Method

Two popular non-gradient based methods for multivariaptewization are the simplex
method and Powell’'s method Press et al. (1992). Such metiredsot considered in

this work due to their poor convergence properties for |aige problems.
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Steepest Descent Method

The simplest type of gradient descent method is to simplyeniothe direction of the
gradient until we cannot decrease the function any longéis iB known as steepest
descent. Unfortunately, this algorithm does not convery quickly and often gets
slowed down due to zigzagging through the solution spacewt@sults from the fact

that we end up revisiting the same directions over and ov&nag

Conjugate Gradient Method

The conjugate gradient method overcomes the problems stélepest descent method.
In the conjugate gradient, at each iteration the next doedb move in is computed
based on all the previous directions. This prevents us feansiting a direction already
used. The conjugate gradient method has excellent comeggaroperties and, as a

result, we use it often in this work.

Newton and Quasi Newton Based Methods

Newton based methods compute the Hessian of the objectieédn and thereby create
a quadratic approximation to the objective function. Qa#idrfunctions can be easily

minimized by solving a linear system.

One problem with Newton based methods is that computinguhedessian is very
expensive. Therefore, quasi-Newton methods have beetogedewhich approximate

the Hessian such as the Limited Broyden Fletcher Glajl ShjofBFGS) method (Liu
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and Nocedal, 1989). An extension to this method is known &-GS-B which adds

simple bound constraints to the objective function (Byrdlet1995; Zhu et al., 1997).

Simulated and Deterministic Annealing

The optimization methods discussed so far are all local amtd have the problem
of being trapped in local minima. Clearly it is desirable tadfthe global minimum
of the similarity metric. Simulated annealing is such a mdthUnlike gradient based
methods where we only go in the downhill direction, with siatad annealing, we
sometimes allow moves in the uphill direction. Hopefulhistwill enable us to get out
of local minima. Simulated annealing is modeled on the @édfpirocess of annealing
where a system which is in a high energy state is gradualleted/to a low energy
state. An important parameter is the temperature whichaduglly lowered at each
iteration. When the temperature parameter is high, mor@omndirection movements
are possible and there is a higher probability of gettingadubcal minima. But as the

temperature gets lower, such movements become more ynlikel

Deterministic annealing is similar to simulated anneaérgept that a deterministic rule

is used to determine whether or not we make a move, rathemtheamdom one.

Genetic Algorithms

Genetic algorithms model the evolutionary process of mhgelection. As in evolution,
genetic algorithms involvehromosomesnutations andcrossovergor recombinatioi.

We start out with a random population of chromosomes. Eaobnebsome is a string
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of bits which corresponds to the bits of the independentabédes. The goal is to find the
chromosome which best optimizes the objective. Each chsome is assignedfdness
value depending on how well it solves the problem. Thenspafigenes are repeatedly
selected from this population and crossover and mutatioasraintil a new population
or generation is obtained. If this new population contaiaslation, we stop. Otherwise

the entire process is repeated until the next generatioeatexd.

PDE Based Methods

The well-known Euler-Lagrange theorem establishes an itapbrelationship between
optimization and partial differential equations. As a teslere is an entire class of
algorithms that attempt to solve the registration problgmconverting the objective
function to a PDE (Bajcsy and Kovacic, 1989; Christense®41Zhristensen et al.,
1996, 1993). Included in these methods are those that vieypribcess of registration

as a fluid deformation and borrow concepts from fluid dynamics

Multiresolution Strategies

One popular method to help avoid being trapped in local ménisna multiresolution

approach. Such methods can be applied to many types of piebteimage analysis
other than registration and are based on the idea of firsigrio solve the problem
at a lower resolution and then using this answer to initeatlze algorithm at a higher
resolution. Thus, to implement such a strategy, we wouldtera hierarchy of images

where each image higher up in the hierarchy is at a loweruésalthan the one below
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it. Then the algorithm is first applied to the coarsest imagée hierarchy. The solution
obtained at this level is used to initialize the next leveltad hierarchy. This process is

repeated until the image with the highest resolution in tleegnchy is reached.



Chapter 3

Automatic Differentiation

3.1 Introduction

As mentioned in the previous section, a major component gist&tion is the
optimization strategy used. Many optimization algorithans iterative methods based
on the concept of gradient descent (Press et al., 1992).cimalgorithms, we start out
with an initial estimate of the solution and then use the gracbf the objective function
to compute the next candidate solution. We repeat this oativergence. However,
often the objective function to be optimized is extremelynplicated and does not have
a gradient that is expressible in analytic form. For examiplthe objective function
involves complicated algorithms such as solutions of déffitial equations, solutions of
linear systems, fast Fourier transforms, numerical quacdea and the like, then there
may be no analytical gradient. In such cases, the only dlailaption for computing

such derivatives is finite differencing. However, if there a independent variables

27
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then computing such finite differences requires at leaftinction evaluations. For
many functions, this computation is totally unrealistihigis especially true in image
registration where each function evaluation typicallyuiegs summing over an entire

image.

To solve this problem, a technique known as automatic diffeation (AD) has
been developed (Griewank, 2000; Griewank et al., 1996) hwvhigs seen important
applications in many numerical problems especially intreteto the solution of partial
differential equations (Hart et al., 2005; Kim et al., 20Q0&a et al., 2002; Scholze
et al., 2002; Shapiro and Tsukanov, 1999; Tsukanov and &h&}002; Wang et al.,
1995). Although registration is primarily an optimizatiproblem, AD does not appear
in the registration literature. Automatic differentiatics based on the principle that
any computer algorithm, no matter how complicated, is, rteedess, just a series
of simple computations such as addition or multiplicatiomose derivatives are easy
to compute. Since any function can be viewed as the compositi many smaller
elementary functions, then, in theory, using the chain, iikghould be straightforward
to compute the derivative of almost any scalar function, radten how complicated.
Is such a scheme worthwhile? Yes! A result known as the “clygagient rule” says
that the time to compute the gradient of a scalar function gériables (where: can
be very large) is only four or five times the time to computedhginal function itself
(Griewank, 2000). In this chapter we review the basic iddaswhich are necessary

for image registration.
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3.2 Matrix Approach

There are at least two approaches we can use to explain tbeytbé automatic
differentiation: a matrix approach and a graph theoretjgragach. In this section we
present the matrix approach and in the next we present thpd gh@oretic approach.

Suppose we are given the scalar function

z = F(Z), 7eR", zeR, F:R" =R, (3.1)

and we would like to compute its gradient. Since, as alreadyntoned, any
mathematical function evaluated on a computer is reallyrapmsition of elementary
functions, Eqg. (3.1) can be expressed as the sequencen(fodhe notation similar to

the work by Griewank (1992))

9(%) = 5, [fi(S) = Siya, h(Em) =z i=0,...,m—1 (3.2)

In this formula, s; represents the set of all variables which includes the iedéent
variables, any variables that depend on them, as well asihendlent variable. Letbe

the number of elements in this set. Egthis an elementary function that maps the set
s; to itself, g is the very first operation which maps the independent viasatio the set

of all variables, and is the final elementary operation that maps the set of alabées

to a single scalat. An equivalent way to express this is

2= F(Z) = h(fm-a(--- (f2(f1(fo(9(2))))) ---)). (3.3)
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Differentiating this formula using the chain rule we have

F/(f) = g’(f)f6(§0)f{(§1)f§(§2) T frln—l(gm—l)h/(gm)' (3.4)

Here F’(%), which is the gradient of (%), is ann x 1 column vector. Eaclf! is ag x ¢
Jacobian matrix of the elementary transformatifing’ is then x ¢ Jacobian matrix of,
andh/, ann x 1 column vector, is the gradient af Since the final factok’ is a column
vector while all the other factors are square or rectangulatrices, and since matrix
multiplication is associative, it follows that for betteefiormance, the above product
should be computed from right-to-left rather than from-teftright. This way we have
a sequence of matrix-vector products rather than a sequémaeatrix-matrix products.
However, doing a right-to-left product requires that we sbow keep all the previous
elementary operations in memory and then apply the chai“milreverse”. The leads
us to what is known as the “reverse mode” of automatic diffeation: we evaluate the
function (%) while simultaneously recording every single operation gmmory. Such
a recording is called &race of the function. Then, we apply the chain rule in reverse
to compute the gradient. If we were to compute the produchfleft-to-right, this
would be the “forward mode” of automatic differentiation istmis only efficient when
the number of dependent variables is greater than the nuohbetependent variables.
Since in registration the similarity metrics we encounter asually scalar, the forward

mode will not be needed.
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3.3 Directed Acyclic Graph Approach

The previous matrix based approach was used to present atitadifferentiation in an
abstract manner. It allows one to clearly see the distindbetween the forward and
reverse mode, and will be useful later on when explaining:tteekpointing algorithm.

It is not, however, how AD would actually be implemented onigitdl computer.
Therefore, an equivalent approach which is more amenabéettal implementation

is based on graph theory. The type of graph relevant to AD @vknas a directed
acyclic graph (DAG). Recall that a graph is a set of nodes acsl &ach arc connects
two nodes. Bydirectedwe mean that each arc has associated with it a direction which
can be represented as an “arrow”. larsy/clic in that it is impossible to construct a path
which starts from a given node and ends at that same node paseng through at least

one other node.

3.3.1 Example

We give a simple example to demonstrate the use of directgdi@agraphs and the
reverse mode of AD similar to an example given by Griewan®@Chap. 1). We will

use automatic differentiation to compute the gradient efdtalar function

z = wsin(y exp(z)) (3.5)

forx = 1.2 andy = 0.7. The diagram in figure 3.1 shows this function as a DAG. If



32

y —> V0—> V2—> V3—> V4—> Z

Figure 3.1: Directed acyclic graph for Eg. (3.5).

this function is expanded out, we have

vop =1
Vo =Y
v1 = exp(v-1)
vy = vy * Vg (3.6)
v3 = sin(vy)
Vg = V_q % V3

Z = V4.

Each of they; is a node in the DAG and the edges correspond to elementargtopes.

The reverse mode of automatic differentiation is applieht®function forz = 1.2 and
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vy =x =12
vo =1y =0.7
vy = exp(v_y) = 3.3201
Vg = V1 *x Vg = 2.3241
v3 = sin(ve) = 0.72945
vy = v_1 *v3 = 0.87533
z =y = 0.87533
vy=2z=1.0
U3 =10y %xv_1 = 1.2
U_1 = U4 *x v3 = 0.72945
Uy = U3 *x cos(ve) = —0.82086
U1 = U9 * vg = —0.57460
Vg = Ug x v; = —2.7253
U1 =10_1+ Up xexp(v_y) = —1.1783

Figure 3.2: Example of reverse mode of automatic differentiation aggpto Eq. (3.5).

y = 0.7 as shown in figure 3.2.  Differentiating analytically, we get

0_923 = z cos(y exp(z))y exp(x) + sin(y exp(z))

7 (3.7)
9y =" cos(y exp(z)) exp(z)

Evaluating atr = 1.2, y = 0.7, we have®L200 — 1 1783, 20200 — 9 7253 as

expected.
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3.4 “The Cheap Gradient Rule”

We mentioned earlier that according to the “cheap gradiald’rit is possible to
compute gradients very quickly such that the time to comghggradient is only a small
multiple of the time to compute the function. This is in c@strto finite differences
where the multiple is very large, typically at le&3t/V) for N independent variables.
The “cheap gradient rule” can be explained intuitively gsihe following simplified
example. Suppose the time to compute the function aloneesdnsl. Suppose further
that the function consists of 1000000 binary operationshefformc¢ = a@b where
@ is a binary operator such as multiplication or addition (teeablesa, b, andc will
of course usually be different in each operation). Thushegeration consists of 2
memory reads for variablesandb, one binary instructiom (which probably involves
3 registers in the CPU), and 1 memory write for variahléor a total of 4 instructions.
To simplify things, assume that all instructions take themsamount of time. Thus,

there are a total of 4000000 instructions in the entire 1se&fonction evaluation.

Now computing gradients is a two step process: a forward gpweeh tracing on
followed by a reverse sweep. Let'’s therefore first discusstitne to do the forward
sweep with tracing. At least 4000000 instructions are ne@deompute the function.

In addition, we mustecord all these instructions so that we can process the function
in reverse. How do we do this? Well, we need to record the faat variables:, b,

¢ were involved. In other words, we need to record the&mory locationsnvolved

in the binary operation. This takes 3 writes. In addition veedhto record the specific

valuesof a, b, andc. This requires another 3 writes. In addition we need to edrich
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binary operatior@ was performed, hence requiring another write. Thus to teeach
elementary operation requires at least 7 more instrucfi@nsoperation for a total of
11 instructions per operation. Thus a total of 1100000Guctions are needed for the

entire forward sweep.

Let's now discuss the reverse sweep. In the reverse sweekeetle derivative

of each of the 1000000 elementary operations done in theafonsweep. Thus the
reverse sweep can be viewed as a sequence of 1000000 elgnaemieative operations.

For simplicity assume that each of these elementary demvaperations also takes 4
instructions. Thus we need at least 4000000 instructionshi® reverse sweep. In
addition, there is overhead due to the fact that we must ré#ttkaecorded instructions
from memory. Let’'s assume that this costs another 7 instnogtper operation. Then

the total number of operations for the reverse sweep is &lsotd 1000000 instructions.

Thus the total number of instructions is about 22000000 wte&.5 times the original
function evaluation. Although this example is overly siifipd and there is more
overhead as well as speed-ups which we have not discusseal;ttal implementation

will be very similar to the way we just described.

3.5 Branches in the Objective Function

Once one has the entire function trace in memory, it is agtyaissible to reuse it for
different values of the independent variables without hg¥o go through the recording

a second time. However, this is only possible if the functitmes not contain any
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“branches”. By a branch we mean the famililaor switchstatements that are common

in programming languages. For instance, we may havestatement

if z > 0 then

do something
else

do something else

end if

wherez depends on the independent variables. Clearly,ithssatement may not be
differentiable whenr equals zero. Therefore, when tracing the functiom;, ifappens
to be positive, only the first part of the statement will be recorded in memory but not
the second. In other words the trace of the function will dodyvalid whenz > 0.
Thus if we attempt to reuse the trace with a different set dependent variables;
may turn out to be negative and the trace stored in memorynwilbnger be valid. It

will therefore be necessary to redo the entire trace all again.

As we will see later, all functions we deal with in image réigiion have these branches,
so it will usually never be possible to reuse the trace forfi@mint set of independent

variables.

3.6 Checkpointing

One problem with the reverse mode of automatic differeiotiats that the trace of

the entire function must be recorded during the forward gwdeor large functions,
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however, this can quickly consume all the memory in the cdepurhis is certainly
the case in image registration which has complicated algefiinctions. One solution
to this problem is known as theheckpointingtrategy (Griewank, 1992; Griewank and

Walther, 2000).

To understand the checkpointing algorithm, we must viewstéhguence of elementary
operations of the objective function as a type of discretextprocess in which during
each time interval, the “state” of system changes or is foanmged to another “state”.
Using the notation above (section 3.2), a state of the sysdully specified by the
values of all its variables;;, and one can view each elementary mapping;) — S;11

as a single time interval or time step. (Actually, treatiragle individual elementary
operation as a single time step would be overkill for the &pemting algorithm. It is
better to treat a consecutive sequence of, 3aglementary operations as a single time

step wherelV/ can be many thousands of operations.)

It now follows that if we know the state of the system at timinen we can simply jump
to timet by loading each variable with the appropriate value. Thepmaation of the
remainder of the function can then continue in exactly theesavay as if it had been

started from the very beginning.

With this new view of the objective function, the reverse maran be improved by
noting that to reverse the function it is not necessary tethheentire function trace
stored in memory. Instead, it suffices to have only the paittwhich is currently being
differentiated. This can be accomplished be saving the sththe system at several

points in time during the forward sweep. These special satads are calleshapshots
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snapshot snapshot
#1 #2
Beginningl | | | End of function
of function | | evaluation

evaluation
t0 t1 t2 t3

Figure 3.3: Checkpointing example.

or checkpoints

By saving snapshots of the state of the system, we can them or@any point in time
of the function evaluation for which we saved a state of th&esy and continue the
forward computation of the function from there. With thislapto easily move to any
point in time, it is possible to perform the reverse sweepi@tgs, one time step at a

time.

An example will help clarify how this can be done. Suppose aeeha function which
can be divided into 3 time intervals as shown in figure 3.3. pussible way to compute
the derivative is as follows. We take a snhapshot,aéind then begin the function
evaluation at, without tracing. As we proceed, we take another snapshigt &/hen

we reacht, (note we do not take a snapshotgt we turn on tracing and complete the
function evaluation thus arriving &. Then we begin the reverse sweep starting from
t3 going in reverse and stopping when we reachThen we reload the snapshot from
t1, evaluate the function wittracing turned orfrom ¢; until ¢5, and continue computing
the derivative in reverse from where we left off, namely fronto ¢,. We repeat this step

one more time: reload the snapshot frgynevaluate the function with tracing turned on
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fromt, tot;, and compute the derivative in reverse from where we leftn@iely from

t1 to t.

The functions we deal with in image registration, howevan have thousands of time
steps, and storing a snapshot for every single time stepltsineously is impractical.
Therefore, it is necessary to set a limit to the number of kpeitits stored at any give
moment in time and decide on a suitable checkpointing sdaedbifferences in the
checkpointing schedule can dramatically effect the oVeahputational requirements,
so it is important to choose the best schedule. This is @sflgnd combinatorial
optimization problem. Fortunately, Griewank (1992) hasw#e an optimal schedule

for the reverse mode of automatic differentiation.

3.7 Implementation

3.7.1 Implementing Automatic Differentiation

The discussion until now presented the mathematics of AD.nd¥e discuss briefly
how to actually implement it on a computer. There are sed@ralvn methods used to

implement AD. We discuss here operator overloading andceduansformations.

Operator Overloading

The technique used in the ADOLC package (Griewank et al.6),98hich we used in

our experiments, is based on operator and function overiga@vhich is a language
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feature of some programming languages such as C++. Operadoading means that
the standard arithmetic operations (such as +, -, *, andoearedefined for different
datatypes provided that they remain binary (or unary in #eeoof unary operators)
functions. Function overloading is the same idea appliestaadard functions such as
the square root or power function. To overload the operandsfunctions, we define
a new special datatype that behaves just like the standatihfippoint datatypés All
our overloaded operators and functions will act on this spelatatype rather than on
the usual floating point datatypes. These new operatorsiaradiéns will redefine the
standard functions of the same name to both (a) do the actlgailation and (b) record a
trace of the computation so we can reverse it later. The adgarof overloading is that
we can write the code in exactly the same way as if we were dodmgnal arithmetic.

The tracing that takes place is completely transparentetcolder.

Source Transformation

Another way to implement AD is known as source transfornmatién this way, the
source code of the objective function is processed by a progrhich then generates
code to compute the derivative. This is how AD was implemamitethe ADIFOR

package (Bischof et al., 1992, 1994).

1In ADOLC this datatype is calleddouble
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3.7.2 Implementing Checkpointing

Fork and Join Approach

There are various ways to implement the checkpointing é@lgar One way, discussed
by Griewank (1992), uses UNIX’s fork and pipe commands (&tey 1993). This
approach exploits the fact that checkpointing is an inhigsart of modern multitasking
operating systems: for a serial processor to give the dlusif doing many things as
once requires that the state of a process be saved. Theré&fouse the operating
system to help us in this method, when a new checkpoint idextea@a new process
is forked off. The parent process then blocks until the cpilacess returns. Since forks
are implemented using copy-on-write (in more modern sysjefforking off another
process does not copy all the data from the parent processh(vgltrucial when dealing
with large images). Communication between processes is\athwith pipes (or shared

memory regions, as was done by Mauer-Oats (1997)).

Goto Approach

Implementing the fork and pipe approach requires expeeiemith UNIX systems
programming and may not be portable to all architecturesordter to avoid detailed
UNIX systems programming, the entire algorithm can be coded single address
space without any forks and pipes. To achieve this, we dpeel@ procedure using
gotos. Goto statements are used in order to jJump to an arbitrary time Jteig makes

moving data around easier at the expense of more complicatk The fork and pipe
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approach is more generic, however, and also facilitatedlpization, making it a useful

possible future improvement.



Chapter 4

Radial Basis Functions and the Fast

Multipole Method

4.1 Fast Evaluation of Radial Basis Function Sums

As mentioned in chapter 2, computing the sum
N
f(@) = Zdi¢i(‘f_ Zil) (4.1)
i=1

is expensive for large numbers of points, especially if wedh® evaluate it over an
image grid. The fast multipole method (FMM) (Greengard, 7,98988; Greengard
and Rokhlin, 1987, 1988) was developed to deal with this lerab Although it was
originally developed to solve the N-body problem in potehtheory, it has been

extended to the interpolation problem which is our primasgeern here (Beatson and
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Greengard, 1997; Beatson et al., 2001a; Beatson and L@t Beatson and Newsam,
1998; Cherrie et al., 2002). The main result is that the cosbimputing an approximate
sum of the form (4.1) at all pointg; can be reduced fror®(N?) to O(N log N) or
evenO(N). Because of its importance, the FMM has been ranked as ohe tdp ten
algorithms of the twentieth century (along with the fast keutransform) (Dongarra

and Sullivan, 2000).

The fast multipole method is based on the principle thattsdhmat are far away (in the
far field) do not have as much influence as points that are cldssrefore, the influence
of all far field points can be approximated using a Laurepetgxpansion while the
influence of nearby points can be summed directly. The forthefar field (as well as

the near field and their translations) depends on the formeobasis function.

Such expansions are computed by first hierarchically pamtitg the entire space into
a set of disjoint panels or boxes as shown in figure 4.1. EagH td the hierarchy
has2? boxes wherel is the dimension of the space. Thus in 3D there grboxes
and in 2D there ard' boxes, wherd is a given level. The top or zeroth level of the
hierarchy contains the entire space, the first level coata@iboxes (in 3D), the second
level contains 64 boxes (in 3D) and so on. The number of l@resen is usually about

logya N.

Once we have partitioned our space to the desired depth,atth@ug expansions can
be computed in two stages: the upward pass and the downwasd pathe upward
pass, the far field sums are computed in the lowest level ohigarchy for each of

the boxes. Then we work our way up the hierarchy and converstims of the2?



Figure 4.1: Top four levels of the FMM hierarchy.
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Figure 4.2: Interaction lists (in gray) of boxes marked véthX at levels 2 and 3.

children into a single sum for the parent by shifting and stngneach of the? children
expansions. We stop when we complete the second level sbwe dhat all boxes
are nearest neighbors of every other box. Formulas for estpas and proofs for the
shifting and convergence have been derived by Cherrie €@02) for multiquadrics,
which includes 3D thin plate splines as a special case (wher) andk = 1). In the
downward pass, we work our way down the hierarchy and foitthieox, we convert the
far field expansions of all other boxes that are (a) well ssedrfrom; and (b) children
of the nearest neighbors @h’s parent (also known as theteraction list(Greengard
and Rokhlin, 1987)) to local Taylor expansions. We call thzal Taylor expansion the
near field. Examples of interaction lists at levels 2 and 3samvn in figure 4.2. Since
there are at mosi? — 1 nearest neighbors for a given box and since each boxhas
children, the size of the interaction list is at ma$t (2¢ — 1). Thus in 2D there at most
27 boxes in the interaction list and in 3D there are at most ¥8$ain, proofs for the

conversion and shifting of the near field have been derive@tmrrie et al. (2002). The
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final local near field has the form

Near(Z) = Z Cal™ 4.2)

which is simply a 3D polynomial of degree wherez = (z1, z2, z3) is a point inR3

anda is a multi-indext.

Finally, to evaluate the original sum (4.1) we add the infeesof all points that are
either in the current box or one of its nearest neighbors disasg¢he near field which

represents the contribution from all far away points:

N
F(&) =" digi(|T — &) = Near(&) + Direct(Z) (4.3)
=1
where
M
Direct(8) = _ digi(|T — F). (4.4)
=1

is the sum over the points within the box containifignd its nearest neighbors, where
we are assuming they contain a totali\dfpoints. Figure 4.3 shows pseudocode of the

complete algorithm.

Now, using Eq. 4.3, the transformationz), v(Z), w(Z)] in (2.18) can be expressed as

u(@ =1+ Y dm + > dVel (|7 - 7)) (4.5)

1A multi-index is a list ofn integers wherga| < r is defined asy; + as + --- + a;,, < r and

—a Q12 A

%= 27" x5 rpr.
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/l Upward pass
for each box at level do
compute the far field expansion for each box
end for
for ¢ from second to bottom level to leveldd
for each box at level do
compute the far field expansion by shifting the 8 children
end for
end for

/l Downward pass
for ¢ from level 2 to bottom levedlo
for each box at level do
convert far field to near field
end for
for each box at level do
shift near field
end for
end for
To evaluate sum: add near field and direct points

Figure 4.3: FMM algorithm pseudocode.
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M
—x2+ch +Zd2 o; — Z4|) (4.6)
a<r =1
M
w(@) = x5+ i+ Y dPe (|F - 7)) (4.7)
a<r i=1

wherej is the index of thgth box at the finest level of the hierarchy. Note that each box

at the finest level has its own set of coefficieri{$, c*, andc(’), while the coefficients

Oé]’

d q? andd are common to all the boxes.

2 A

4.1.1 Analytical Form of the Expansions and Translations

In this section, we state the form of the expansions for thar ramd far fields of
multiquadric RBFs, their translations, and the conversibtine far field to a local near

field. We omit the proofs which can be found in the paper by Gaet al. (2002).

e The Far Field: This polynomial is computed in step 1 for eagk ib the bottom
level of the hierarchy. As derived by Cherrie et al. (2002mibea 3.1), the
expansion for a single center is

oo p(k) 112 2 |22
(I)(l—:_ﬂ:(ﬁ:_ﬂz k/2 ZPZ (|ﬂ + T 7_2<t7x>7‘x‘> (48)

|i.’|2£—k
=0

where(t, #) is an inner product, and

¢ :
(a,b,c) Z (k/2) ( ])bZJ_é(ac)é_j, £>0. (4.9)

J=15*)
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For N centers we therefore have

N

chp (& —t) =Y di(|f -t + 7)) =

=1

PO + 72 —2(.7), |72)
ZZdl T . (4.10)
(=0 =1
Now, how do we know that these polynomials converge, andn éviehey do
converge, do they converge quickly or slowly? To answer, tGiserrie et al.
(2002) proved that the absolute difference between thecaited expansion of

(4.10) (i.e. summing tp + £ rather than to infinity) and the infinite expansion is

2E MR ()P =, k>0
|5(Z) = sp(@)] < (4.11)
(pbe ) MEF R ()™ k<0

where|Z| > R = +/r?2+ 72, r is the radius of the expansion,= |Z|/R, and
M = ZiNzl |d;|. Additionally, Cherrie et al. (2002) has proved that thip@xsion

IS unique.

To actually form these expansions, one should not use tloeseufas directly.

Instead there is a recurrence relation which is more efficlegtting

S

Go(Z) = PP + 72, —2(F. ), |7]?), (4.12)
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the recurrence is

Go(T) =  —k(f. ), r=1 (413

At D) Geor(T) + BZP ([ + 7°)Goa(@), €22

\

where
k/2 — 1
_ok/2-t+1

A = -

(4.14)

and

By=-——""% (4.15)

Cherrie et al. (2002) presents pseudocode for the 2D cage dhkerefore, we

present it here for the 3D case as shown in figure 4.4

e Far Field Translation: During the upward pass it is necgsatranslate each of
the far field expansions at a given level to the center of iteta This calculation
is quite involved and we therefore refer the reader to theephp Cherrie et al.
(2002) for the details. Basically, if the original polynaahis s,(Z) and we then

shift it by «, the shifted polynomial is of the form

(4.16)
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intz,j,/¢
doubleA,, By, a, b, tmp
G(0,0,0)=d

G(1,0,0) = —d x k x g
G(1,1,0) = —d x k= t;
G(1,0,1) = —dxk *ty
for / from2top + k do
Ap=—-2x(k/2—0+1)/C
By=(k—(+2)/¢
a = Az
b= Byx (3 +1]+ 3+ 77
for i from0Oto/ — 1do
for jfrom0to/—1—ido
ifi+j </{—2then
tmp =Gl —2,i,5) b
G, i,j) +=tmp
Gl,i+2,7)+=tmp
G(l,i,7+2)+=tmp
end if
tmp =Gl —1,i,j) xa
G(&Z,j) +=i{mp * 1
G, i+ 1,7) +=tmp *t
G(l,i,74 1) +=tmp =ty
end for
end for
end for

Figure 4.4: Polynomial generator in 3D.
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where

¢
Q@) = q(H) PP ()P, —2(7, @), |7), 0<l(<p+k (4.17)
7=0

andg; () is a homogeneous polynomial as defined by Cherrie et al. {2002

Near Field: The near field is

Oop(k) 212 9o 2 |2 2
@(f—ﬁ):(‘f—ﬁ|2+7'2)k/2:z I (|ZI§'|, <U,ZL’>,|U| +7—)

s ( /|ﬂ'|2 +T2)2€—k

(4.18)

which is just a regular polynomial.

Conversion of Far Field to Near Field: Converting the fardfied the near field
is very similar to shifting the far field. Again, Cherrie et £002) derived error

bounds for this approximation:

k) (1= e
Zq: P (|22, —2(a. 7). ) + )
— ( /|ﬂ'|2_|_7-2)2£—k
| a+1 712 2
/Tal2 + 72)k 7] VALl ’ k>0
(V1 ) <\/|ﬁ2+7—2 V0aPP+r2—|g]

q+1 —k .
—k = k |Z] Vi<
ENWIPT () (M) ke

(- ) -

< (4.19)

Near Field Translation: This is just a polynomial shift whits equivalent to
a convolution. Cherrie et al. (2002) therefore suggestagutiie fast Fourier
transform to do this calculation. However, unless the degifethe polynomial
is very large, computing the convolution using the FFT isaftgtimpractical.

Therefore, it would seem that a direct polynomial multigtion is more efficient.
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Thus, suppose we have a polynomial of the form

njg  ng

p(x1, T2, x3) ZZ: Z Z smkxlxzx?). (4.20)

=0 j7=0 k=0

Then using the binomial formula

(y+2)" = <Z> yknk (4.21)

(where y and z are scalars) we have that the shifted polynasnia

p(zy +a, 29 + b, x5+ ¢) = ahy n:sl ZZZ()( )(:k)

i=0 j=0 k= ki =0 k;=0 ky=0

x i axlakarikipriThicne—ke - (4,22)

Unfortunately, this is the most intensive part of the FMMctddtion as can be

seen from the six sums in the formula, and better ways aresadedspeed it up.

4.1.2 TheO(N log N) and O(N) Algorithms

The above description is the original formulation of the FMN hag)(N') complexity.
This can be seen from the fact that only on the bottom levehefupward pass are all
the points accessed but not at the remaining levels of theaxgpwass or any of the
levels of the downward pass. Therefore, it is not too diffitalshow that the bottom
level has complexity)(N) while the remaining levels of the upward pass and the entire

downward pass are independent\af Furthermore, a single evaluation of the near field
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and far field is also independent dt. Hence, the total complexity of evaluating the sum

at all N points isO(NN).

However, when dealing with points in 3D, although the comityds proportional taV,
the constant of proportionality is very large and implenmanthe full O(N) FMM is
very time-consuming and usually not worth the effort untbsse are literally hundreds
of thousands of points. This is because in 3D the size of tieedntion list is at most 189,
as explained in section 4.1, hence requiring that many ¢sioves of far field expansions
to local Taylor expansions for each box at each level of themdard pass. Therefore,
a simpler approach is to stop after the upward pass (withoagdhe downward pass)
and evaluate the far fields (i.e. Eq. (4.10)) directly. Adbatiailly, in the upper levels of
the upward pass it is simpler to form the far fields directlng<q. (4.10) rather than
using the translation formula, Eq. (4.16). Because all {goame now accessed at each
level, each level has complexi€y( V), and because the number of levels is aliogtV,
the total complexity iSO(N log N) (Beatson and Greengard, 1997). In this work, we

only use the)(N log N) algorithm since all experiments were done in 3D.

4.2 Solving for the RBF Coefficients

In the original fast multipole algorithm developed for thebWNdy problem, the
coefficients in the sum (4.1) were known. The difficulty wasualy computing the
sums. However, in the interpolation problem we have theteuadil problem of not
knowing the coefficientsl;. Initially, all we know are the values of the function at

scattered points. It is then necessary to solve a largerlisygstem to compute the
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coefficientsd;. Clearly, solving such systems directly has complexityV?) and is
too expensive for large point sets. We therefore reviewimghction other approaches

in the literature to this problem.

4.2.1 The Linear System

The linear system for solving for the coefficiemtscan be written as (Rohr et al., 2001)

Al | = (4.23)

where
(®+ NAXW™1) L
A — ’ (4.24)
L” 0
o? 0
Wl=1|: . ], (4.25)
0 o2

o; are WeightsJ are the coefficients from Eq. (4.X)are the coefficients of the optional
polynomial terms®,; are the basis functions(|z; — 2;|) from Eq. (4.1), and_;; are

the optional polynomial terms.

The parametek controls whether or not the RBF approximates or interpsltte true
function values. In the interpolating case= 0 while for the approximating case> 0.

The higher\ is, the more approximate the resultant interpolant.
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4.2.2 Fastlterative Solutions of Radial basis functions v Precon-

ditioned GMRES

As mentioned previously, solving the linear system (4.28gdly requiresO(N?)
operations, which is prohibitive for large systems. Theref fast iterative methods
have been developed to solve such systems which reduce rif@ecaty significantly
even for large numbers of points (Beatson et al., 1999, 200Me focus here on one
discussed by (Beatson et al., 1999) which uses the Gerestallinimum Residual

method (GMRES) (Barrett et al., 1994; Saad and Schultz, 1986

The GMRES belongs to class of solvers known as Krylov sulsspagthods. In such
methods, at each iteration the next candidate solutiorovéstcomputed based on all

the previous solution vectors.

One problem is that the matrit in Eq. (4.23) is typically ill-conditioned and hence
convergence is very slow. The solution is to use a precaditg matrix M. For
simplicity, we focus here on left preconditioning only arsgsame there is no polynomial

part, i.e.A = .

A good left preconditionet when multiplied by the original matrix system (4.23)
makes it well-conditioned. The close¥/ A is to the identity matrix, the better
conditioned the new system. Thus, it follows that our gofihid anapproximatenverse
M such that

MA~I or M~A" (4.26)

A standard method for finding thexactinverse of anyNV x N invertible matrix is to
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Figure 4.5: Cardinal Function in 2D. Eight points are lodatar away along the
perimeter of the region while the remaining points are closthe center point. The
cardinal function is constrained to zero at all the blacknpoind equals unity at its
maximum.

solve the followingN linear systems:

A%, =&, i=1...N (4.27)

whereg; is theith unit vector. The inversd ! is then formed by placing; into theith

column of A~ (Strang, 1988).

Clearly, solving (4.27) for every; is more difficult than solving our original problem
(4.23). However, there is a fast way to find an approximatersw (Beatson et al., 1999;
Brown et al., 2005). Each of th¥ linear systems of Eq. (4.27) is equivalent to solving
the following problem. Suppose we haveadinal functioncentered at one of thih
control points. A cardinal function is equal to one at itfepoint and is zero at all the
other N — 1 points. (See figure 4.5). Suppose we wish to express thigifumin the
form of Eq. (4.1). Then the system we need to solve is precibelith system of Eq.

(4.27). Theith solution vector of all thes® systems becomes thi column of A1,
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While we seem to hav® N x N systems of equations (which is impractical), we now
show that this can reduced 16 R x R systems wheré& < N. We do this by solving
for anapproximatecardinal function. An approximate cardinal function is abio one

at the point it is centered on, like the regular cardinal fioxg but it is constrained to
zero at onlyR — 1 of the NV points whereR < N, rather than at all the remaining — 1
points. These&? — 1 points should be chosen such that most of them are very ddke t
center point while a few of them should be far away to make thatthe approximate

cardinal function does not blow up far away from the centenpo

To express each of these approximate cardinal functions sisnaof radial basis
functions requires solving/ R x R system. Since such systems are small, they can
be solved easily using a standard algorithm such as LU degsitiqm. Thus the cost

of solving all these systems (N R?). With these solutions, we can then form the
approximatanverseM by placing theith solution in theith column of M where each
component of the solution is placed in its corresponding rdfwvill be mostly sparse

since all remainingV — R components are set to zero.

4.3 Other Approaches: Compact Support Radial Basis

Functions

In order to deal with the computational difficulties asstaibwith RBFs, researchers
have developed what are known@smpact support radial basis functio@Buhmann,

2000; Wendland, 1995; Wu, 1995). Some have used them forigidmegistration
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(Fornefett et al., 2001; Rohde et al., 2003). These are #kl@l basis functions except

that they are truncated to zero after a certain point. Féant®, one possibility is

o(r) = (max(1 —r,0))*(3r® + 12r? + 161 4 4), r>0. (4.28)

Solving the interpolation matrix is therefore a lot simplédowever, compact RBFs
appear to be inferior to and less accurate than standardomopact RBFs (Zhang et al.,
2000). Given that therare, in fact, ways to efficiently solve the interpolation matiax

non-compact RBFs, as discussed in this chapter, we do natamspact RBFs in this

work.



Chapter 5

Using Automatic Differentiation with

Registration

We now have all the pieces we need to build a registratiorrigtgo based on automatic
differentiation. In this chapter we discuss general isshasarise when implementing
such an algorithm using an SSD or MI metric regardless ofype bf transformation

used. In the next chapter we discuss the particular case BftRiBsformations.

5.1 When to Use Checkpointing

In certain situations checkpointing can be avoided depwndin the form of the

objective function and the transformation function. If tigective functionf’ can be

61
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expressed as a sum over the image:

F=>fi=Y fi+> fit-+Y (5.1)
\%4 \%1 Va VN

where the image spadéis broken up into piecels;, V5, ..., Vy, then, from the linearity

of this formula, the gradierW¥V F' is the sum

VE=VY i=VY [i+V> fi+--+V> fi (5.2)
% %1 Va \4%

Hence, we can divide the image into pieces small enough stréta of the individual

pieces can fit into memory.

In practice, this property holds for SSD metrics that use #mea or B-spline
transformation. However, for information theoretic oltfjges which require the
computation of a histogram and do not sum over the image sahedctly, this property

is usually not valid, hence requiring the need for checkiogn

Also, when using a radial basis function transformationchiirst requires the solution
of a linear system prior to the sum, this strategy will not kvofn order to compute
the gradient, the objective function must depend direatlyhe independent variables.
Hence if we were to apply this strategy directly, then we wiged to solve the entire
linear system for each block. Thus, checkpointing would éeessary in this situation
as well. Note that for rigid, affine, or B-spline transforinat there is no setup stage

and dividing the image in pieces is therefore feasible.
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5.2 Interpolation

For best results in automatic differentiation, it is im@ort that the function be
continuous. When one uses AD on functions the depend on ivages, we must
properly handle image interpolation. After transformingaxel in the fixed image
to the space of the moving image, it is necessary to intefpaathat point using,
perhaps, trilinear interpolation since this point is ulualt a non-integer location.
However, it follows from here that these transformed poohpend directly on the
independent variables. In other words, if we view the movimgge as a look-up
table, then the mapped point from the transformation isdadlgia non-integer index
into this lookup table. Now, since there are millions of visxa this image, and since
in many AD implementations any variable that depends onnldependent variables
must be declared as a special datatype, it would appear tedessary to have such an
indexdeclared as a special datatyp&his would create a huge computational burden.

Furthermore the function would not be continuous.

Instead, a better way is that whenever we interpolate witlenimage we use a first-
order Taylor approximation. Suppose we wish to compute nbenbity value at the
(non-integer) pointzy, o, 3) Where the intensity at that point isand the gradient is
(921, 9205 95 )- Then using a first-order Taylor approximation, the intgnat that point
can be expressed as

I = f + 2192y + T2Gz, + 3Gz (53)

wheref is a constant. In Eq. (5.3);, 22, z3, andl are special AD variables since they

1For example, using ADOLC's active indices.
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depend on the independent variables whefeas,, ¢..,, andg,., are not.

Thus, whenever we wish to compute the intensity of an imagegaten location, we

1. Compute the intensity and gradientg.,, g.,, 9.,) at (z1, x2, x3) using trilinear

interpolation without using any special variables.
2. Use Eq. (5.3) to set the intensityith special variables fat,, x», x3, andl).

3. Finally, use the result in the objective function. In thiay, the intensity of the

interpolated point depends continuously(an, s, z3).

This method generalizes easily to higher order interpafatinstead of Eq. (5.3), there

will be more terms depending on the type of interpolatiorduse

We mentioned in section 3.5 that the trace of objective fonstwe deal with in image
registration are unique to a particular set of independanakiles and cannot be reused
with a different set of variables. From the discussion inl#st two paragraphs, we can
now understand why this is so. The entire moving image is cintadly traced. Instead
we only interpolate within the moving image when necesdamwe were to change the
independent variables, then we may need to interpolaténat tications in the moving

image thus rendering the original trace invalid.

5.3 Histograms

An issue that arises when using information based metrichasneed to compute

histograms. Unfortunately, the same problem that we hal wterpolating the image
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also exists with creating the histogram. Namely, the binthefhistogram are usually
expressed as a raw array of values, and the moving image (vetich depends directly

on the independent variables of the objective function)dede be cast to an integer
index value in order to increment the frequency of an indigicbin. One way around
this problem is to use Parzen windows (Duda et al., 2000 eParvindows is a method
to construct a histogram so that it is smooth. In the usual Wwwagreate a histogram
each bin can only have discrete, integer values. With Pavastiows, each bin can take
on any real value, and instead of incrementing a single bantathe, we increment all

the bins in a neighborhood or “window” of a specific bin by treue of a windowing

function centered on the bin. Popular windowing functiomslude Gaussian and B-
splines. If we use a cubic B-spline as a windowing functitvgnta one dimensional
histogram (in practice the histogram will be 2D but the resuie same) can be written

as (cf. Mattes et al., 2003, Eq. (6))

p(l) =Y 91— 1) (5.4)

l

where f is the (scaled) moving image value aft® (u) is the cubic B-spline basis

function )
14 — 6u + 3|ul?), 0<|uf <1
B(u) = { L(s —12)u] + 61 — [uf?), 1< |u|<2- (5.5)
0, 2 < |ul

\

Using such Parzen windows, using histograms with AD isglri#orward. However, as

with interpolation, a given trace is unique for a particidat of independent variables,



and if they change, the function must be recomputed.
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Chapter 6

Nonrigid Registration with Radial

Basis Function Transformations

In the previous chapter, we discussed general issues tis&t &hen using AD to

compute gradients of registration metrics. In this chapter discuss the particular
case of RBF transformations. This chapter brings togethéraideas of the previous
chapters and presents the complete nonrigid registralgmitnm based on automatic
differentiation, checkpointing, radial basis functioasd the fast multipole method—

the primary goal of this work.

6.1 Preliminaries

Before the similarity metric can be optimized, several ipnglaries need to be taken

care of. First, as mentioned earlier, unlike B-spline grid8Fs allow for arbitrary
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placement of control points throughout the fixed image. &ifgov control points are
needed in those parts of the image which are very uniform,ive@se to place control
points in non-uniform areas. We use an edge detector sudteagadient magnitude
or Canny edge detection filter (Canny, 1986) to finds pointatied along boundaries
(figure 6.1) and then choo%€é nonzero points randomly from this edge image such that
the minimum distance between points is above a certainttblgsNext, it is necessary
to choose a level of refinement for the fast multipole meth®lis number is chosen
so that there is a certain number of points per box at the lolgesl (cf. Greengard,
1988). Next, we compute the preconditioning matrix using allgorithm of Beatson

et al. (1999) described in section 4.2.2.

Figure 6.1: Shows a slice of the gradient magnitude of a hnaé&ge. Control points are
placed on voxels with nonzero gradient magnitude.
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6.2 The Similarity Metric

We are now ready to present the similarity metric which ugse®BF transformation
and AD with checkpointing for gradient calculation. The 648 pseudocode in figure
6.2 illustrates how we divided up the sum of squared diffeesmmetric into time steps
and it consists of three sectiohg his figure should be interpreted identically to figure
3.3, except that here there are many more time steps, andirgwtiah of time is
shown “vertically” rather than “horizontally”. To see thiassume that all loops in the
pseudocode are fully unrolled; then the first occurrenceftohé step]” corresponds
to time t,, the second occurrence of “[time step]” corresponds to timend so on.
Sometimes we write “[time steps]” in the plural to indicabat there are several time
steps in that part. We only include the major loops in the GMREBd FMM sections.

The contents of these loops can be found in the referenaeseadfto earlier.

Part 1: GMRES

The very beginning of the objective function evaluation /iously the assignment
of values to the independent variables, which, in this caste displacements of the
control points. This point in time is the beginning of theyérst time step, as shown
in the pseudocode. The reason we optimize over the displmsmather than the
coefficientsd; directly is twofold. The first reason has to do with stabilitiye function

with respect to the displacements is much more stable treafutittion with respect to

the coefficientsl;. Because of the non-local nature of the basis functions g shrange

1The mutual information metric is the same except for thedtb@ction.
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/* Part 1. Do computation of radial basis function coeffi¢gensing GMRES for eagh
dimension */

[time step]
for dimensions 1 to 8lo
[time steps]
for i from O to mazxlter do
[time step]
for j from O tom do
[time steps]
end for
[time steps]
end for
end for

[* Part 2. Do FMM upward pass */

[time step]
for ¢ from bottom level to level 2l0
for each box aith leveldo
[time step]
end for
end for

[* Part 3. Do sum of squared differences */

[time step]
sum=0
for ¢ from O to total voxels in imagdo
if (¢%10000 == O}then
[time step]
end if
diff = interpolatedMovingValue — fixed Value
sum = sum + diff?
end for
returnsum

Figure 6.2: SSD Metric Pseudocode. If all loops are unrolled, then teeuplocode can
be understood in the same way as figure 3.3, withitheccurrence of “[time step]”

corresponding to timg,.
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Figure 6.3: Shows the similarity metric as a directed acygtaph. The dotted lines
represent time steps. There are many more time steps thamsho
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in any of the coefficients can drastically change the entaresformation. It is very hard
to optimize such an unstable function. However, a small ghan the displacements of
the control points will not result in a major change in thensfarmation. The second
reason is that optimizing over the displacements allows easily add point constraints,
if desired, at arbitrary locations by placing simple boundsthe components of the

displacement.

Because we are optimizing over the displacements rathertkieacoefficients, we need
to solve for the coefficients using GMRES for each componéthe transformation.
GMRES, as described by Barrett et al. (1994), works by attemgpo update the next
solution vector based on all the previous solution vectdt$.these previous vectors
must therefore be stored in memory. However, due to memargtcaints, we may be
limited in the number of vectors we can store. One possilbéesly is to restart after
m iterations. However, there is no simple strategy for chagsi value forn (Barrett
et al., 1994). Since performing preconditioning resultieimer necessary iterations for
convergence, we chose not to restart the iteration and gisgthn to the maximum

number of iterations.

Another important point concerns the tolerance stoppimglitton. Normally, when one
does checkpointing, the total number of time steps is speldifeforehand. However, if
the stopping criteria is based on the residual vector, thewrbviously do not have this
information. However, as pointed out by Griewank and Wal{@600), we are free to
modify the total number of time steps prior to the start ofrdweerse sweep. Thus, if each
iteration is composed df time steps then initially one should allow for a maximum of

T'xmaxlter time steps. If the algorithm converges in, s&éjterations, then the number
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of total time steps is reduced by« (maxlter — M). A simpler approach is to eliminate
the tolerance as a stopping criteria altogether and simypiytime algorithm for a fixed

number of iterations.

Part 2: FMM

Once the GMRES stage is completed, we then need to use the EMjdnierate the
necessary polynomials. As explained earlier in section24.EMM consists of an
upward pass and a downward pass where at each level of tiaediigmwe iterate through
each box. We do not show the downward pass, though, sincepésred in section
4.1.2, doing the full FMM in 3D is usually not worth the effoVe place a time step
at each box as shown. In addition, we note that the pseud@tuen assumes that the
matrix multiplication is done the standard way (with N?) complexity). Therefore,
following the solution of the linear systems, it is necegstr compute the FMM
polynomials. However, if the FMM itself is used to compute thatrix multiplication,
then Part 2 will be unnecessary as it will already have beeiogeed in Part 1 (in the

last iteration of each of the three linear systems).

Part 3: Sum of Squared Difference

With the FMM complete, we can now actually compute the valti¢he similarity
metric. We evaluate the sum of the objective function (2vlif) time steps placed every
numberOfVozxelsPerTimeStep voxels. The value ofwumberOfVoxelsPerTimeStep

depends on the amount of available memory. Note that if threlagiity metric was
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mutual information, then Part 3 would be replaced with camteMl, but parts 1 and 2

would remain the same.

With the function divided up as explained, and with the &ptio jump to the beginning
of any arbitrary time step, one can then optimize the objedtinction using a gradient

based method such as conjugate gradient (Press et al.,. 1992)



Chapter 7

Results

Having described the theory behind the approach of this vionarevious chapters,
we are now ready to test our algorithms on real images. Howsaéidating image
registration algorithms is not easy, and various appraache be found in the literature
(Crum et al., 2004b; Hellier et al., 2003; Pennec and Thjri®05; Schnabel et al.,
2001; Strother et al., 1994; Warfield et al., 2001; West etl&l97). Therefore, in this
work, we made use of a variety of validation strategies, ddjmg on the type of images
registered, as not all approaches were appropriate intafiteins. These techniques

included:

e visual inspection.

e using an overlap measure. Crum et al. (2004b) proposedatmgiregistration

based on how well the registration aligns various strustufe measure accuracy,
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the following overlap measure is used:

(7.1)

whereN (F' N M) is the number of voxels of a specific structure in the fixed and
moving images that overlap, afdd( /'UM ) is the number of voxels in their union.
This measure varies from 0, corresponding to no overlap, tmtesponding to

complete overlap.

e measuring the number of misclassified voxels (NMV).

e comparing registration with and without automatic differation.

The algorithms were coded in C++ and were mostly based onfeoatethe ITK Insight
Segmentation and Registration Toolkit (Ibanez and Scleo&D03). In addition, we
made use of some Numerical Recipes code for implementingdhgigate gradient
optimization algorithm (Press et al., 1992), code from tle®ekTemplates for the
Solution of Linear Systenisr the GMRES method (Barrett et al., 1994), the ADOLC
package for automatic differentiation (Griewank et al.98) the Revolve package
for checkpointing (Griewank and Walther, 2000), and the Ap&tkage for nearest
neighbor search (necessary for computing the precondigiomatrix—see section
4.2.2) (Mount and Arya, 2005). The code was compiled withrojation and run

on a dual Intel Xeon processor workstation running the GNitlik operating system.

In this chapter, we begin with simple experiments and thenged to more complicated

cases.
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7.1 Experiments to Evaluate Accuracy of Automatic

Differentiation with Registration

It is important to make sure that using automatic differaindin with registration gives
us accurate gradients. A good way to test this is to comp#peaitcase when analytical
gradients are available. If we get equivalent results usoty methods, then we can be
more confident that the AD approach will work when we have nalydital gradient.
In this section, we discuss implementing the AD approachumetions with analytical
gradients and show that AD gives the same results as thetimaalyradients. In later
sections, we discuss metrics which use an RBF transformainal are therefore not

amenable to analytical gradients.

To verify that AD is feasible for registration, we implemedtAD on registration
problems using rigid (Eq. (2.5)), affine (Eq. (2.4)), and Bie (Eq. (2.6))
transformations with both sum of squared differences antuatunformation. The
code used to implement these registrations was based ondight Segmentation and
Registration Toolkit (Ibanez and Schroeder, 2003). TaBl@ésand 7.2 show the results
of these types of transformations for both SSD and MI. In eaw we show the three
transformations. The rigid transformation is a 6 paramgtasformation defined by
Eq. (2.5), The affine transformation is a 12 parameter toanstion defined by Eq.
(2.4), and the B-spline transformation consists of & 18x20 grid with a spacing of
about 10 mm for a total of 6120 control points or 18360 paransetThe images used

were 2 images from the IBSR database (IBSR, 20040 checkpointing was used

1See section 7.3 for more discussion about this database.
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for the SSD case when using AD, but checkpointing was useMfavhen using AD.
The first row shows the number of independent variables ih ease. The second row
shows the running time for computing the function alone. frie row shows the time
for computing the gradient using AD. The fourth row shows tago of the time to
compute the gradient using AD to the time to compute the fanalone. The fifth row
shows the time for computing the gradient analytically. $kxéh row shows the ratio of
the time to compute the gradient analytically to the timedmpute the function alone.
The seventh row shows the number of iterations in the cobtgugriadient optimization.
Finally, the last row shows the average relative differdvet@veen the final values of the

independent variables, i.e.

N
iz|ai—bz’| (7.2)
N lai .

where a; are the final independent variables when using AD andre the final

independent variables when differentiating analytically

We see that for the SSD metric, after several iterationsetisgoractically no difference
between the transformation parameters in the AD and aoalydptimizations. How-
ever, for MI, we see that after several iterations, diffeesnaccumulate between the
analytical and AD cases. This is perhaps due to the fact tivadmalytical gradient was
computed based on the method described by Thevenaz and (208€) and Mattes
et al. (2003). A close reading of those papers reveals thayBTapproximation was
made and hence it is not the true gradient. Another podsilslithat the MI metric is
more sensitive to tiny changes in the independent variagolésat after several iterations

the solution changes by a sizable amount.
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You will also notice that the running times for the B-splirggadient is very long. This
is simply because our particular implementation of the @il B-spline gradient was
not optimal, not because doing B-splines analytically avar than with AD. In an

optimal B-spline implementation, the analytical B-splgradient would be faster than

the AD version.

rigid affine B-spline

Number indep vars. 6 12 18360
Time (function) (sec) 1.95 1.99 30.1

Time-AD (gradient) (sec 8 8.63 181.038
Ratio-AD 4.1 4.3 6.01
Time-dir (gradient) (sec 5.4 3.45 1548.96
Ratio-dir 2.8 1.7 51.46
Iterations 4 10 25
Norm 1.05906e-11 4.91091e-1Q 4.36718e-10

Table 7.1: Running times and others values for registratith an SSD metric. See
text for explanation of values.

rigid affine | B-spline
Number indep vars. 6 12 18360
Time (function) (sec) 3.29 3.2 30.59
Time-AD (gradient) (sec) 58.8 65.4 454.15
Ratio-AD 17.87 20.4 14.846
Time-dir (gradient) (sec 15 8 4301.6
Ratio-dir 4.97 2.7 140.6
Iterations 4 16 25
Norm 0.279176| 0.106872| 0.2065

Table 7.2: Running times and others values for registratiim an MI metric. See text
for explanation of values.
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7.2 Experiments with Synthetic Shapes

7.2.1 Registration of a Sphere and a “Planet”

In this experiment, we registered two synthetic shapes,Jang” and a sphere. Our
planet is like a sphere except that it has seven “mountaind”’seven “craters”. A
slice and a surface rendering are shown in figure 7.1. Botgénare 128128x128
voxels with a spacing of 1. We registered the sphere to thengdl' using a B-spline
transformation with grid sizes of>83x8, 12x12x12, 16x16x16, and 220x20 as
well as an RBF transformation with 512, 1728, 4096, and 804i0tp. The points
were randomly placed on the nonzero voxels of the gradieghihade image. An SSD
metric was used. For the RBF, we used a thin plate spline igoaldric withT = 0,

k = 1), and the degree of the polynomials used in the fast mutipalculations was 5
(i.e. p = 4 so thatp + k& = 5). The number of iterations used in the GMRES solver was

40. For the optimization, we used the conjugate gradienhawe{Press et al., 1992).

Figures 7.2-7.9 and tables 7.3-7.4 show results for thepergments. In tables 7.3-
7.4, the first row shows the size of the B-spline grid. The sdc¢ahird, and fourth
rows are the same as in tables 7.1-7.2. The fifth row is the eumibiterations taken
in the optimization algorithm, and the final row is the numbé&misclassified voxels
(NMV) following the completion of the registration. Noteahprior to the registration,
the number of misclassified (NMV) voxels was 51304. In tablg e last two rows
are the number of time steps and the maximum number of chedkpased in the

checkpointing algorithm. We see from figures 7.2-7.9 thahB®BFs and B-splines
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Grid Size 83 123 163 20°
Time (function) (sec) 28 16 16 16
Time (gradient) (sec) 148 92 96 99

Ratio 5.28 | 5.75 6 6.19
Iterations 10 10 10 10
NMV 35831| 16055| 4681 | 2632

Table 7.3: Running times and other values for sphere regt® “planet” with a B-
spline transformation. See text for explanation of values.

give comparable results. However, we point out that wite #xample, the difference
between B-splines and RBFs is very noticeable. The B-spliagp is very local in
nature. The only parts of the image that get warped are inithty of the “mountains”
and “craters”. The RBF. however, is global and thus ¢éiéire space gets warped.
Clearly, for this case, it cannot be argued that one wargngare “correct” than the
other. There is no way to decide what the true transformasionmithout additional

information.

However, suppose that this sphere is a young, “undevelopedi and the “planet”
represents the brain at a later stage in its development.e fvere to now ask what
the correct transformation is, it would appear that the Basptransformation is too
simplistic. We would surely expect the change in the brainegult from the growth
and development of thentire brain, not just along the surface. Hence, it seems to us
that a global transformation such as RBFs is a more apptepmadel of such brain

variability since it takes into account the global naturéhaf brain.
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Figure 7.1: Slice and surface rendering of “planet” with ‘Umtains” and “craters”.

Figure 7.2: Result of sphere registered to “planet” withresponding warped grid
image for a B-spline grid of 88x8 (512 points).

Figure 7.3: Result of sphere registered to “planet” withresponding warped grid
image for an RBF of 512 points.
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Figure 7.4: Result of sphere registered to “planet” withresponding warped grid
image for a B-spline grid of 1212x12 (1728 points).

Figure 7.5: Result of sphere registered to “planet” withresponding warped grid
image for an RBF of 1728 points.

Figure 7.6: Result of sphere registered to “planet’withregponding warped grid image
for a B-spline grid of 16¢16x 16 (4096 points).
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Figure 7.7: Result of sphere registered to “planet” withresponding warped grid
image for an RBF of 4096 points.

Figure 7.8: Result of sphere registered to “planet” withresponding warped grid
image for a B-spline grid of 2020x 20 (8000 points).

Figure 7.9: Result of sphere registered to “planet” withresponding warped grid
image for an RBF of 8000 points.
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Number of Points 512 | 1728 | 4096 | 8000
Time (function) (sec) 190 | 235 | 297 | 410
Time (gradient) (sec) | 1544| 1870| 2296| 3221

Ratio 81 | 796| 7.73| 7.86
Iterations 10 10 10 10
NMV 5843| 1606| 1497| 1891

Number of Time steps | 4704 | 4956 | 5586 | 6468
Max number of checkpoints 20 20 20 20

Table 7.4: Running times and other values for sphere regite “planet” with an RBF
transformation. See text for explanation of values.

7.2.2 Registration of a Sphere and a 3D “C”

Christensen (1994) recommends testing nonrigid registratligorithms using a “C”
shaped image. Since all experiments in this work are in 3Djnstead used a 3D
“C” shaped image that is very similar to Christensen’s 2D f@age. The dimensions
are 128<128x128 and have isotropic spacing of 1. The inner radius of tHeis@1
voxels, the outer radius is 41 voxels, and a cylinder of di0 is used to make the
opening in the “C”. The intensity value of the “C” is 100 ane thackground has value

0. Orthogonal slices of the 3D “C” are shown in the figure 7.10.

We registered a sphere with a radius of 31 voxels to the “C’genasing a B-spline
transformation with grid sizes of>8x8, 10x10x10, 12x12x12, 16x16x16, and
20x20x 20 as well as RBF transformation with 512, 1000, 1728, 4086 8900 points.
The points were randomly placed on the nonzero voxels of tadignt magnitude
image. An SSD metric was used. For the RBF, we used a thin gjhéitee (multiquadric
with 7 = 0, £ = 1), and the degree of the polynomials used in the fast mu#ipol

calculations was 5 (i.ep = 4 so thatp + k£ = 5). The number of iterations used in the
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GMRES solver was 40. For the optimization, we used the catgigradient method
(Press et al., 1992). Figures 7.11-7.20 and tables 7.5 @&nshdw results and timing
information for these experiments. The explanation forvalkelies of these two tables
are identical to those of tables 7.3-7.4. Note that prioh®registration, the number
of misclassified voxels (NMV) was 203220. We see that the IBysgransformation

is unable to correctly warp the sphere into the “C”, wherdwsradial basis function
transformation can (although there is still a remainintglitiot in the center which the

radial basis function was unable to register).

Figure 7.10: Shows 3 orthogonal slices of 3D “C” image.

o

Figure 7.11: Result of sphere registered to “C” with coroegping warped grid image
for a B-spline grid of &8x 8 (total number of control points: 512).
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Figure 7.12: Result of sphere registered to “C” with coroegping warped grid image
for an RBF transformation consisting of 512 points.

Figure 7.13: Result of sphere registered to “C” with cormsping warped grid image
for a B-spline grid of 16<10x 10 (total number of control points: 1000).

Figure 7.14: Result of sphere registered to “C” with cormsping warped grid image
for an RBF transformation consisting of 1000 points.
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Figure 7.15: Result of sphere registered to “C” with coroegping warped grid image
for a B-spline grid of 1 12x 12 (total number of control points: 1728).

Figure 7.16: Result of sphere registered to “C” with cormsping warped grid image
for an RBF transformation consisting of 1728 points.

Figure 7.17: Result of sphere registered to “C” with cormsping warped grid image
for a B-spline grid of 16<16x 16 (total number of control points: 4096).
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Figure 7.18: Result of sphere registered to “C” image witlregponding warped grid
image for an RBF transformation consisting of 4096 points.

Figure 7.19: Result of sphere registered to “C” with cormsping warped grid image
for a B-spline grid of 26<20x 20 (total number of control points: 8000).

Figure 7.20: Result of sphere registered to “C” with cormsping warped grid image
for an RBF transformation consisting of 8000 points.



Grid Size 83 103 123 163 20°
Time (function) (sec) 22.3 | 22.12 | 22.1 21.7 | 231
Time (gradient) (sec) 133.2 | 131.72| 131.09| 133.09| 135.5

Ratio 597 | 595 | 593 | 6.13 | 5.87

Iterations 5 10 10 10 10

NMV 68852| 64920 | 62200 | 53036 | 46808

Number of Points 512 1000 1728 | 4096 | 8000
Time (function) (sec) 168.18 | 180.31 | 203.55| 304.7 | 538.13
Time (gradient) (sec) 1321.18| 1390.81| 1601.18| 2233.1| 3815.45

Ratio 7.86 7.71 7.87 7.33 7.09
Iterations 10 10 10 10 10
NMV 14286 | 8192 6678 | 9453 | 7110
Time steps 4704 4704 4956 5586 6468
Checkpoints 20 20 20 20 20
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Table 7.5: Running times and other values for sphere registe “C” with a B-spline
transformation. See text for explanation of values.

Table 7.6: Running times and other values for sphere regt® “C” with an RBF
transformation. See text for explanation of values.

7.2.3 Registration of a Star and a Flower Shaped Image

For our next experiment, we used two shapes generated vathdlp of the “super-

shape” formula (Bourke, 2003):

© = R(6) cos(6) R(9) cos(¢)
y = R(0) sin(0) R(¢) cos(¢)
2 = R(¢)sin(¢) (7.3)
T/2< ¢ < 7/2

<0<
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where
n2

- cos(mx /4)

n3\ —1/n1
) . (7.4)

In this equatior, b, m, ny, no, andns are parameters which can be varied. The first

R@:):(l

+ )% sin(maz/4)

shape, which resembles a flower, has parametetsl, b = 1, m = 5.2, ny = 0.04,

ny = 1.7, andns = 1.7 and the second shape, which resembles a star, has parameters
a=1,b=1,m=>52,n; =0.2,ny, = 1.7, andns = 1.7. The images are constructed

by evaluating Eq. (7.3) for/2 < ¢ < n/2 andn < 6 < 7 and then setting to

an intensity value of 100 all voxels along the line connegtime origin and the point

(z,y, z). The dimensions of the images are ¥228x128 and have isotropic spacing

of 1.

We registered the two images using a B-spline transformatith grid sizes of &8x8,
10x10x10, 12x12x 12, 16x16x 16, and 2k20x 20 as well as an RBF transformation
with 512, 1000, 1728, 4096, and 8000 points. The points wardomly placed on the
nonzero voxels of the gradient magnitude image. An SSD metas used. For the
RBF, we used a thin plate spline (multiquadric with= 0, £ = 1), and the degree of the
polynomials used in the fast multipole calculations wasé i = 4 so thatp + k£ = 5).
The number of iterations used in the GMRES solver was 40. l@pptimization, we
used the conjugate gradient method (Press et al., 1992)rd=i§.23-7.30 and tables 7.7
and 7.8 show results and timing information for these expenits. The explanation for
the values of these two tables are identical to those ofsab& 7.4. Note that prior to
the registration, the number of misclassified voxels (NM\@s\264093. We see that the

RBF registration computes a warp that better aligns the taages. In addition, as the



Grid Size 83 103 123 163 203
Time (function) (sec) 22.68 | 23.13 | 22.31 | 23.003| 22.40
Time (gradient) (sec) 144.54| 152.96| 153.53| 144.77| 152.07

Ratio 6.3726| 6.61 | 6.88 | 6.29 | 6.79

Iterations 10 10 10 10 10

NMV 38757 | 28486 | 33383 | 39199 | 39701

Number of Points | 512 1000 | 1728 | 4096 8000
Time (function) (sec) 36.77 | 79.18 | 143.37| 443.73 | 556.8
Time (gradient) (sec) 287.23| 483.88| 916.1 | 2950.04| 4075.58

Ratio 7.8115| 6.11 | 6.34 6.65 7.3

Iterations 10 10 10 10 10
NMV 31155 | 22366 | 14891 | 10729 | 10170
Time steps 4704 | 4704 | 4956 5586 6468

Checkpoints 20 20 20 20 20
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Table 7.7: Running times and other values for star regidterdlower with a B-spline
transformation. See text for explanation of values.

Table 7.8: Running times and other values for star regidtezdlower with an RBF
transformation. See text for explanation of values.

B-spline grid size is increased, the registration actugd{s worse, though this might

not have happened if we had regularized the B-spline.

7.3 Registration Evaluation with the IBSR Database

For the next set of experiments, we used magnetic resonamsarhbrain images from
the IBSR database from Harvard (IBSR, 2004). The databasssts of 18 images and
each one was segmented manually by experts. About 30-4[3 laleee then assigned
to these segmented structures. Figure 7.33 shows a sliceeobfothese images and
its corresponding segmentation. The database thus psogigeod way of measuring

the accuracy of the registration. In these experiments, seel images 9 and 10 from
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Figure 7.21: Shows 3 orthogonal slices and surface rerglesinflower. The
“supershape” parameters ate= 1, b = 1, m = 5.2, ny = 0.04, n, = 1.7, and
ns = 1.7.
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Figure 7.22: Shows 3 orthogonal slices and surface rerglefistar. The “supershape”
parametersare=1,b=1,m =5.2,n; = 0.2, n, = 1.7, andng = 1.7.
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Figure 7.23: Result of star registered to flower with coroesjing warped grid image
as well as surface rendering of transformed image for a Bispgjrid of 8<8x8 (total
number of control points: 512).

Figure 7.24. Result of star registered to flower with coroespng warped grid image
as well as surface rendering of transformed image for an RB#stormation consisting
of 512 points.

Figure 7.25: Result of star registered to flower with coroeging warped grid image as
well as surface rendering of transformed image for a B-gpdind of 10<10x 10 (total
number of control points: 1000).
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Figure 7.26: Result of star registered to flower with coroegjing warped grid image
as well as surface rendering of transformed image for an RB#stormation consisting
of 1000 points.

Figure 7.27: Result of star registered to flower with coroeging warped grid image as
well as surface rendering of transformed image for a B-gpdind of 12x12x 12 (total
number of control points: 1728).

Figure 7.28: Result of star registered to flower with coroespng warped grid image
for an RBF transformation consisting of 1728 points.
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Figure 7.29: Result of star registered to flower with coroegfing warped grid image as
well as surface rendering of transformed image for a B-gpdind of 16x16x 16 (total
number of control points: 4096).

Figure 7.30: Result of star registered to flower with coroespng warped grid image
as well as surface rendering of transformed image for an RB#stormation consisting
of 4096 points.

Figure 7.31: Result of star registered to flower with coroegping warped grid image as
well as surface rendering of transformed image for a B-gpdind of 20x20x 20 (total
number of control points: 8000).
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Figure 7.32: Result of star registered to flower with coroesjing warped grid image
as well as surface rendering of transformed image for an RB#stormation consisting
of 8000 points.

the database. They were skull-stripped and cropped to diloesn13& 147x116 and

141x152x 126, respectively.

In this section, in addition to experiments with the oridilBSR images, we also
describe experiments with added noise, with the RBF coptiwits placed on a regular

grid, and with different degrees of the FMM approximatindypomials.

7.3.1 Comparison to Affine and B-Spline

We evaluate the performance of our FMM with AD method by corngoa to an affine
registration and a B-spline registration. For the RBF, wedua thin plate spline
(multiquadric witht = 0, k£ = 1), and the degree of the polynomials used in the fast
multipole calculations was 5 (i.ea = 4 so thatp + k£ = 5). The number of iterations
used in the GMRES solver was 40. For the optimization, we tledonjugate gradient
method (Press et al., 1992). The points were randomly placdbe nonzero voxels of

the gradient magnitude image. Figures 7.34 through 7.4® #fe overlap calculations
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for various affine, B-spline, and RBF registrations. TabBshows the meaning of the
letters in these figures. In addition, tables 7.10-7.13 stimmng information and other
values. The meaning of these values is identical to thosabdé i7.4. Note that prior to
the affine registration, the number of misclassified voxXgdY) was 426085, and after

the affine registration, the the number of misclassified isowas 408122.

We see that mutual information gives better results thansusquared differences, as
can be seen by comparing figures 7.34- 7.38 to figures 7.3-7This is especially
noticeable by the smaller brain structures such as thernthesacaudate, putamen,
pallidum, hippocampus, and amygdala (E-J) where the SS® igeteasingly worse
as we increase the number of control points. The mutualnimétion, by contrast, does

not have this problem.

7.3.2 Registration Evaluation with Added Noise

The next experiment was the same as the previous RBF rdgiatigith 8000 points
except that noise was added to the images as shown in figuteThi will allow us to
assess the robustness of our algorithm to noise. As showgures 7.45-7.46, we see
that favorable results are obtained even in the presenceisé though not as good as

without noise.
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7.3.3 RBF Registration with Control Points Placed on a Grid

To help better compare RBFs to B-splines, we performed anliBEd registration with
control points placed on aregular grid, like a B-splineheathan irregularly on nonzero
values of the gradient magnitude image. This will help usifdéeis the meshless
nature of RBFs which is important or is it simply the RBFs tlsetaes which account
for their success. The next experiment was the same as thieyse8000 point RBF
registration without noise except that control points waeeed on an 1820x 23 grid
(8280 points). As shown in figures 7.47-7.48, we see thatdhkelts placed on a grid
are similar to results placed adaptively on nonzero gragiemts, though most of the
structures did slightly worse than the adaptive regisiratvhile some of the structures
did slightly better. Based on these experiments, the adgarif the flexibility of control
point placement for human brain images is not clear. Howeduether work on the

optimal placement of control points is necessary to fullgvaer this question.

7.3.4 Comparison of RBF Registration with and without the FMM

We now describe experiments comparing how an RBF basedradgs that uses the
FMM compares to one that does not. While the accuracy of thielidvell understood,

and is related to the polynomial degrget+ k£ (Cherrie et al., 2002). However, the
use of this approximation in a gradient-based optimizatieads to be examined. In
particular, we are interested in finding out if the computextigents (from the automatic
differentiation) are the same or close in value. We theeefan two sets of experiments

with a sum of squared differences metric using the same isfagen the IBSR database
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as before with 8000 control points, one without the FMM and with the FMM using
several different polynomial degregds£ 1 andp was set to the values shown in Table
7.14; see the discussion immediately following Eq. (4.10&ple 7.14 shows the results.

In the second column of the table, the average relativerdifiee,

1 24000 |a4 _ b|
A 7.5
24000 ; i (7:5)

is used to measure the accuracy, wheme the gradient components without FMM and
b; are the gradient components with FMM. We see that we getriagteement between
both methods as we increageas would be expected, especially opdeecomes 4 or
higher. Additionally, while this experiment only analyz#ée initial evaluation of the
objective function in the optimization, we found that whee ran the full optimization
for values of 4 or higher, there was no significant differeimcine overlap measure (Eq.
7.1) for the brain structures. For these reasons, we chasle@ of 4 for the experiments

in this chapter.

7.4 Discussion

Given the above synthetic and real image experiments, ildvappear that it is still

too premature to strongly advocate the use of RBFs over Bespin general at this
time. The experiments, however, indicate that RBFs gelygratform as well or better
than B-splines and that in certain situations may improvéop@ance. We have shown

the feasibility of these powerful computational mecharssar registration and believe
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Figure 7.33: Shows a (skull stripped) slice of an image fromIBSR database along
with its corresponding labeled image.

that, in spite of the computational overhead, they will grée be useful in registration

and elsewhere.



Letter Structure Groupings
A All 2,3,4,5,7,8,10,11,12,13,14,
15,16,17,18,24,26,28,41,42,43,44,
46,47,49,50,51,52,53,54,58,6(
B Brain 2,3,7,8,10,11,12,13,16,17,18,
26,28,41,42,46,47,49,50,51,
52,53,54,58,60
C Cortex 3,17,18,42,53,54
D White Matter 2,41
E Thalamus 10,49
F Caudate 11,50
G Putamen 12,51
H Pallidum 13,52
I Hippocampus 17,53
J Amygdala 18,54
K Subcort 10,11,12,13,26,49,50,51,52,58
L Lateral Ventricle 4,43
M CSF 4,5,14,15,24,43,44
N Cerebellum 7,8,46,47
@) Brain Stem 16,28,60
Table 7.9: Key to brain labels.
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Figure 7.34: Shows the fractional overlap, Eqg. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline regisbratvith a grid size of %10x11,

and an RBF registration of 1000 points, all using an SSD metri
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Figure 7.35: Shows the fractional overlap, Eq. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline registratvith a grid size of 1212x 14,

and an RBF registration of 2000 points, all using an SSD metri
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Figure 7.36: Shows the fractional overlap, Eq. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline registratvith a grid size of 1%15x 18,

and an RBF registration of 4000 points, all using an SSD metri
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Figure 7.37: Shows the fractional overlap, Eq. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline registratvith a grid size of 1&20x 23,

and an RBF registration of 8000 points, all using an SSD metri



108

None C—1
Affine
B-Spline
RBF
0.8 |- E
0.6 |
0.4 |
02 |
0

Figure 7.38: Shows the fractional overlap, Eqg. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline registratvith a grid size of 2% 25x 28,

and an RBF registration of 16000 points, all using an SSDimetr
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Figure 7.39: Shows the fractional overlap, Eqg. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline regisbratvith a grid size of %10x11,

and an RBF registration of 1000 points, all using an M|l metric
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Figure 7.40: Shows the fractional overlap, Eq. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline regisbtratvith a grid size of 1212x 14,

and an RBF registration of 2000 points, all using an M|l metric
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Figure 7.41: Shows the fractional overlap, Eq. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline regisbtratvith a grid size of 1%15x18,

and an RBF registration of 4000 points, all using an M|l metric
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Figure 7.42: Shows the fractional overlap, Eq. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline regisbtratvith a grid size of 1&20x 23,

and an RBF registration of 8000 points, all using an M|l metric
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Figure 7.43: Shows the fractional overlap, Eq. (7.1), foelad brain structures using no
registration, an affine registration, a B-spline regisbtratvith a grid size of 2% 25x 28,

and an RBF registration of 16000 points, all using an Ml neetri
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Grid Size Ox10x11 | 12x12x14 | 15x15x18 | 18x20x23 | 23x25%x28
Time-func (sec) 18.4 18.4 19.1 17.9 17.98
Time-grad (sec) 104.4 106.3 109.5 110.4 111.9

Ratio 5.69 5.78 5.74 6.17 6.23

Iterations 10 10 10 10 10

NMV 350161 336669 331172 320941 302968

Table 7.10: Running times and other values for an IBSR bregistration with a B-
spline transformation and an SSD metric. See text for exgbian of values.

Number of Point§ 1000 2000 4000 8000 | 16000
Time-func (sec) | 84.2 185.5 | 458.96 | 1292.95| 1391.07
Time-grad (sec)| 531.09| 1221.27| 3116.72| 9326.9 | 9632.09
Ratio 6.3 6.58 6.79 7.21 6.92
Iterations 10 10 10 10 10
NMV 323439| 312686 | 303395| 291562 | 279996
Time steps 5216 5468 5972 6980 8996
Checkpoints 20 20 20 20 20

Table 7.11: Running times and other values for an IBSR begistration with an RBF
transformation and an SSD metric. See text for explanatiosalaes.

Grid Size 9x10x11 | 12x12x14 | 15x15x18 | 18x20x23 | 23x25%x28
Time-func (sec) 40.8888 36.6 41.1666 39.333 37.227
Time-grad (sec) 287.727 266 297.9 288.09 274.18

Ratio 7.0368 7.2678 7.2364 7.3249 7.3651

Iterations 10 10 10 10 10

NMV 350161 336669 331172 320941 302968
Time steps 4710 4710 4710 4710 4710
Checkpoints 20 20 20 20 20

Table 7.12: Running times and other values for an IBSR bregistration with a B-
spline transformation and an MI metric. See text for expli@meof values.
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Number of Pointg 1000 2000 4000 8000 16000
Time-func (sec) | 69.265| 147.879| 478.9126] 720 | 1332.504
Time-grad (sec)| 434.5 | 955.36| 32479 | 5985 | 9643.636

Ratio 6.27 6.46 6.78 8.3125| 7.2373
Iterations 10 10 10 10 10
NMV 323439| 312686| 303395 | 291562| 279996
Time steps 5216 5468 5972 6980 8996
Checkpoints 20 20 20 20 20

Table 7.13: Running times and other values for an IBSR begistration with an RBF
transformation and an MI metric. See text for explanationadfies.

Figure 7.44: Slices of images from the IBSR database witleddaise.
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Figure 7.45: Shows the fractional overlap, Eq. (7.1), ftweled brain structures using
no registration, an affine registration, an RBF registratib8000 points without noise,

and an RBF registration of 8000 points with noise, all using&D metric.
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Figure 7.46: Shows the fractional overlap, Eq. (7.1), ftweled brain structures using
no registration, an affine registration, an RBF registratib8000 points without noise,

and an RBF registration of 8000 points with noise, all usindv& metric.
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Figure 7.47: Shows the fractional overlap, Eq. (7.1), ftwelaed brain structures using
no registration, an affine registration, an RBF registratitb8000 points distributed on
the gradient image, and an RBF registration with pointsgaaan an 1&20x23 grid

(8280 points), all using an SSD metric.
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Figure 7.48: Shows the fractional overlap, Eq. (7.1), ftxeled brain structures using
no registration, an affine registration, an RBF registratitb8000 points distributed on
the gradient image, and an RBF registration with pointsgaaan an 1&20x23 grid

(8280 points), all using an MI metric.



120

Average Relative Error, Eq. 7.5
8.1299

0.603192

0.148773

0.0422957

0.0189292

0.0102788

~No o wWN

Table 7.14: Registration accuracy with and without the FMM.



Chapter 8

Conclusion

This work presented a new system for meshfree nonrigid tregjisn based on radial
basis functions, automatic differentiation, and the fasitimole method. The motivation
for using RBFs in this work was their meshfree nature and le@esmoothness
properties. Our goal was to develop better numerical gjregdor dealing with them in
registration problems and thereby demonstrate their gagrto grid based methods
in their ability to handle a wider class of images, espegidlD MRI brain images.

Although more work remains in order to fully substantiatis ttlaim, nevertheless, the
methodologydescribed in this work is new to the field of image registmatiand we

believe that it can be of use to other image analysis prob&smweell.

In addition, there are many other issues remaining for @&mésearch. For instance, one
important area which we have not addressed in this work isahide incorporation of
constraints into the registration. This thesis was maiolyoerned with intensity based

registration. However, because of the meshfree natureeofrdmsformation and the
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fact that constraints can be placed anywhere, constraamgherefore also be placed
anywhere in space. Since the independent variables arésgplackments of the control
points, we can constrain the displacements and therebrjctetste motion of certain

control to a specific areas.

Another issue we have not addressed is that of paralleliswth Bhe fast multipole
method and the checkpointing method are readily paradlele and we have not
exploited this in our work. Recently, processor technolbgg hit a brick wall in

terms of speed improvements, and, instead, manufactueestating to pack multiple
processors on a single chip. The average workstation sogn hage numerous
processors on one chip. Hence, parallelism will becomesasingly important as it
goes mainstream in the coming years, and algorithms wilelpeired to make use of
this parallelism to achieve better performance. Develppayistration algorithms that

exploit parallelism may thus be a fruitful avenue of reskarc

Furthermore, more advances and developments have beenimaadiation to solving
the linear system associated with the RBFs as well as the Huiviinstance, domain
decompositions methods have been used for solving ther Isyséem (Beatson et al.,
2001b). Although more complex than GMRES, better result® lieeen reported with
them (Beatson et al., 2001b). Also kernel independent nasthave been developed
(Beatson and Newsam, 1998; Ying et al., 2004, 2003), thusnpiatly increasing the
class of RBFs that can be used. More work remains in incotipgréghese ideas into

registration algorithms.

Yet another avenue of further research is higher order aéras, needed, for example,
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in Newton-type optimization. In this work, we only considdrfirst order derivatives,
namely gradients. Unfortunately, unlike the cheap gradrefe, there is no such
rule for higher order derivatives such as Hessians. But,oasted out by Griewank
(2000), computing every single component of the Hessiasually not needed for most
problems. However, deciding what parts of the Hessian toptaerequires exploiting

features unique to registration metrics, an endeavor winig yield interesting results.
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