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Biological shapes such as the brain are difficult to registerdue to their complicated

geometry. To deal with this, registration methods often rely on a transformation

model consisting of a dense regular grid such as a free form deformation or B-spline

grid. However, very dense grids or meshes are usually neededto register images with

convoluted shapes, and a regular mesh structure is not well suited for the irregular

structure of the brain. What is therefore needed is a meshfree approach such as a radial

basis function transformation model. Unfortunately, because radial basis functions

are typically non-compact, using them with large numbers ofpoints is fraught with

numerical difficulties and, as a result, their use in image registration is not prevalent.

The goal of this work is to overcome these computational difficulties so that radial

basis function transformations can be used efficiently, even with large numbers of

points. To achieve this, a new registration framework was developed based on automatic

differentiation and the fast multipole method. Automatic differentiation is useful since

an important component of registration is computing the gradient of the similarity metric

which is to be optimized. Automatic differentiation allowsone to efficiently calculate

gradients without having to write any gradient code explicitly. Although the technique

of automatic differentiation is well established, it does not appear to be used for image

registration. The fast multipole method was developed to efficiently evaluate large sums

1



such as radial basis functions but its use in image registration is still minimal. With the

integration of these algorithms within a complete registration framework, it should be

possible to obtain a truly meshfree registration.
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Chapter 1

Introduction

Biological shapes such as the brain are difficult to registerdue to their complicated

geometry. As a result, registration methods often rely on a transformation model

consisting of a dense regular grid such as a free form deformation, or a B-spline grid.

However, because of the convoluted nature of biological shapes, a regular mesh is

not well suited for the irregular structure of the brain. What is desired is ameshfree

approach so as to entirely bypass the problem of choosing a mesh. This work focuses

on developing such a registration system for meshfree registration.

1.1 Radial Basis Functions

Radial basis functions (RBFs) are an alternative to grid based strategies. RBFs are

constructed by placing control points at arbitrary locations in space rather than on a

regular grid. As a result, they are entirely meshfree. Mathematically, RBFs have the
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form,

f(~x) =
N∑

i=0

diφi(|~x − ~xi|) (1.1)

wheredi are scalar coefficients,~xi are the locations of the control points, andφ(r),

r ≥ 0, is known as thekernel. Popular kernels include the thin plate spline,r2 log r, in

2D or r in 3D, and the multiquadrics,(r2 + τ 2)k/2.

These functions are very smooth and provide very visually pleasing interpolating

functions. They also have interesting energy minimizationproperties. For instance,

it can be shown that the 2D thin plate spline minimizes the bending energy:

∫ ∫ (
∂2f

∂x2

)2

+ 2

(
∂2f

∂x ∂y

)2

+

(
∂2f

∂y

)2

dx dy. (1.2)

Although counterintuitive, studies have shown that despite the fact that RBFs do not

have compact support, they make excellent interpolants (Franke, 1982). They are

infinitely differentiable unlike B-splines or compact support RBFs. Furthermore, having

an analytical function is useful in deformation analysis and morphometric studies as

various differential operators on the transformation can also be modeled analytically.

Additionally, RBFs are global since the basis functions typically are not compactly

supported. Although some might view the global nature of these functions as a

disadvantage, it can be argued that global functions are theideal way to model brain

variability, since, biologically, the growth and change ofbiological structures is, to a

certain extent, a global process, not a local one. Hence global functions would be

more appropriate. As the main goal of nonrigid registrationis to further understand
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the structure, function, development, and degeneration ofthe brain—a very important

goal—we need to use the best available mathematical functions.

Another advantage of radial basis functions is that they aremesh free since the control

points can be placed anywhere in space. Other types of transforms such as free form

deformations or B-splines rely on a regular mesh of control points placed in space. This

is usually a rectangular grid of points. Other grid schemes such as cylindrical grids are

also possible (Coquillart, 1990). Such control grids are suited for only certain classes

of problems, namely when the shapes in the image are similar to the shape of the grid.

For example, if the image contained box or cube shaped structures, then a rectangular

grid would be appropriate. Similarly, if the image contained spherical shaped structures,

than a spherical grid would be more suited.

However, in medical imaging, many biological shapes are very complicated and

deciding on a grid that best matches the shapes in the images is difficult, if not

impossible. For example, although the brain is roughly ellipsoidal, it contains numerous

folds that have no specific shape. Hence an ellipsoidal grid,though perhaps better than

a rectangular grid, is still not an adequate match for the geometry of the brain. Of

course, we can decrease the spacing of the grid to that of the voxel spacing, but then

we would have far too many points to deal with leading to numerical instabilities in the

transformation. Many control points would also be unnecessary, having been placed in

homogeneous regions.
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1.2 Computational Difficulties when Using Radial Basis

Functions

Unfortunately, although, in theory, RBFs would appear to bethe ideal interpolation

functions to use, in practice several numerical difficulties must be dealt with if they are

to be used efficiently. First, it is necessary to solve a linear system in order to compute

the coefficientsdi in Eq. (1.1). Solving such systems directly requiresO(N3) operations

which is prohibitive for large numbers of points.

Second, it is necessary to evaluate the transformation function at every voxel in the

image. This would requireO(N) operations for each voxel. IfM is the number

of voxels in the image, then the total number of operations isO(NM) which is also

extremely large.

Third, computation of the gradient for optimization is alsocomputationally expensive.

Finite differences are clearly too expensive for such a tasksince each gradient

component would require the solution of a large linear system as well as summing over

the entire image. For example, suppose we use the sum of squared differences as the

metric (to be discussed more fully later),

f(~q) =
∑

i

(M(u(~q), v(~q), w(~q)) − Fi)
2, (1.3)

whereF is the fixed image,M is the moving image, and~q is the vector of independent
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variables. Then, a single component of the gradient is

∂f

∂qj
=

∑

i

2(M(u(~q), v(~q), w(~q)) − Fi)

(
∂M

∂u

∂u

∂qj
+

∂M

∂v

∂v

∂qj
+

∂M

∂w

∂w

∂qj

)
. (1.4)

Here (∂M/∂u, ∂M/∂v, ∂M/∂w) is the image gradient at(u, v, w) which can be

computed easily. The remaining partials,∂u/∂qi, ∂v/∂qi, and∂w/∂qi, depend on the

type of transformation being used. However, for an RBF transformation such as given

in Eq. (4.1) which first requires the solution of a linear system and does not have local

support, it is unlikely that an analytical expression that is computationally feasible can

be found. To our knowledge, none has been published yet in theliterature. The same

problem occurs with other metrics such as mutual information.

The remainder of this work presents our proposal to solve these problems by drawing

upon two techniques which have not seen widespread use in themedical imaging

literature: fast multipole methods (Greengard and Rokhlin, 1987) and automatic

differentiation (Griewank, 2000).

1.3 Main Contributions

To overcome these difficulties and achieve a truly meshfree registration, this dissertation

presents a new registration framework based on automatic differentiation (AD) and the

fast multipole method (FMM).

Automatic differentiation is useful for computing gradients of complicated functions.

As we will discuss later, optimization is a major component of registration. In order to



6

optimize a function it is usually necessary to compute gradients. This, however, is often

difficult and sometimes even impossible. Furthermore, the need to compute gradients

makes it difficult to implement and design new objective functions. Fortunately, the

technique of automatic differentiation removes the burdenof computing gradients from

the programmer to the computer (Griewank, 2000). Unfortunately, it has not been

exploited for use in image registration. Our new registration framework uses AD for

computing gradients.

The fast multipole method was developed to efficiently evaluate large sums such as

(1.1) but their use in image registration is still minimal. The fast multipole method

is important because it can be shown that the complexity of evaluating Eq. (1.1) for

a single~x is reduced fromO(N) to O(log N) or evenO(1). With the integration of

these algorithms within a complete registration frameworkit is possible to obtain a true

meshfree registration.

1.4 Outline of the Dissertation

In the next chapter, chapter 2, we review the literature of medical image registration.

We discuss the four components of any registration algorithm as well as applications of

registration. Although we are mainly concerned in this dissertation with the nonrigid

case, we also describe the rigid case as well.

Next, chapters 3 and 4 contain an overview of automatic differentiation and the fast

multipole method. These algorithms have not been of much usein image processing
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and, therefore, we discuss them in these chapters.

In the next two chapters, chapters 5 and 6, we describe how AD and the FMM can be

used in combination for doing intensity based nonrigid registration. In chapter 5 we

discuss general issues that arise when integrating AD with image registration and how

to overcome them. We describe the use of various similarity metrics such as the sum

of squared differences and mutual information and several types of transformations.

Chapter 6 continues the discussion of the previous chapter and describes one specific

transformation used in registration, namely, radial basisfunctions such as thin plate

splines.

Chapter 7 presents results to validate the methodology of this work and chapter 8

concludes with a summary and future work.



Chapter 2

Review of Image Registration

In this chapter, we provide the relevant background on medical image registration. For a

more thorough review, we refer the reader to other review papers and books (Bankman,

2000; Brown, 1992; Crum et al., 2004a; Fitzpatrick et al., 2000; Hajnal et al., 2001;

Hill et al., 2001; Lester and Arridge, 1999; Maintz and Viergever, 1998; Maurer and

Fitzpatrick, 1993; Pluim et al., 2003; Toga, 1999; Zitová and Flusser, 2003). Although

we are mainly concerned in this dissertation with the nonrigid case, for completeness

we also describe the rigid case.

2.1 Applications of Registration

Image registration is typically divided into two areas: rigid and nonrigid registration.

Rigid registration is a very mature area and is considered bymany to be a solved

problem (Hajnal et al., 2001). This is no doubt due to the low dimensionality of the

8
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problem. As a result, rigid registration algorithms have found their way into commercial

products. Nonrigid registration, however, is still an active field of research, and it is to

this topic that this dissertation is addressed. This section provides a partial list of some

applications where the need for rigid and nonrigid image registration arises in medicine.

2.1.1 Rigid Registration

1. Registration of preoperative images with intra-operative planning.

2. Fusion of images of different modalities (e.g. MRI and CT)so that radiologists

can compare them more easily.

3. Registration of time series data. In such situations, images are taken immediately

after each other, so no deformation needs to be accounted for.

2.1.2 Nonrigid Registration

There are two broad areas where nonrigid registration is used: intersubject registration

and intrasubject registration.

Intersubject Registration

1. Spatial normalization of images for statistical parametric mapping.

2. Brain mapping and the creation of digital anatomic atlases.
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Intrasubject Registration

1. Comparing images taken over long periods of time since nonrigid deformations

may have taken place.

2. Brain-shift compensation during neurosurgery. When theskull is opened during

neurosurgery, the brain shifts slightly. Hence, the imagestaken prior to the surgery

may no longer be valid.

2.2 How is the Registration Problem Solved?

The goal of registration is to find an optimaltransformationthat best matches the

moving image with the fixed image. Such a transformation can be described by a

set of N parameters. To solve the registration problem, it is typical to design an

objective function orsimilarity metricas a function of the transformation parameters.

The similarity metric measures how well the moving and fixed images correspond, and

such a correspondence is based on comparing variousfeatureschosen from the images.

Our goal is tosearchthrough the possible candidate transformations until we have found

the optimal one. When these transformation parameters are found, our similarity metric

is optimized.

More formally, following the work of Brown (1992), any registration algorithm can

be understood as consisting of four basic components. This applies to both rigid and

nonrigid registration.
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1. Feature space: First, we need to choose the features that will drive the registration.

Nonrigid registration algorithms have typically been divided into two classes

depending on whether they use structural features such as points, curves, or

surfaces to drive the registration or simply gray level values. Most algorithms

have usually incorporated either structural features or gray level values but not

both, but recently there have been efforts to combine both types of information

(Collins et al., 1998; Papademetris et al., 2004; Wang and Staib, 2000).

2. Space of transformations: Next, we need to choose the space of transformations.

The goal of any registration algorithm is to find a transformation that best maps

the moving image to the fixed image. We prefer to somehow limitthe class of

transformations in which we will search in order to make it feasible to find the best

transformation. For instance, in affine registration the space of transformations

would be limited to those only consisting of translation, rotation, scale, and

shear. Nonrigid transformations transformation such as perspective, polynomial,

piecewise polynomial, basis functions, and regularization transformations are

more general (Wolberg, 1990). In general, the more parameters we allow in the

transformation, the harder the problem will be. Additionally, in some applications

the class of transformations used consists of those that areone-to-one (invertible).

Methods have been developed for making a transformation oneto one (Fujimura

and Makarov, 1998; Lee et al., 1996; Tiddeman et al., 2001).

3. Similarity metric: Next, we need to choose the metric usedto determine how

well the transformed moving image matches the fixed image. Some popular

similarity metrics are sum of squared differences (SSD) andmutual information
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(MI). Mutual information is particularly good in multi-modal image registration.

4. Search strategy: The final component is the search strategy. Most registration

algorithms search for the best transformation by optimizing the similarity metric

whose independent variables correspond to the transformation parameters and

whose minimum corresponds to the best transformation. Powell’s method and the

conjugate gradient method are two popular optimization methods that are often

used. Other methods do not use optimization but instead formulate a system of

partial differential equations where the correct transformation is the solution of

the PDE.

2.3 The Four Components in Detail

Once we have selected something for each of these components, we can then use them

to solve the registration problem. This section discusses each of the components one by

one in more detail.

2.3.1 Feature Space

As mentioned above, features normally chosen are the voxel intensities, or structural

features such as points, curves or surfaces. Thus, when registering the brain, points

such as the anterior commissure (AC) or posterior commissure (PC) cab be used. Curve

features can be sulcal or gyral lines. Surfaces can include the outer cortical surface, the

surfaces of the ventricles, and the gray-matter white-matter boundary. It is also possible
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that instead of considering curves and surfaces one can simply sample them at several

points and just consider the points. Thus, points can be saidto include both curves and

surfaces (Chui, 2001).

Curvature is another feature that can be used. Curvature is aproperty of curves and

surfaces. For curves, the curvature is

|α′′(s)| (2.1)

whereα is a curve parameterized by arc length (do Carmo, 1976). For surfaces, there is

more than one type of curvature. The two principal curvatures at a point~p can be found

by intersecting the surface with a plane that is normal to thetangent plane at~p. The

minimum and maximum,k1 andk2 respectively, of the resulting curve for all possible

orientations of this normal plane are the two principal curvatures. The mean curvature

is then defined as(k1 + k2)/2 and the Gaussian curvature ask1k2. Curvature extrema

can be used to identify points (or curves) for registration.

2.3.2 Space of Transformations

Transformations used in registration range from simple rigid or affine transformations

with few parameters to complex deformable transforms with thousands or even millions

of parameters that can warp the space in quite arbitrary ways. Out of the four

components of registration, it is the space of transformations which distinguishes

nonrigid registration from affine or rigid registration, since unlike the transformation,
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the other three components can often be used in both rigid andnonrigid registration.

When doing nonrigid registration, one usually performs an affine registration first and

then initializes the nonrigid registration with the resultof the affine registration.

As mentioned above, the goal of nonrigid registration is to find a transformation that

best maps the moving image to the fixed image. Therefore, in 3Dwe can describe the

most general transformation function as the mappingF : R3 → R3 or





y1

y2

y3




=





F1(x1, x2, x3)

F2(x1, x2, x3)

F3(x1, x2, x3)




(2.2)

where the point(x1, x2, x3) is mapped to(y1, y2, y3).

Low Dimensional Transformations

The linear transformation can be represented as a simple 3×3 matrix:





y1

y2

y3




=





a11 a12 a13

a21 a22 a23

a31 a32 a33









x1

x2

x3




. (2.3)
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The affine transformation is almost the same as the linear, but with an extra translational

term: 



y1

y2

y3




=





a11 a12 a13

a21 a22 a23

a31 a32 a33









x1

x2

x3




+





t1

t2

t3




. (2.4)

If one is interested in a purely rigid transformation, for instance, when registering two

images of the same person at the same time of two different modalities (no deformation),

then the transformation would be of the form:





y1

y2

y3




=





cx2
cx3

+ sx1
sx2

sx3
cx2

sx3
+ sx1

sx2
cx3

cx1
sx2

−cx1
sx3

cx1
cx3

sx1

sx1
cx2

sx3
− sx2

cx3
−sx1

cx2
cx3

− sx2
sx3

cx1
cx2









x1

x2

x3




+





t1

t2

t3




(2.5)

wherecx1
= cos φx1

, cx2
= cos φx2

, cx3
= cos φx3

, sx2
= sin φx2

, sx3
= sin φx3

,

sx1
= sin φx1

, andφx1
, φx2

, andφx3
are the rotation angles around thex1, x2, andx3

axes, respectively.

High Dimensional Transformations

For higher dimensional nonrigid transformations, one popular class of transformation

functions uses free form deformations (Coquillart, 1990; Sederberg and Parry, 1986)

such as B-splines (Rueckert et al., 1999). This involves placing a rectangular grid

of points on the image domain and interpolating, using B-splines, to other points.
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Mathematically, this transformation can be expressed as

y1(x1, x2, x3) = x1 +

3∑

l=0

3∑

m=0

3∑

n=0

Bl(r)Bm(s)Bn(t)ai+l,j+m,k+n (2.6)

y2(x1, x2, x3) = x2 +

3∑

l=0

3∑

m=0

3∑

n=0

Bl(r)Bm(s)Bn(t)bi+l,j+m,k+n (2.7)

y3(x1, x2, x3) = x3 +

3∑

l=0

3∑

m=0

3∑

n=0

Bl(r)Bm(s)Bn(t)ci+l,j+m,k+n (2.8)

where the B-spline basis functions are

B0(u) = (1 − u)3/6 (2.9)

B1(u) = (3u3 − 6u2 + 4)/6 (2.10)

B2(u) = (−3u3 + 3u2 + 3u + 1)/6 (2.11)

B3(u) = u3/6 (2.12)

and i = ⌊x1⌋ − 1, j = ⌊x2⌋ − 1, k = ⌊x3⌋ − 1, r = x1 − ⌊x1⌋, s = x2 − ⌊x2⌋,

t = x3 − ⌊x3⌋, andai+l,j+m,k+n, bi+l,j+m,k+n, andci+l,j+m,k+n are the displacements of

the control points.

Another type of transformation uses radial basis functions(RBF) such as thin plate

splines (Bookstein, 1989) or multiquadrics (Hardy, 1990).Mathematically, these can be
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expressed as

y1(x1, x2, x3) = x1 +

N∑

i=1

aiφ(|(x1, x2, x3) − (x1i, x2i, x3i)|) +

m∑

i=1

uipi(x1, x2, x3)

(2.13)

y2(x1, x2, x3) = x2 +

N∑

i=1

biφ(|(x1, x2, x3) − (x1i, x2i, x3i)|) +

m∑

i=1

vipi(x1, x2, x3)

(2.14)

y3(x1, x2, x3) = x3 +
N∑

i=1

ciφ(|(x1, x2, x3) − (x1i, x2i, x3i)|) +
m∑

i=1

wipi(x1, x2, x3)

(2.15)

whereai, bi, ci, ui, vi, andwi are coefficients which are computed by solving three

linear systems, the third term on the right hand side of each of these three equations

are optional low order polynomial, andφ(r), r ≥ 0, is a basis kernel which can have

several forms. Popular kernels include the 2D thin plate spline,r2 log r, the 3D thin plate

spline,r, and the multiquadrics,(r2 +τ 2)k/2, whereτ is any real number andk is an odd

integer. Such radial basis function transformations are often preferred because they are

very smooth, and experiments have shown them to be better than most other interpolants

(Franke, 1982). Unfortunately, when the number of points islarge, computing the

coefficients of the basis functions becomes costly due to thefact that in order to find

the coefficients it is necessary to solve anN × N linear system whereN is the number

of points. Solving such systems using a direct linear solverrequiresO(N3) operations.

Clearly, it is desirable to use as many points as possible since the more points used to

define the mapping, the more flexible the transformation allowing finer accuracy in the

registration. This problem has led many to abandon radial basis functions in favor of
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B-splines. One main goal of this work is to show that we can, infact, develop fast

algorithms even for large number of points. We will return tothis later.

How do we Actually Warp an Image?

Supposing we have a transformation that we would like to apply to an input image, how

do we actually go ahead and warp the image? This is a very tricky issue which is often

not addressed in the literature.

In general when we try to warp an image we have two options: forward mapping or

inverse mapping (Wolberg, 1990). In the forward mapping approach, our mapping

function is such that given any point~P in the input image, an output point~Q will be

computed. The problem with this approach, however, is that the points from the input

image may get mapped to points that are in between pixels in the output image. This

results in a complicated scattered data interpolation problem which is non-trivial.

Inverse mapping solves this problem. In inverse mapping, our mapping function is such

that given a point~Q in the output image, the point~P in the input image which was

mapped to~Q will be computed. Therefore, to compute the pixel value at point ~Q in the

output image we need to interpolate the input image at point~P . This is easier since this

time we are interpolating a regular grid, not scattered points.

If we only have a forward mapping function, we can still applyinverse mapping to warp

the image by inverting the transformation. This can be done by solving the system of

nonlinear equations, Eq. (2.2), forx1, x2, x3 using, for example, Newton’s method.

Such a method needs to be performed for each pixel in the output image. Convergence
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to a solution is possible if and only if the Jacobian of the transformation (2.2) is nonzero.

In the context of image registration we, therefore, have twooptions for warping. One

option is to optimize for the best forward mapping and then use Newton’s method

to solve for the inverse mapping and warp the moving image to the fixed image.

Unfortunately using Newton’s method is expensive, even if it converges quickly. The

second option is to directly optimize for the inverse transform so that we do not need

to use Newton’s method since we already have the inverse. Obviously, the second

approach is better. Thus, when we say that the goal of image registration is to “find

a transformation that best maps the moving image to the fixed image,” what we really

mean is “findthe inverse ofa transformation that best maps the moving image to the

fixed image.”

Combining Transformations: Serial vs. Additive

When one does an affine registration prior to the nonrigid one, how do we actually

integrate it into the nonrigid registration? One simple wayto combine two transfor-

mations would be to resample the moving image and treat this resampled image as

the new moving image. Hence we do not directly deal with the affine transformation

when doing the nonrigid registration since the affine transformation is accounted for

when performing the resampling. The problem with this method, of course, is that the

process of resampling may introduce undesirable approximations and aliasing artifacts

in the resampled image. There remain two other ways which we consider: serial and

additive. These two approaches are applicable whenever combining more than one
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transformation.

The serial way, is as follows. Suppose the first transformation is of the form~y = g(~x)

and the second is of the form~z = f(~y) where~x, ~y, and~z are points inR3, then the

combined transformation,F , is

~z = F (~x) = f(g(~x)). (2.16)

The additive way is as follows. Suppose the two transformations are againf and g

and we wish to combine them into a single transformation,F . Then this combined

transformation is

~z = F (~x) = ~x + (f(~x) − ~x) + (g(~x) − ~x). (2.17)

Note that this time bothf andg are evaluated at the same point~x (rather thanf being

evaluated at~y and g at ~x). In other words, we view bothf and g as independent

displacements which are added to~x to produce the transformed point.

The serial way is probably what most people intuitively havein mind when we talk about

combining transformations: We apply the first transformation to point~P to get ~P ′ and

then apply the second transformation to~P ′ to get ~Q. The additive way can be slightly

confusing since both transformations are applied to the same input point~P . However,

the additive way has the advantage of being more efficient to compute since only

addition is involved whereas the serial way usually requires a (matrix) multiplication.
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2.3.3 Similarity Metric

Perhaps the two most popular similarity metrics used for registration are sum of squared

differences (SSD) and mutual information (MI).

SSD

The sum of square differences (SSD) in 3D is (Fitzpatrick et al., 2000)

f(~q) =
∑

i

(M(u(~q), v(~q), w(~q)) − Fi)
2 (2.18)

whereF is the fixed image,M is the moving image, and~q is the vector of independent

variables. Notice that each of three components of the transformation depends on the

independent variables~q.

Mutual Information

One of the most important developments in the 1990’s was the application of infor-

mation theory to image registration (Collignon et al., 1995; Viola and Wells, 1995).

One result was a similarity metric known as the mutual information (MI) which can be

expressed as (Mattes et al., 2003)

f(~q) =
∑

l

∑

k

p(l, k; ~q) log(
p(l, k; ~q)

pM(l; ~q)pF (k)
) (2.19)
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where~q is the vector of independent variables,p(l, k; ~q) is the joint histogram of the

fixed image and the transformed moving image,pM(l; ~q) is the histogram of transformed

moving image, andpF (k) is the histogram of the fixed image. The double sum is over

all bins in the histograms which are indexed byl andk.

2.3.4 Search strategy

Finding the transformation is usually accomplished by optimizing the similarity metric

over the transformation parameters. The values of the independent variables at the

minimum correspond to the desired transformation. Common types of optimization

strategies used are non-gradient and gradient based methods, global methods such as

simulated annealing and genetic algorithms, and PDE based methods. For gradient

based method, the question is, of course, how do we compute the gradient? We return

to this in the next chapter. In the remainder of this chapter,we discuss each of these

methods in greater detail.

Non-gradient Based Method

Two popular non-gradient based methods for multivariable optimization are the simplex

method and Powell’s method Press et al. (1992). Such methodsare not considered in

this work due to their poor convergence properties for largesize problems.
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Steepest Descent Method

The simplest type of gradient descent method is to simply move in the direction of the

gradient until we cannot decrease the function any longer. This is known as steepest

descent. Unfortunately, this algorithm does not converge very quickly and often gets

slowed down due to zigzagging through the solution space which results from the fact

that we end up revisiting the same directions over and over again.

Conjugate Gradient Method

The conjugate gradient method overcomes the problems of thesteepest descent method.

In the conjugate gradient, at each iteration the next direction to move in is computed

based on all the previous directions. This prevents us from revisiting a direction already

used. The conjugate gradient method has excellent convergence properties and, as a

result, we use it often in this work.

Newton and Quasi Newton Based Methods

Newton based methods compute the Hessian of the objective function and thereby create

a quadratic approximation to the objective function. Quadratic functions can be easily

minimized by solving a linear system.

One problem with Newton based methods is that computing the full Hessian is very

expensive. Therefore, quasi-Newton methods have been developed which approximate

the Hessian such as the Limited Broyden Fletcher Glajl Shjofd (L-BFGS) method (Liu
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and Nocedal, 1989). An extension to this method is known as L-BFGS-B which adds

simple bound constraints to the objective function (Byrd etal., 1995; Zhu et al., 1997).

Simulated and Deterministic Annealing

The optimization methods discussed so far are all local and hence have the problem

of being trapped in local minima. Clearly it is desirable to find the global minimum

of the similarity metric. Simulated annealing is such a method. Unlike gradient based

methods where we only go in the downhill direction, with simulated annealing, we

sometimes allow moves in the uphill direction. Hopefully, this will enable us to get out

of local minima. Simulated annealing is modeled on the natural process of annealing

where a system which is in a high energy state is gradually lowered to a low energy

state. An important parameter is the temperature which is gradually lowered at each

iteration. When the temperature parameter is high, more random direction movements

are possible and there is a higher probability of getting outof local minima. But as the

temperature gets lower, such movements become more unlikely.

Deterministic annealing is similar to simulated annealingexcept that a deterministic rule

is used to determine whether or not we make a move, rather thana random one.

Genetic Algorithms

Genetic algorithms model the evolutionary process of natural selection. As in evolution,

genetic algorithms involvechromosomes, mutations, andcrossovers(or recombination).

We start out with a random population of chromosomes. Each chromosome is a string
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of bits which corresponds to the bits of the independent variables. The goal is to find the

chromosome which best optimizes the objective. Each chromosome is assigned afitness

value depending on how well it solves the problem. Then, pairs of genes are repeatedly

selected from this population and crossover and mutations occur until a new population

or generation is obtained. If this new population contains asolution, we stop. Otherwise

the entire process is repeated until the next generation is created.

PDE Based Methods

The well-known Euler-Lagrange theorem establishes an important relationship between

optimization and partial differential equations. As a result there is an entire class of

algorithms that attempt to solve the registration problem by converting the objective

function to a PDE (Bajcsy and Kovacic, 1989; Christensen, 1994; Christensen et al.,

1996, 1993). Included in these methods are those that view the process of registration

as a fluid deformation and borrow concepts from fluid dynamics.

Multiresolution Strategies

One popular method to help avoid being trapped in local minima is a multiresolution

approach. Such methods can be applied to many types of problems in image analysis

other than registration and are based on the idea of first trying to solve the problem

at a lower resolution and then using this answer to initialize the algorithm at a higher

resolution. Thus, to implement such a strategy, we would create a hierarchy of images

where each image higher up in the hierarchy is at a lower resolution than the one below
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it. Then the algorithm is first applied to the coarsest image in the hierarchy. The solution

obtained at this level is used to initialize the next level ofthe hierarchy. This process is

repeated until the image with the highest resolution in the hierarchy is reached.



Chapter 3

Automatic Differentiation

3.1 Introduction

As mentioned in the previous section, a major component of registration is the

optimization strategy used. Many optimization algorithmsare iterative methods based

on the concept of gradient descent (Press et al., 1992). In such algorithms, we start out

with an initial estimate of the solution and then use the gradient of the objective function

to compute the next candidate solution. We repeat this untilconvergence. However,

often the objective function to be optimized is extremely complicated and does not have

a gradient that is expressible in analytic form. For example, if the objective function

involves complicated algorithms such as solutions of differential equations, solutions of

linear systems, fast Fourier transforms, numerical quadratures and the like, then there

may be no analytical gradient. In such cases, the only available option for computing

such derivatives is finite differencing. However, if there are n independent variables

27
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then computing such finite differences requires at leastn function evaluations. For

many functions, this computation is totally unrealistic. This is especially true in image

registration where each function evaluation typically requires summing over an entire

image.

To solve this problem, a technique known as automatic differentiation (AD) has

been developed (Griewank, 2000; Griewank et al., 1996) which has seen important

applications in many numerical problems especially in relation to the solution of partial

differential equations (Hart et al., 2005; Kim et al., 2006;Lea et al., 2002; Scholze

et al., 2002; Shapiro and Tsukanov, 1999; Tsukanov and Shapiro, 2002; Wang et al.,

1995). Although registration is primarily an optimizationproblem, AD does not appear

in the registration literature. Automatic differentiation is based on the principle that

any computer algorithm, no matter how complicated, is, nevertheless, just a series

of simple computations such as addition or multiplication whose derivatives are easy

to compute. Since any function can be viewed as the composition of many smaller

elementary functions, then, in theory, using the chain rule, it should be straightforward

to compute the derivative of almost any scalar function, no matter how complicated.

Is such a scheme worthwhile? Yes! A result known as the “cheapgradient rule” says

that the time to compute the gradient of a scalar function ofn variables (wheren can

be very large) is only four or five times the time to compute theoriginal function itself

(Griewank, 2000). In this chapter we review the basic ideas of AD which are necessary

for image registration.
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3.2 Matrix Approach

There are at least two approaches we can use to explain the theory of automatic

differentiation: a matrix approach and a graph theoretic approach. In this section we

present the matrix approach and in the next we present the graph theoretic approach.

Suppose we are given the scalar function

z = F (~x), ~x ∈ R
n, z ∈ R, F : R

n → R, (3.1)

and we would like to compute its gradient. Since, as already mentioned, any

mathematical function evaluated on a computer is really a composition of elementary

functions, Eq. (3.1) can be expressed as the sequence (following the notation similar to

the work by Griewank (1992))

g(~x) → ~s0, fi(~si) → ~si+1, h(~sm) → z, i = 0, . . . , m − 1 (3.2)

In this formula,~si represents the set of all variables which includes the independent

variables, any variables that depend on them, as well as the dependent variable. Letq be

the number of elements in this set. Eachfi is an elementary function that maps the set

~si to itself,g is the very first operation which maps the independent variables to the set

of all variables, andh is the final elementary operation that maps the set of all variables

to a single scalarz. An equivalent way to express this is

z = F (~x) = h(fm−1(· · · (f2(f1(f0(g(~x))))) · · · )). (3.3)
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Differentiating this formula using the chain rule we have

F ′(~x) = g′(~x)f ′
0(~s0)f

′
1(~s1)f

′
2(~s2) · · ·f ′

m−1(~sm−1)h
′(~sm). (3.4)

HereF ′(~x), which is the gradient ofF (~x), is ann× 1 column vector. Eachf ′
i is aq × q

Jacobian matrix of the elementary transformationsfi. g′ is then×q Jacobian matrix ofg,

andh′, ann× 1 column vector, is the gradient ofh. Since the final factorh′ is a column

vector while all the other factors are square or rectangularmatrices, and since matrix

multiplication is associative, it follows that for better performance, the above product

should be computed from right-to-left rather than from left-to-right. This way we have

a sequence of matrix-vector products rather than a sequenceof matrix-matrix products.

However, doing a right-to-left product requires that we somehow keep all the previous

elementary operations in memory and then apply the chain rule “in reverse”. The leads

us to what is known as the “reverse mode” of automatic differentiation: we evaluate the

functionF (~x) while simultaneously recording every single operation in memory. Such

a recording is called atraceof the function. Then, we apply the chain rule in reverse

to compute the gradient. If we were to compute the product from left-to-right, this

would be the “forward mode” of automatic differentiation which is only efficient when

the number of dependent variables is greater than the numberof independent variables.

Since in registration the similarity metrics we encounter are usually scalar, the forward

mode will not be needed.
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3.3 Directed Acyclic Graph Approach

The previous matrix based approach was used to present automatic differentiation in an

abstract manner. It allows one to clearly see the distinction between the forward and

reverse mode, and will be useful later on when explaining thecheckpointing algorithm.

It is not, however, how AD would actually be implemented on a digital computer.

Therefore, an equivalent approach which is more amenable toactual implementation

is based on graph theory. The type of graph relevant to AD is known as a directed

acyclic graph (DAG). Recall that a graph is a set of nodes and arcs. Each arc connects

two nodes. Bydirectedwe mean that each arc has associated with it a direction which

can be represented as an “arrow”. It isacyclic, in that it is impossible to construct a path

which starts from a given node and ends at that same node whilepassing through at least

one other node.

3.3.1 Example

We give a simple example to demonstrate the use of directed acyclic graphs and the

reverse mode of AD similar to an example given by Griewank (2000, Chap. 1). We will

use automatic differentiation to compute the gradient of the scalar function

z = x sin(y exp(x)) (3.5)

for x = 1.2 andy = 0.7. The diagram in figure 3.1 shows this function as a DAG. If
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Figure 3.1: Directed acyclic graph for Eq. (3.5).

this function is expanded out, we have

v−1 = x

v0 = y

v1 = exp(v−1)

v2 = v1 ∗ v0

v3 = sin(v2)

v4 = v−1 ∗ v3

z = v4.

(3.6)

Each of thevi is a node in the DAG and the edges correspond to elementary operations.

The reverse mode of automatic differentiation is applied tothis function forx = 1.2 and
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v−1 = x = 1.2

v0 = y = 0.7

v1 = exp(v−1) = 3.3201

v2 = v1 ∗ v0 = 2.3241

v3 = sin(v2) = 0.72945

v4 = v−1 ∗ v3 = 0.87533

z = v4 = 0.87533

v̄4 = z̄ = 1.0

v̄3 = v̄4 ∗ v−1 = 1.2

v̄−1 = v̄4 ∗ v3 = 0.72945

v̄2 = v̄3 ∗ cos(v2) = −0.82086

v̄1 = v̄2 ∗ v0 = −0.57460

v̄0 = v̄2 ∗ v1 = −2.7253

v̄−1 = v̄−1 + v̄1 ∗ exp(v−1) = −1.1783

ȳ = v̄0 = −2.7253

x̄ = v̄−1 = −1.1783

Figure 3.2: Example of reverse mode of automatic differentiation applied to Eq. (3.5).

y = 0.7 as shown in figure 3.2. Differentiating analytically, we get

∂z

∂x
= x cos(y exp(x))y exp(x) + sin(y exp(x))

∂z

∂y
= x cos(y exp(x)) exp(x)

(3.7)

Evaluating atx = 1.2, y = 0.7, we have∂z(1.2,0.7)
∂x

= −1.1783, ∂z(1.2,0.7)
∂y

= −2.7253 as

expected.
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3.4 “The Cheap Gradient Rule”

We mentioned earlier that according to the “cheap gradient rule” it is possible to

compute gradients very quickly such that the time to computethe gradient is only a small

multiple of the time to compute the function. This is in contrast to finite differences

where the multiple is very large, typically at leastO(N) for N independent variables.

The “cheap gradient rule” can be explained intuitively using the following simplified

example. Suppose the time to compute the function alone is 1 second. Suppose further

that the function consists of 1000000 binary operations of the form c = a@b where

@ is a binary operator such as multiplication or addition (thevariablesa, b, andc will

of course usually be different in each operation). Thus, each operation consists of 2

memory reads for variablesa andb, one binary instruction@ (which probably involves

3 registers in the CPU), and 1 memory write for variablec, for a total of 4 instructions.

To simplify things, assume that all instructions take the same amount of time. Thus,

there are a total of 4000000 instructions in the entire 1 second function evaluation.

Now computing gradients is a two step process: a forward sweep with tracing on

followed by a reverse sweep. Let’s therefore first discuss the time to do the forward

sweep with tracing. At least 4000000 instructions are needed to compute the function.

In addition, we mustrecord all these instructions so that we can process the function

in reverse. How do we do this? Well, we need to record the fact that variablesa, b,

c were involved. In other words, we need to record the 3memory locationsinvolved

in the binary operation. This takes 3 writes. In addition we need to record the specific

valuesof a, b, andc. This requires another 3 writes. In addition we need to record which
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binary operation@ was performed, hence requiring another write. Thus to record each

elementary operation requires at least 7 more instructionsper operation for a total of

11 instructions per operation. Thus a total of 11000000 instructions are needed for the

entire forward sweep.

Let’s now discuss the reverse sweep. In the reverse sweep we take the derivative

of each of the 1000000 elementary operations done in the forward sweep. Thus the

reverse sweep can be viewed as a sequence of 1000000 elementary derivative operations.

For simplicity assume that each of these elementary derivative operations also takes 4

instructions. Thus we need at least 4000000 instructions for the reverse sweep. In

addition, there is overhead due to the fact that we must read all the recorded instructions

from memory. Let’s assume that this costs another 7 instructions per operation. Then

the total number of operations for the reverse sweep is also about 11000000 instructions.

Thus the total number of instructions is about 22000000 which is 5.5 times the original

function evaluation. Although this example is overly simplified and there is more

overhead as well as speed-ups which we have not discussed, the actual implementation

will be very similar to the way we just described.

3.5 Branches in the Objective Function

Once one has the entire function trace in memory, it is actually possible to reuse it for

different values of the independent variables without having to go through the recording

a second time. However, this is only possible if the functiondoes not contain any
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“branches”. By a branch we mean the familiarif or switchstatements that are common

in programming languages. For instance, we may have anif statement

if x > 0 then

do something

else

do something else

end if

wherex depends on the independent variables. Clearly, thisif statement may not be

differentiable whenx equals zero. Therefore, when tracing the function, ifx happens

to be positive, only the first part of theif statement will be recorded in memory but not

the second. In other words the trace of the function will onlybe valid whenx > 0.

Thus if we attempt to reuse the trace with a different set of independent variables,x

may turn out to be negative and the trace stored in memory willno longer be valid. It

will therefore be necessary to redo the entire trace all overagain.

As we will see later, all functions we deal with in image registration have these branches,

so it will usually never be possible to reuse the trace for a different set of independent

variables.

3.6 Checkpointing

One problem with the reverse mode of automatic differentiation is that the trace of

the entire function must be recorded during the forward sweep. For large functions,
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however, this can quickly consume all the memory in the computer. This is certainly

the case in image registration which has complicated objective functions. One solution

to this problem is known as thecheckpointingstrategy (Griewank, 1992; Griewank and

Walther, 2000).

To understand the checkpointing algorithm, we must view thesequence of elementary

operations of the objective function as a type of discrete-time process in which during

each time interval, the “state” of system changes or is transformed to another “state”.

Using the notation above (section 3.2), a state of the systemis fully specified by the

values of all its variables,~si, and one can view each elementary mappingfi(~si) → ~si+1

as a single time interval or time step. (Actually, treating each individual elementary

operation as a single time step would be overkill for the checkpointing algorithm. It is

better to treat a consecutive sequence of, say,M elementary operations as a single time

step whereM can be many thousands of operations.)

It now follows that if we know the state of the system at timet, then we can simply jump

to time t by loading each variable with the appropriate value. The computation of the

remainder of the function can then continue in exactly the same way as if it had been

started from the very beginning.

With this new view of the objective function, the reverse mode can be improved by

noting that to reverse the function it is not necessary to have theentire function trace

stored in memory. Instead, it suffices to have only the part ofit which is currently being

differentiated. This can be accomplished be saving the state of the system at several

points in time during the forward sweep. These special savedstates are calledsnapshots
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t0 t1 t2 t3

snapshot
    #1

snapshot
     #2

Beginning
of function
evaluation

End of function
evaluation

Figure 3.3: Checkpointing example.

or checkpoints.

By saving snapshots of the state of the system, we can then jump to any point in time

of the function evaluation for which we saved a state of the system and continue the

forward computation of the function from there. With this ability to easily move to any

point in time, it is possible to perform the reverse sweep in pieces, one time step at a

time.

An example will help clarify how this can be done. Suppose we have a function which

can be divided into 3 time intervals as shown in figure 3.3. Onepossible way to compute

the derivative is as follows. We take a snapshot att0 and then begin the function

evaluation att0 without tracing. As we proceed, we take another snapshot att1. When

we reacht2 (note we do not take a snapshot att2), we turn on tracing and complete the

function evaluation thus arriving att3. Then we begin the reverse sweep starting from

t3 going in reverse and stopping when we reacht2. Then we reload the snapshot from

t1, evaluate the function withtracing turned onfrom t1 until t2, and continue computing

the derivative in reverse from where we left off, namely fromt2 to t1. We repeat this step

one more time: reload the snapshot fromt0, evaluate the function with tracing turned on
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from t0 to t1, and compute the derivative in reverse from where we left off, namely from

t1 to t0.

The functions we deal with in image registration, however, can have thousands of time

steps, and storing a snapshot for every single time step simultaneously is impractical.

Therefore, it is necessary to set a limit to the number of checkpoints stored at any give

moment in time and decide on a suitable checkpointing schedule. Differences in the

checkpointing schedule can dramatically effect the overall computational requirements,

so it is important to choose the best schedule. This is essentially a combinatorial

optimization problem. Fortunately, Griewank (1992) has derived an optimal schedule

for the reverse mode of automatic differentiation.

3.7 Implementation

3.7.1 Implementing Automatic Differentiation

The discussion until now presented the mathematics of AD. Wenow discuss briefly

how to actually implement it on a computer. There are severalknown methods used to

implement AD. We discuss here operator overloading and source transformations.

Operator Overloading

The technique used in the ADOLC package (Griewank et al., 1996), which we used in

our experiments, is based on operator and function overloading, which is a language
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feature of some programming languages such as C++. Operatoroverloading means that

the standard arithmetic operations (such as +, -, *, and /) can be redefined for different

datatypes provided that they remain binary (or unary in the case of unary operators)

functions. Function overloading is the same idea applied tostandard functions such as

the square root or power function. To overload the operatorsand functions, we define

a new special datatype that behaves just like the standard floating point datatypes1. All

our overloaded operators and functions will act on this special datatype rather than on

the usual floating point datatypes. These new operators and functions will redefine the

standard functions of the same name to both (a) do the actual calculation and (b) record a

trace of the computation so we can reverse it later. The advantage of overloading is that

we can write the code in exactly the same way as if we were doingnormal arithmetic.

The tracing that takes place is completely transparent to the coder.

Source Transformation

Another way to implement AD is known as source transformation. In this way, the

source code of the objective function is processed by a program which then generates

code to compute the derivative. This is how AD was implemented in the ADIFOR

package (Bischof et al., 1992, 1994).

1In ADOLC this datatype is calledadouble
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3.7.2 Implementing Checkpointing

Fork and Join Approach

There are various ways to implement the checkpointing algorithm. One way, discussed

by Griewank (1992), uses UNIX’s fork and pipe commands (Stevens, 1993). This

approach exploits the fact that checkpointing is an inherent part of modern multitasking

operating systems: for a serial processor to give the illusion of doing many things as

once requires that the state of a process be saved. Therefore, to use the operating

system to help us in this method, when a new checkpoint is created, a new process

is forked off. The parent process then blocks until the childprocess returns. Since forks

are implemented using copy-on-write (in more modern systems), forking off another

process does not copy all the data from the parent process (which is crucial when dealing

with large images). Communication between processes is achieved with pipes (or shared

memory regions, as was done by Mauer-Oats (1997)).

Goto Approach

Implementing the fork and pipe approach requires experience with UNIX systems

programming and may not be portable to all architectures. Inorder to avoid detailed

UNIX systems programming, the entire algorithm can be codedin a single address

space without any forks and pipes. To achieve this, we developed a procedure using

gotos. Gotostatements are used in order to jump to an arbitrary time step. This makes

moving data around easier at the expense of more complicatedcode. The fork and pipe
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approach is more generic, however, and also facilitates parallelization, making it a useful

possible future improvement.



Chapter 4

Radial Basis Functions and the Fast

Multipole Method

4.1 Fast Evaluation of Radial Basis Function Sums

As mentioned in chapter 2, computing the sum

f(~x) =

N∑

i=1

diφi(|~x − ~xi|) (4.1)

is expensive for large numbers of points, especially if we need to evaluate it over an

image grid. The fast multipole method (FMM) (Greengard, 1987, 1988; Greengard

and Rokhlin, 1987, 1988) was developed to deal with this problem. Although it was

originally developed to solve the N-body problem in potential theory, it has been

extended to the interpolation problem which is our primary concern here (Beatson and

43
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Greengard, 1997; Beatson et al., 2001a; Beatson and Light, 1997; Beatson and Newsam,

1998; Cherrie et al., 2002). The main result is that the cost of computing an approximate

sum of the form (4.1) at all points~xi can be reduced fromO(N2) to O(N log N) or

evenO(N). Because of its importance, the FMM has been ranked as one of the top ten

algorithms of the twentieth century (along with the fast Fourier transform) (Dongarra

and Sullivan, 2000).

The fast multipole method is based on the principle that points that are far away (in the

far field) do not have as much influence as points that are close. Therefore, the influence

of all far field points can be approximated using a Laurent-type expansion while the

influence of nearby points can be summed directly. The form ofthe far field (as well as

the near field and their translations) depends on the form of the basis function.

Such expansions are computed by first hierarchically partitioning the entire space into

a set of disjoint panels or boxes as shown in figure 4.1. Each level of the hierarchy

has2dl

boxes whered is the dimension of the space. Thus in 3D there are8l boxes

and in 2D there are4l boxes, wherel is a given level. The top or zeroth level of the

hierarchy contains the entire space, the first level contains 8 boxes (in 3D), the second

level contains 64 boxes (in 3D) and so on. The number of levelschosen is usually about

log2d N .

Once we have partitioned our space to the desired depth, the various expansions can

be computed in two stages: the upward pass and the downward pass. In the upward

pass, the far field sums are computed in the lowest level of thehierarchy for each of

the boxes. Then we work our way up the hierarchy and convert the sums of the2d
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Figure 4.1: Top four levels of the FMM hierarchy.



46

Figure 4.2: Interaction lists (in gray) of boxes marked withan X at levels 2 and 3.

children into a single sum for the parent by shifting and summing each of the2d children

expansions. We stop when we complete the second level since above that all boxes

are nearest neighbors of every other box. Formulas for expansions and proofs for the

shifting and convergence have been derived by Cherrie et al.(2002) for multiquadrics,

which includes 3D thin plate splines as a special case (whenτ = 0 andk = 1). In the

downward pass, we work our way down the hierarchy and for theith box, we convert the

far field expansions of all other boxes that are (a) well separated fromi and (b) children

of the nearest neighbors ofith’s parent (also known as theinteraction list (Greengard

and Rokhlin, 1987)) to local Taylor expansions. We call thislocal Taylor expansion the

near field. Examples of interaction lists at levels 2 and 3 areshown in figure 4.2. Since

there are at most3d − 1 nearest neighbors for a given box and since each box has2d

children, the size of the interaction list is at most3d · (2d − 1). Thus in 2D there at most

27 boxes in the interaction list and in 3D there are at most 189. Again, proofs for the

conversion and shifting of the near field have been derived byCherrie et al. (2002). The
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final local near field has the form

Near(~x) =
∑

|α|≤r

cα~xα (4.2)

which is simply a 3D polynomial of degreer, where~x = (x1, x2, x3) is a point inR
3

andα is a multi-index1.

Finally, to evaluate the original sum (4.1) we add the influence of all points that are

either in the current box or one of its nearest neighbors as well as the near field which

represents the contribution from all far away points:

f(~x) =
N∑

i=1

diφi(|~x − ~xi|) ≈ Near(~x) + Direct(~x) (4.3)

where

Direct(~x) =
M∑

i=1

diφi(|~x − ~xi|). (4.4)

is the sum over the points within the box containing~x and its nearest neighbors, where

we are assuming they contain a total ofM points. Figure 4.3 shows pseudocode of the

complete algorithm.

Now, using Eq. 4.3, the transformation[u(~x), v(~x), w(~x)] in (2.18) can be expressed as

u(~x) = x1 +
∑

α≤r

c
(1)
α,j~x

α +
M∑

i=1

d
(1)
i φ

(1)
i (|~x − ~xi|) (4.5)

1A multi-index is a list ofn integers where|α| ≤ r is defined asα1 + α2 + · · · + αn ≤ r and
~x

α
:= x

α1

1
x

α2

2
· · ·xαn

n
.
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// Upward pass
for each box at leveli do

compute the far field expansion for each box
end for
for i from second to bottom level to level 2do

for each box at leveli do
compute the far field expansion by shifting the 8 children

end for
end for

// Downward pass
for i from level 2 to bottom leveldo

for each box at leveli do
convert far field to near field

end for
for each box at leveli do

shift near field
end for

end for
To evaluate sum: add near field and direct points

Figure 4.3: FMM algorithm pseudocode.
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v(~x) = x2 +
∑

α≤r

c
(2)
α,j~x

α +

M∑

i=1

d
(2)
i φ

(2)
i (|~x − ~xi|) (4.6)

w(~x) = x3 +
∑

α≤r

c
(3)
α,j~x

α +

M∑

i=1

d
(3)
i φ

(3)
i (|~x − ~xi|) (4.7)

wherej is the index of thejth box at the finest level of the hierarchy. Note that each box

at the finest level has its own set of coefficientsc
(1)
α,j , c

(2)
α,j, andc

(3)
α,j , while the coefficients

d
(1)
i , d

(2)
i , andd

(3)
i are common to all the boxes.

4.1.1 Analytical Form of the Expansions and Translations

In this section, we state the form of the expansions for the near and far fields of

multiquadric RBFs, their translations, and the conversionof the far field to a local near

field. We omit the proofs which can be found in the paper by Cherrie et al. (2002).

• The Far Field: This polynomial is computed in step 1 for each box in the bottom

level of the hierarchy. As derived by Cherrie et al. (2002, Lemma 3.1), the

expansion for a single center is

Φ(~x − ~t) = (|~x − ~t|2 + τ 2)k/2 =
∞∑

ℓ=0

P
(k)
ℓ (|~t|2 + τ 2,−2〈~t, ~x〉, |~x|2)

|~x|2ℓ−k
(4.8)

where〈~t, ~x〉 is an inner product, and

P
(k)
ℓ (a, b, c) =

ℓ∑

j=⌊ ℓ+1

2
⌋

(
k/2

j

)(
j

ℓ − j

)
b2j−ℓ(ac)ℓ−j, ℓ ≥ 0. (4.9)
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ForN centers we therefore have

N∑

i=1

diΦ(~x − ~ti) =

N∑

i=1

di(|~x − ~ti|2 + τ 2)k/2 =

∞∑

ℓ=0

N∑

i=1

di
P

(k)
ℓ (|~t|2 + τ 2,−2〈~t, ~x〉, |~x|2)

|~x|2ℓ−k
. (4.10)

Now, how do we know that these polynomials converge, and, even if they do

converge, do they converge quickly or slowly? To answer this, Cherrie et al.

(2002) proved that the absolute difference between the truncated expansion of

(4.10) (i.e. summing top + k rather than to infinity) and the infinite expansion is

|s(~x) − sp(~x)| ≤






2kMRk(1
c
)p+1 1

1−1/c
, k > 0

(
p

p+k+1

)
MRk(1

c
)p+1( 1

1−1/c
)−k, k < 0

(4.11)

where|~x| > R =
√

r2 + τ 2, r is the radius of the expansion,c = |~x|/R, and

M =
∑N

i=1 |di|. Additionally, Cherrie et al. (2002) has proved that this expansion

is unique.

To actually form these expansions, one should not use these formulas directly.

Instead there is a recurrence relation which is more efficient. Letting

Gℓ(~x) = P
(k)
ℓ (|~t|2 + τ 2,−2〈~t, ~x〉, |~x|2), (4.12)
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the recurrence is

Gℓ(~x) =






1, ℓ = 0,

−k〈~t, ~x〉, ℓ = 1

Aℓ〈~t, ~x〉Gℓ−1(~x) + Bℓ|~x|2(|~t|2 + τ 2)Gℓ−2(~x), ℓ ≥ 2

(4.13)

where

Aℓ = −2
k/2 − ℓ + 1

ℓ
(4.14)

and

Bℓ = −ℓ − k − 2

ℓ
. (4.15)

Cherrie et al. (2002) presents pseudocode for the 2D case only. Therefore, we

present it here for the 3D case as shown in figure 4.4

• Far Field Translation: During the upward pass it is necessary to translate each of

the far field expansions at a given level to the center of its parent. This calculation

is quite involved and we therefore refer the reader to the paper by Cherrie et al.

(2002) for the details. Basically, if the original polynomial is sp(~x) and we then

shift it by ~u, the shifted polynomial is of the form

sp(~x − ~u) =

p+k∑

ℓ=0

Q̂ℓ(~x)

|~x|2ℓ−k
(4.16)
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int i, j, ℓ
doubleAℓ, Bℓ, a, b, tmp

G(0, 0, 0) = d
G(1, 0, 0) = −d ∗ k ∗ t0
G(1, 1, 0) = −d ∗ k ∗ t1
G(1, 0, 1) = −d ∗ k ∗ t2
for ℓ from 2 to p + k do

Aℓ = −2 ∗ (k/2 − ℓ + 1)/ℓ
Bℓ = (k − ℓ + 2)/ℓ
a = Aℓ

b = Bℓ ∗ (t20 + t21 + t22 + τ 2)
for i from 0 to ℓ − 1 do

for j from 0 to ℓ − 1 − i do
if i + j ≤ ℓ − 2 then

tmp = G(ℓ − 2, i, j) ∗ b
G(ℓ, i, j) += tmp

G(ℓ, i + 2, j) += tmp

G(ℓ, i, j + 2) += tmp

end if
tmp = G(ℓ − 1, i, j) ∗ a
G(ℓ, i, j) += tmp ∗ t0
G(ℓ, i + 1, j) += tmp ∗ t1
G(ℓ, i, j + 1) += tmp ∗ t2

end for
end for

end for
Figure 4.4: Polynomial generator in 3D.
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where

Q̂ℓ(~x) =

ℓ∑

j=0

qj(~x)P
(−2p+k)
ℓ−j (|~u|2,−2〈~x, ~u〉, |~x|2), 0 ≤ ℓ ≤ p + k, (4.17)

andqj(~x) is a homogeneous polynomial as defined by Cherrie et al. (2002).

• Near Field: The near field is

Φ(~x − ~u) = (|~x − ~u|2 + τ 2)k/2 =
∞∑

ℓ=0

P
(k)
ℓ (|~x|2,−2〈~u, ~x〉, |~u|2 + τ 2)

(
√

|~u|2 + τ 2)2ℓ−k
(4.18)

which is just a regular polynomial.

• Conversion of Far Field to Near Field: Converting the far field to the near field

is very similar to shifting the far field. Again, Cherrie et al. (2002) derived error

bounds for this approximation:

∣∣∣∣Φ(~x − ~u) −
q∑

ℓ=0

P
(k)
ℓ (|~x|2,−2〈~u, ~x〉, |~u|2 + τ 2)

(
√
|~u|2 + τ 2)2ℓ−k

∣∣∣∣

≤






(
√
|~u|2 + τ 2)k

(
|~x|√

|~u|2+τ2

)q+1 √
|~u|2+τ2√

|~u|2+τ2−|~x|
, k > 0

(
q−k
q+1

)
(
√

|~u|2 + τ 2)k

(
|~x|√

|~u|2+τ2

)q+1( √
|~u|2+τ2√

|~u|2+τ2−|~x|

)−k

, k < 0

. (4.19)

• Near Field Translation: This is just a polynomial shift which is equivalent to

a convolution. Cherrie et al. (2002) therefore suggests using the fast Fourier

transform to do this calculation. However, unless the degree of the polynomial

is very large, computing the convolution using the FFT is totally impractical.

Therefore, it would seem that a direct polynomial multiplication is more efficient.
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Thus, suppose we have a polynomial of the form

p(x1, x2, x3) =

ni∑

i=0

nj∑

j=0

nk∑

k=0

sijkx
i
1x

j
2x

k
3. (4.20)

Then using the binomial formula

(y + z)n =

n∑

k=0

(
n

k

)
ykzn−k (4.21)

(where y and z are scalars) we have that the shifted polynomial is

p(x1 + a, x2 + b, x3 + c) =

ni∑

i=0

nj∑

j=0

nk∑

k=0

sijk

i∑

ki=0

j∑

kj=0

k∑

kk=0

(
i

ki

)(
j

kj

)(
k

kk

)

× xi
1x

j
2x

k
3a

ni−kibnj−kjcnk−kk . (4.22)

Unfortunately, this is the most intensive part of the FMM calculation as can be

seen from the six sums in the formula, and better ways are needed to speed it up.

4.1.2 TheO(N log N) and O(N) Algorithms

The above description is the original formulation of the FMMand hasO(N) complexity.

This can be seen from the fact that only on the bottom level of the upward pass are all

the points accessed but not at the remaining levels of the upward pass or any of the

levels of the downward pass. Therefore, it is not too difficult to show that the bottom

level has complexityO(N) while the remaining levels of the upward pass and the entire

downward pass are independent ofN . Furthermore, a single evaluation of the near field
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and far field is also independent ofN . Hence, the total complexity of evaluating the sum

at allN points isO(N).

However, when dealing with points in 3D, although the complexity is proportional toN ,

the constant of proportionality is very large and implementing the full O(N) FMM is

very time-consuming and usually not worth the effort unlessthere are literally hundreds

of thousands of points. This is because in 3D the size of the interaction list is at most 189,

as explained in section 4.1, hence requiring that many conversions of far field expansions

to local Taylor expansions for each box at each level of the downward pass. Therefore,

a simpler approach is to stop after the upward pass (without doing the downward pass)

and evaluate the far fields (i.e. Eq. (4.10)) directly. Additionally, in the upper levels of

the upward pass it is simpler to form the far fields directly using Eq. (4.10) rather than

using the translation formula, Eq. (4.16). Because all points are now accessed at each

level, each level has complexityO(N), and because the number of levels is aboutlog N ,

the total complexity isO(N log N) (Beatson and Greengard, 1997). In this work, we

only use theO(N log N) algorithm since all experiments were done in 3D.

4.2 Solving for the RBF Coefficients

In the original fast multipole algorithm developed for the N-body problem, the

coefficients in the sum (4.1) were known. The difficulty was actually computing the

sums. However, in the interpolation problem we have the additional problem of not

knowing the coefficientsdi. Initially, all we know are the values of the function at

scattered points. It is then necessary to solve a large linear system to compute the
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coefficientsdi. Clearly, solving such systems directly has complexityO(N3) and is

too expensive for large point sets. We therefore review in this section other approaches

in the literature to this problem.

4.2.1 The Linear System

The linear system for solving for the coefficientsdi can be written as (Rohr et al., 2001)

A




~d

~a



 =




~p

0



 (4.23)

where

A =




(Φ + NλW

−1) L

L
T 0



 , (4.24)

W
−1 =





σ2
1 · · · 0

...
. . .

...

0 · · · σ2
n




, (4.25)

σi are weights,~d are the coefficients from Eq. (4.1),~a are the coefficients of the optional

polynomial terms,Φij are the basis functionsφ(|~xi − ~xj |) from Eq. (4.1), andLij are

the optional polynomial terms.

The parameterλ controls whether or not the RBF approximates or interpolates the true

function values. In the interpolating caseλ = 0 while for the approximating caseλ > 0.

The higherλ is, the more approximate the resultant interpolant.
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4.2.2 Fast Iterative Solutions of Radial basis functions with Precon-

ditioned GMRES

As mentioned previously, solving the linear system (4.23) directly requiresO(N3)

operations, which is prohibitive for large systems. Therefore, fast iterative methods

have been developed to solve such systems which reduce the complexity significantly

even for large numbers of points (Beatson et al., 1999, 2001b). We focus here on one

discussed by (Beatson et al., 1999) which uses the Generalized Minimum Residual

method (GMRES) (Barrett et al., 1994; Saad and Schultz, 1986).

The GMRES belongs to class of solvers known as Krylov subspace methods. In such

methods, at each iteration the next candidate solution vector is computed based on all

the previous solution vectors.

One problem is that the matrixA in Eq. (4.23) is typically ill-conditioned and hence

convergence is very slow. The solution is to use a preconditioning matrixM . For

simplicity, we focus here on left preconditioning only and assume there is no polynomial

part, i.e.A = Φ.

A good left preconditionerM when multiplied by the original matrix system (4.23)

makes it well-conditioned. The closerMA is to the identity matrix, the better

conditioned the new system. Thus, it follows that our goal isfind anapproximateinverse

M such that

MA ≈ I or M ≈ A−1. (4.26)

A standard method for finding theexactinverse of anyN × N invertible matrix is to
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Figure 4.5: Cardinal Function in 2D. Eight points are located far away along the
perimeter of the region while the remaining points are closeto the center point. The
cardinal function is constrained to zero at all the black points and equals unity at its
maximum.

solve the followingN linear systems:

A~vi = ~ei, i = 1 . . .N (4.27)

where~ei is theith unit vector. The inverseA−1 is then formed by placing~vi into theith

column ofA−1 (Strang, 1988).

Clearly, solving (4.27) for every~vi is more difficult than solving our original problem

(4.23). However, there is a fast way to find an approximate inverse (Beatson et al., 1999;

Brown et al., 2005). Each of theN linear systems of Eq. (4.27) is equivalent to solving

the following problem. Suppose we have acardinal functioncentered at one of theith

control points. A cardinal function is equal to one at theith point and is zero at all the

otherN − 1 points. (See figure 4.5). Suppose we wish to express this function in the

form of Eq. (4.1). Then the system we need to solve is precisely the ith system of Eq.

(4.27). Theith solution vector of all theseN systems becomes theith column ofA−1.
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While we seem to haveN N × N systems of equations (which is impractical), we now

show that this can reduced toN R × R systems whereR ≪ N . We do this by solving

for anapproximatecardinal function. An approximate cardinal function is equal to one

at the point it is centered on, like the regular cardinal function, but it is constrained to

zero at onlyR−1 of theN points whereR ≪ N , rather than at all the remainingN −1

points. TheseR−1 points should be chosen such that most of them are very close to the

center point while a few of them should be far away to make surethat the approximate

cardinal function does not blow up far away from the center point.

To express each of these approximate cardinal functions as asum of radial basis

functions requires solvingN R × R system. Since such systems are small, they can

be solved easily using a standard algorithm such as LU decomposition. Thus the cost

of solving all these systems isO(NR3). With these solutions, we can then form the

approximateinverseM by placing theith solution in theith column ofM where each

component of the solution is placed in its corresponding row. M will be mostly sparse

since all remainingN − R components are set to zero.

4.3 Other Approaches: Compact Support Radial Basis

Functions

In order to deal with the computational difficulties associated with RBFs, researchers

have developed what are known ascompact support radial basis functions(Buhmann,

2000; Wendland, 1995; Wu, 1995). Some have used them for nonrigid registration
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(Fornefett et al., 2001; Rohde et al., 2003). These are like radial basis functions except

that they are truncated to zero after a certain point. For instance, one possibility is

φ(r) = (max(1 − r, 0))4(3r3 + 12r2 + 16r + 4), r ≥ 0. (4.28)

Solving the interpolation matrix is therefore a lot simpler. However, compact RBFs

appear to be inferior to and less accurate than standard non-compact RBFs (Zhang et al.,

2000). Given that thereare, in fact, ways to efficiently solve the interpolation matrixfor

non-compact RBFs, as discussed in this chapter, we do not usecompact RBFs in this

work.



Chapter 5

Using Automatic Differentiation with

Registration

We now have all the pieces we need to build a registration algorithm based on automatic

differentiation. In this chapter we discuss general issuesthat arise when implementing

such an algorithm using an SSD or MI metric regardless of the type of transformation

used. In the next chapter we discuss the particular case of RBF transformations.

5.1 When to Use Checkpointing

In certain situations checkpointing can be avoided depending on the form of the

objective function and the transformation function. If theobjective functionF can be
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expressed as a sum over the image:

F =
∑

V

fi =
∑

V1

fi +
∑

V2

fi + · · · +
∑

VN

fi (5.1)

where the image spaceV is broken up into piecesV1, V2, . . . ,VN , then, from the linearity

of this formula, the gradient∇F is the sum

∇F = ∇
∑

V

fi = ∇
∑

V1

fi + ∇
∑

V2

fi + · · ·+ ∇
∑

VN

fi. (5.2)

Hence, we can divide the image into pieces small enough so that trace of the individual

pieces can fit into memory.

In practice, this property holds for SSD metrics that use an affine or B-spline

transformation. However, for information theoretic objectives which require the

computation of a histogram and do not sum over the image voxels directly, this property

is usually not valid, hence requiring the need for checkpointing.

Also, when using a radial basis function transformation which first requires the solution

of a linear system prior to the sum, this strategy will not work. In order to compute

the gradient, the objective function must depend directly on the independent variables.

Hence if we were to apply this strategy directly, then we would need to solve the entire

linear system for each block. Thus, checkpointing would be necessary in this situation

as well. Note that for rigid, affine, or B-spline transformations there is no setup stage

and dividing the image in pieces is therefore feasible.
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5.2 Interpolation

For best results in automatic differentiation, it is important that the function be

continuous. When one uses AD on functions the depend on imagevalues, we must

properly handle image interpolation. After transforming avoxel in the fixed image

to the space of the moving image, it is necessary to interpolate at that point using,

perhaps, trilinear interpolation since this point is usually at a non-integer location.

However, it follows from here that these transformed pointsdepend directly on the

independent variables. In other words, if we view the movingimage as a look-up

table, then the mapped point from the transformation is basically a non-integer index

into this lookup table. Now, since there are millions of voxels in this image, and since

in many AD implementations any variable that depends on the independent variables

must be declared as a special datatype, it would appear to be necessary to have such an

indexdeclared as a special datatype.1 This would create a huge computational burden.

Furthermore the function would not be continuous.

Instead, a better way is that whenever we interpolate withinthe image we use a first-

order Taylor approximation. Suppose we wish to compute the intensity value at the

(non-integer) point(x1, x2, x3) where the intensity at that point isI and the gradient is

(gx1
, gx2

, gx3
). Then using a first-order Taylor approximation, the intensity at that point

can be expressed as

I = f + x1gx1
+ x2gx2

+ x3gx3
(5.3)

wheref is a constant. In Eq. (5.3)x1, x2, x3, andI are special AD variables since they

1For example, using ADOLC’s active indices.
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depend on the independent variables whereasf , gx1
, gx2

, andgx3
are not.

Thus, whenever we wish to compute the intensity of an image ata given location, we

1. Compute the intensityI and gradient(gx1
, gx2

, gx3
) at (x1, x2, x3) using trilinear

interpolation without using any special variables.

2. Use Eq. (5.3) to set the intensity (with special variables forx1, x2, x3, andI).

3. Finally, use the result in the objective function. In thisway, the intensity of the

interpolated point depends continuously on(x1, x2, x3).

This method generalizes easily to higher order interpolation. Instead of Eq. (5.3), there

will be more terms depending on the type of interpolation used.

We mentioned in section 3.5 that the trace of objective functions we deal with in image

registration are unique to a particular set of independent variables and cannot be reused

with a different set of variables. From the discussion in thelast two paragraphs, we can

now understand why this is so. The entire moving image is not actually traced. Instead

we only interpolate within the moving image when necessary.If we were to change the

independent variables, then we may need to interpolate at other locations in the moving

image thus rendering the original trace invalid.

5.3 Histograms

An issue that arises when using information based metrics isthe need to compute

histograms. Unfortunately, the same problem that we had with interpolating the image
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also exists with creating the histogram. Namely, the bins ofthe histogram are usually

expressed as a raw array of values, and the moving image value(which depends directly

on the independent variables of the objective function) needs to be cast to an integer

index value in order to increment the frequency of an individual bin. One way around

this problem is to use Parzen windows (Duda et al., 2000). Parzen windows is a method

to construct a histogram so that it is smooth. In the usual wayto create a histogram

each bin can only have discrete, integer values. With Parzenwindows, each bin can take

on any real value, and instead of incrementing a single bin ata time, we increment all

the bins in a neighborhood or “window” of a specific bin by the value of a windowing

function centered on the bin. Popular windowing functions include Gaussian and B-

splines. If we use a cubic B-spline as a windowing function, then a one dimensional

histogram (in practice the histogram will be 2D but the result is the same) can be written

as (cf. Mattes et al., 2003, Eq. (6))

p(l) =
∑

l

β(3)(l − f) (5.4)

wheref is the (scaled) moving image value andβ(3)(u) is the cubic B-spline basis

function

β(3)(u) =






1
6
(4 − 6u2 + 3|u|3), 0 ≤ |u| < 1

1
6
(8 − 12|u| + 6u2 − |u|3), 1 ≤ |u| < 2

0, 2 ≤ |u|

. (5.5)

Using such Parzen windows, using histograms with AD is straightforward. However, as

with interpolation, a given trace is unique for a particularset of independent variables,
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and if they change, the function must be recomputed.



Chapter 6

Nonrigid Registration with Radial

Basis Function Transformations

In the previous chapter, we discussed general issues that arise when using AD to

compute gradients of registration metrics. In this chapter, we discuss the particular

case of RBF transformations. This chapter brings together all the ideas of the previous

chapters and presents the complete nonrigid registration algorithm based on automatic

differentiation, checkpointing, radial basis functions,and the fast multipole method—

the primary goal of this work.

6.1 Preliminaries

Before the similarity metric can be optimized, several preliminaries need to be taken

care of. First, as mentioned earlier, unlike B-spline grids, RBFs allow for arbitrary
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placement of control points throughout the fixed image. Since few control points are

needed in those parts of the image which are very uniform, we choose to place control

points in non-uniform areas. We use an edge detector such as the gradient magnitude

or Canny edge detection filter (Canny, 1986) to finds points located along boundaries

(figure 6.1) and then chooseN nonzero points randomly from this edge image such that

the minimum distance between points is above a certain threshold. Next, it is necessary

to choose a level of refinement for the fast multipole method.This number is chosen

so that there is a certain number of points per box at the lowest level (cf. Greengard,

1988). Next, we compute the preconditioning matrix using the algorithm of Beatson

et al. (1999) described in section 4.2.2.

Figure 6.1: Shows a slice of the gradient magnitude of a brainimage. Control points are
placed on voxels with nonzero gradient magnitude.
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6.2 The Similarity Metric

We are now ready to present the similarity metric which uses an RBF transformation

and AD with checkpointing for gradient calculation. The C-Style pseudocode in figure

6.2 illustrates how we divided up the sum of squared differences metric into time steps

and it consists of three sections.1 This figure should be interpreted identically to figure

3.3, except that here there are many more time steps, and the direction of time is

shown “vertically” rather than “horizontally”. To see this, assume that all loops in the

pseudocode are fully unrolled; then the first occurrence of “[time step]” corresponds

to time t0, the second occurrence of “[time step]” corresponds to timet1, and so on.

Sometimes we write “[time steps]” in the plural to indicate that there are several time

steps in that part. We only include the major loops in the GMRES and FMM sections.

The contents of these loops can be found in the references referred to earlier.

Part 1: GMRES

The very beginning of the objective function evaluation is obviously the assignment

of values to the independent variables, which, in this case,is the displacements of the

control points. This point in time is the beginning of the very first time step, as shown

in the pseudocode. The reason we optimize over the displacements rather than the

coefficientsdi directly is twofold. The first reason has to do with stability: the function

with respect to the displacements is much more stable than the function with respect to

the coefficientsdi. Because of the non-local nature of the basis functions, a small change

1The mutual information metric is the same except for the third section.
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/* Part 1. Do computation of radial basis function coefficients using GMRES for each
dimension */

[time step]
for dimensions 1 to 3do

[time steps]
for i from 0 tomaxIter do

[time step]
for j from 0 tom do

[time steps]
end for
[time steps]

end for
end for

/* Part 2. Do FMM upward pass */

[time step]
for i from bottom level to level 2do

for each box atith leveldo
[time step]

end for
end for

/* Part 3. Do sum of squared differences */

[time step]
sum=0
for i from 0 to total voxels in imagedo

if (i%10000 == 0)then
[time step]

end if
diff = interpolatedMovingValue − fixedValue

sum = sum + diff 2

end for
returnsum

Figure 6.2: SSD Metric Pseudocode. If all loops are unrolled, then this pseudocode can
be understood in the same way as figure 3.3, with theith occurrence of “[time step]”
corresponding to timeti.



71

Figure 6.3: Shows the similarity metric as a directed acyclic graph. The dotted lines
represent time steps. There are many more time steps than shown.
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in any of the coefficients can drastically change the entire transformation. It is very hard

to optimize such an unstable function. However, a small change in the displacements of

the control points will not result in a major change in the transformation. The second

reason is that optimizing over the displacements allows us to easily add point constraints,

if desired, at arbitrary locations by placing simple boundson the components of the

displacement.

Because we are optimizing over the displacements rather than the coefficients, we need

to solve for the coefficients using GMRES for each component of the transformation.

GMRES, as described by Barrett et al. (1994), works by attempting to update the next

solution vector based on all the previous solution vectors.All these previous vectors

must therefore be stored in memory. However, due to memory constraints, we may be

limited in the number of vectors we can store. One possible strategy is to restart after

m iterations. However, there is no simple strategy for choosing a value form (Barrett

et al., 1994). Since performing preconditioning results infewer necessary iterations for

convergence, we chose not to restart the iteration and simply setm to the maximum

number of iterations.

Another important point concerns the tolerance stopping condition. Normally, when one

does checkpointing, the total number of time steps is specified beforehand. However, if

the stopping criteria is based on the residual vector, then we obviously do not have this

information. However, as pointed out by Griewank and Walther (2000), we are free to

modify the total number of time steps prior to the start of thereverse sweep. Thus, if each

iteration is composed ofT time steps then initially one should allow for a maximum of

T ∗maxIter time steps. If the algorithm converges in, say,M iterations, then the number
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of total time steps is reduced byT ∗ (maxIter −M). A simpler approach is to eliminate

the tolerance as a stopping criteria altogether and simply run the algorithm for a fixed

number of iterations.

Part 2: FMM

Once the GMRES stage is completed, we then need to use the FMM to generate the

necessary polynomials. As explained earlier in section 4.2.2, FMM consists of an

upward pass and a downward pass where at each level of the hierarchy we iterate through

each box. We do not show the downward pass, though, since, as explained in section

4.1.2, doing the full FMM in 3D is usually not worth the effort. We place a time step

at each box as shown. In addition, we note that the pseudocodeshown assumes that the

matrix multiplication is done the standard way (withO(N2) complexity). Therefore,

following the solution of the linear systems, it is necessary to compute the FMM

polynomials. However, if the FMM itself is used to compute the matrix multiplication,

then Part 2 will be unnecessary as it will already have been performed in Part 1 (in the

last iteration of each of the three linear systems).

Part 3: Sum of Squared Difference

With the FMM complete, we can now actually compute the value of the similarity

metric. We evaluate the sum of the objective function (2.18)with time steps placed every

numberOfVoxelsPerTimeStep voxels. The value ofnumberOfVoxelsPerTimeStep

depends on the amount of available memory. Note that if the similarity metric was
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mutual information, then Part 3 would be replaced with code for MI, but parts 1 and 2

would remain the same.

With the function divided up as explained, and with the ability to jump to the beginning

of any arbitrary time step, one can then optimize the objective function using a gradient

based method such as conjugate gradient (Press et al., 1992).



Chapter 7

Results

Having described the theory behind the approach of this workin previous chapters,

we are now ready to test our algorithms on real images. However, validating image

registration algorithms is not easy, and various approaches can be found in the literature

(Crum et al., 2004b; Hellier et al., 2003; Pennec and Thirion, 1995; Schnabel et al.,

2001; Strother et al., 1994; Warfield et al., 2001; West et al., 1997). Therefore, in this

work, we made use of a variety of validation strategies, depending on the type of images

registered, as not all approaches were appropriate in all situations. These techniques

included:

• visual inspection.

• using an overlap measure. Crum et al. (2004b) proposed validating registration

based on how well the registration aligns various structures. To measure accuracy,
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the following overlap measure is used:

N(F ∩ M)

N(F ∪ M)
(7.1)

whereN(F ∩ M) is the number of voxels of a specific structure in the fixed and

moving images that overlap, andN(F∪M) is the number of voxels in their union.

This measure varies from 0, corresponding to no overlap, to 1, corresponding to

complete overlap.

• measuring the number of misclassified voxels (NMV).

• comparing registration with and without automatic differentiation.

The algorithms were coded in C++ and were mostly based on codefrom the ITK Insight

Segmentation and Registration Toolkit (Ibanez and Schroeder, 2003). In addition, we

made use of some Numerical Recipes code for implementing theconjugate gradient

optimization algorithm (Press et al., 1992), code from the book Templates for the

Solution of Linear Systemsfor the GMRES method (Barrett et al., 1994), the ADOLC

package for automatic differentiation (Griewank et al., 1996), the Revolve package

for checkpointing (Griewank and Walther, 2000), and the ANNpackage for nearest

neighbor search (necessary for computing the preconditioning matrix—see section

4.2.2) (Mount and Arya, 2005). The code was compiled with optimization and run

on a dual Intel Xeon processor workstation running the GNU/Linux operating system.

In this chapter, we begin with simple experiments and then proceed to more complicated

cases.
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7.1 Experiments to Evaluate Accuracy of Automatic

Differentiation with Registration

It is important to make sure that using automatic differentiation with registration gives

us accurate gradients. A good way to test this is to compare itto a case when analytical

gradients are available. If we get equivalent results usingboth methods, then we can be

more confident that the AD approach will work when we have no analytical gradient.

In this section, we discuss implementing the AD approach on functions with analytical

gradients and show that AD gives the same results as the analytical gradients. In later

sections, we discuss metrics which use an RBF transformation and are therefore not

amenable to analytical gradients.

To verify that AD is feasible for registration, we implemented AD on registration

problems using rigid (Eq. (2.5)), affine (Eq. (2.4)), and B-spline (Eq. (2.6))

transformations with both sum of squared differences and mutual information. The

code used to implement these registrations was based on the Insight Segmentation and

Registration Toolkit (Ibanez and Schroeder, 2003). Tables7.1 and 7.2 show the results

of these types of transformations for both SSD and MI. In eachone, we show the three

transformations. The rigid transformation is a 6 parametertransformation defined by

Eq. (2.5), The affine transformation is a 12 parameter transformation defined by Eq.

(2.4), and the B-spline transformation consists of a 17×18×20 grid with a spacing of

about 10 mm for a total of 6120 control points or 18360 parameters. The images used

were 2 images from the IBSR database (IBSR, 2004).1 No checkpointing was used

1See section 7.3 for more discussion about this database.
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for the SSD case when using AD, but checkpointing was used forMI when using AD.

The first row shows the number of independent variables in each case. The second row

shows the running time for computing the function alone. Thethird row shows the time

for computing the gradient using AD. The fourth row shows theratio of the time to

compute the gradient using AD to the time to compute the function alone. The fifth row

shows the time for computing the gradient analytically. Thesixth row shows the ratio of

the time to compute the gradient analytically to the time to compute the function alone.

The seventh row shows the number of iterations in the conjugate gradient optimization.

Finally, the last row shows the average relative differencebetween the final values of the

independent variables, i.e.

1

N

N∑

i=1

|ai − bi|
|ai|

(7.2)

where ai are the final independent variables when using AD andbi are the final

independent variables when differentiating analytically.

We see that for the SSD metric, after several iterations, there is practically no difference

between the transformation parameters in the AD and analytical optimizations. How-

ever, for MI, we see that after several iterations, differences accumulate between the

analytical and AD cases. This is perhaps due to the fact that our analytical gradient was

computed based on the method described by Thevenaz and Unser(2000) and Mattes

et al. (2003). A close reading of those papers reveals that a Taylor approximation was

made and hence it is not the true gradient. Another possibility is that the MI metric is

more sensitive to tiny changes in the independent variablesso that after several iterations

the solution changes by a sizable amount.
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You will also notice that the running times for the B-splinesgradient is very long. This

is simply because our particular implementation of the analytical B-spline gradient was

not optimal, not because doing B-splines analytically is slower than with AD. In an

optimal B-spline implementation, the analytical B-splinegradient would be faster than

the AD version.

rigid affine B-spline
Number indep vars. 6 12 18360

Time (function) (sec) 1.95 1.99 30.1
Time-AD (gradient) (sec) 8 8.63 181.038

Ratio-AD 4.1 4.3 6.01
Time-dir (gradient) (sec) 5.4 3.45 1548.96

Ratio-dir 2.8 1.7 51.46
Iterations 4 10 25

Norm 1.05906e-11 4.91091e-10 4.36718e-10

Table 7.1: Running times and others values for registrationwith an SSD metric. See
text for explanation of values.

rigid affine B-spline
Number indep vars. 6 12 18360

Time (function) (sec) 3.29 3.2 30.59
Time-AD (gradient) (sec) 58.8 65.4 454.15

Ratio-AD 17.87 20.4 14.846
Time-dir (gradient) (sec) 15 8 4301.6

Ratio-dir 4.97 2.7 140.6
Iterations 4 16 25

Norm 0.279176 0.106872 0.2065

Table 7.2: Running times and others values for registrationwith an MI metric. See text
for explanation of values.
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7.2 Experiments with Synthetic Shapes

7.2.1 Registration of a Sphere and a “Planet”

In this experiment, we registered two synthetic shapes, a “planet” and a sphere. Our

planet is like a sphere except that it has seven “mountains” and seven “craters”. A

slice and a surface rendering are shown in figure 7.1. Both images are 128×128×128

voxels with a spacing of 1. We registered the sphere to the “planet” using a B-spline

transformation with grid sizes of 8×8×8, 12×12×12, 16×16×16, and 20×20×20 as

well as an RBF transformation with 512, 1728, 4096, and 8000 points. The points

were randomly placed on the nonzero voxels of the gradient magnitude image. An SSD

metric was used. For the RBF, we used a thin plate spline (multiquadric withτ = 0,

k = 1), and the degree of the polynomials used in the fast multipole calculations was 5

(i.e. p = 4 so thatp + k = 5). The number of iterations used in the GMRES solver was

40. For the optimization, we used the conjugate gradient method (Press et al., 1992).

Figures 7.2-7.9 and tables 7.3-7.4 show results for these experiments. In tables 7.3-

7.4, the first row shows the size of the B-spline grid. The second, third, and fourth

rows are the same as in tables 7.1-7.2. The fifth row is the number of iterations taken

in the optimization algorithm, and the final row is the numberof misclassified voxels

(NMV) following the completion of the registration. Note that prior to the registration,

the number of misclassified (NMV) voxels was 51304. In table 7.4, the last two rows

are the number of time steps and the maximum number of checkpoints used in the

checkpointing algorithm. We see from figures 7.2-7.9 that both RBFs and B-splines
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Grid Size 83 123 163 203

Time (function) (sec) 28 16 16 16
Time (gradient) (sec) 148 92 96 99

Ratio 5.28 5.75 6 6.19
Iterations 10 10 10 10

NMV 35831 16055 4681 2632

Table 7.3: Running times and other values for sphere registered to “planet” with a B-
spline transformation. See text for explanation of values.

give comparable results. However, we point out that with this example, the difference

between B-splines and RBFs is very noticeable. The B-splinewarp is very local in

nature. The only parts of the image that get warped are in the vicinity of the “mountains”

and “craters”. The RBF. however, is global and thus theentire space gets warped.

Clearly, for this case, it cannot be argued that one warping is more “correct” than the

other. There is no way to decide what the true transformationis without additional

information.

However, suppose that this sphere is a young, “undeveloped”brain and the “planet”

represents the brain at a later stage in its development. If we were to now ask what

the correct transformation is, it would appear that the B-spline transformation is too

simplistic. We would surely expect the change in the brain toresult from the growth

and development of theentire brain, not just along the surface. Hence, it seems to us

that a global transformation such as RBFs is a more appropriate model of such brain

variability since it takes into account the global nature ofthe brain.
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Figure 7.1: Slice and surface rendering of “planet” with “mountains” and “craters”.

Figure 7.2: Result of sphere registered to “planet” with corresponding warped grid
image for a B-spline grid of 8×8×8 (512 points).

Figure 7.3: Result of sphere registered to “planet” with corresponding warped grid
image for an RBF of 512 points.
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Figure 7.4: Result of sphere registered to “planet” with corresponding warped grid
image for a B-spline grid of 12×12×12 (1728 points).

Figure 7.5: Result of sphere registered to “planet” with corresponding warped grid
image for an RBF of 1728 points.

Figure 7.6: Result of sphere registered to “planet”with corresponding warped grid image
for a B-spline grid of 16×16×16 (4096 points).
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Figure 7.7: Result of sphere registered to “planet” with corresponding warped grid
image for an RBF of 4096 points.

Figure 7.8: Result of sphere registered to “planet” with corresponding warped grid
image for a B-spline grid of 20×20×20 (8000 points).

Figure 7.9: Result of sphere registered to “planet” with corresponding warped grid
image for an RBF of 8000 points.



85

Number of Points 512 1728 4096 8000
Time (function) (sec) 190 235 297 410
Time (gradient) (sec) 1544 1870 2296 3221

Ratio 8.1 7.96 7.73 7.86
Iterations 10 10 10 10

NMV 5843 1606 1497 1891
Number of Time steps 4704 4956 5586 6468

Max number of checkpoints 20 20 20 20

Table 7.4: Running times and other values for sphere registered to “planet” with an RBF
transformation. See text for explanation of values.

7.2.2 Registration of a Sphere and a 3D “C”

Christensen (1994) recommends testing nonrigid registration algorithms using a “C”

shaped image. Since all experiments in this work are in 3D, weinstead used a 3D

“C” shaped image that is very similar to Christensen’s 2D “C”image. The dimensions

are 128×128×128 and have isotropic spacing of 1. The inner radius of the “C” is 21

voxels, the outer radius is 41 voxels, and a cylinder of radius 10 is used to make the

opening in the “C”. The intensity value of the “C” is 100 and the background has value

0. Orthogonal slices of the 3D “C” are shown in the figure 7.10.

We registered a sphere with a radius of 31 voxels to the “C” image using a B-spline

transformation with grid sizes of 8×8×8, 10×10×10, 12×12×12, 16×16×16, and

20×20×20 as well as RBF transformation with 512, 1000, 1728, 4096, and 8000 points.

The points were randomly placed on the nonzero voxels of the gradient magnitude

image. An SSD metric was used. For the RBF, we used a thin platespline (multiquadric

with τ = 0, k = 1), and the degree of the polynomials used in the fast multipole

calculations was 5 (i.e.p = 4 so thatp + k = 5). The number of iterations used in the
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GMRES solver was 40. For the optimization, we used the conjugate gradient method

(Press et al., 1992). Figures 7.11-7.20 and tables 7.5 and 7.6 show results and timing

information for these experiments. The explanation for thevalues of these two tables

are identical to those of tables 7.3-7.4. Note that prior to the registration, the number

of misclassified voxels (NMV) was 203220. We see that the B-spline transformation

is unable to correctly warp the sphere into the “C”, whereas the radial basis function

transformation can (although there is still a remaining little dot in the center which the

radial basis function was unable to register).

Figure 7.10: Shows 3 orthogonal slices of 3D “C” image.

Figure 7.11: Result of sphere registered to “C” with corresponding warped grid image
for a B-spline grid of 8×8×8 (total number of control points: 512).
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Figure 7.12: Result of sphere registered to “C” with corresponding warped grid image
for an RBF transformation consisting of 512 points.

Figure 7.13: Result of sphere registered to “C” with corresponding warped grid image
for a B-spline grid of 10×10×10 (total number of control points: 1000).

Figure 7.14: Result of sphere registered to “C” with corresponding warped grid image
for an RBF transformation consisting of 1000 points.
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Figure 7.15: Result of sphere registered to “C” with corresponding warped grid image
for a B-spline grid of 12×12×12 (total number of control points: 1728).

Figure 7.16: Result of sphere registered to “C” with corresponding warped grid image
for an RBF transformation consisting of 1728 points.

Figure 7.17: Result of sphere registered to “C” with corresponding warped grid image
for a B-spline grid of 16×16×16 (total number of control points: 4096).
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Figure 7.18: Result of sphere registered to “C” image with corresponding warped grid
image for an RBF transformation consisting of 4096 points.

Figure 7.19: Result of sphere registered to “C” with corresponding warped grid image
for a B-spline grid of 20×20×20 (total number of control points: 8000).

Figure 7.20: Result of sphere registered to “C” with corresponding warped grid image
for an RBF transformation consisting of 8000 points.
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Grid Size 83 103 123 163 203

Time (function) (sec) 22.3 22.12 22.1 21.7 23.1
Time (gradient) (sec) 133.2 131.72 131.09 133.09 135.5

Ratio 5.97 5.95 5.93 6.13 5.87
Iterations 5 10 10 10 10

NMV 68852 64920 62200 53036 46808

Table 7.5: Running times and other values for sphere registered to “C” with a B-spline
transformation. See text for explanation of values.

Number of Points 512 1000 1728 4096 8000
Time (function) (sec) 168.18 180.31 203.55 304.7 538.13
Time (gradient) (sec) 1321.18 1390.81 1601.18 2233.1 3815.45

Ratio 7.86 7.71 7.87 7.33 7.09
Iterations 10 10 10 10 10

NMV 14286 8192 6678 9453 7110
Time steps 4704 4704 4956 5586 6468

Checkpoints 20 20 20 20 20

Table 7.6: Running times and other values for sphere registered to “C” with an RBF
transformation. See text for explanation of values.

7.2.3 Registration of a Star and a Flower Shaped Image

For our next experiment, we used two shapes generated with the help of the “super-

shape” formula (Bourke, 2003):

x = R(θ) cos(θ)R(φ) cos(φ)

y = R(θ) sin(θ)R(φ) cos(φ)

z = R(φ) sin(φ)

π/2 ≤ φ ≤ π/2

π ≤ θ ≤ π

(7.3)
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where

R(x) =

(∣∣∣∣
1

a
cos(mx/4)

∣∣∣∣
n2

+

∣∣∣∣
1

b
sin(mx/4)

∣∣∣∣
n3

)−1/n1

. (7.4)

In this equationa, b, m, n1, n2, andn3 are parameters which can be varied. The first

shape, which resembles a flower, has parametersa = 1, b = 1, m = 5.2, n1 = 0.04,

n2 = 1.7, andn3 = 1.7 and the second shape, which resembles a star, has parameters

a = 1, b = 1, m = 5.2, n1 = 0.2, n2 = 1.7, andn3 = 1.7. The images are constructed

by evaluating Eq. (7.3) forπ/2 ≤ φ ≤ π/2 and π ≤ θ ≤ π and then setting to

an intensity value of 100 all voxels along the line connecting the origin and the point

(x, y, z). The dimensions of the images are 128×128×128 and have isotropic spacing

of 1.

We registered the two images using a B-spline transformation with grid sizes of 8×8×8,

10×10×10, 12×12×12, 16×16×16, and 20×20×20 as well as an RBF transformation

with 512, 1000, 1728, 4096, and 8000 points. The points were randomly placed on the

nonzero voxels of the gradient magnitude image. An SSD metric was used. For the

RBF, we used a thin plate spline (multiquadric withτ = 0, k = 1), and the degree of the

polynomials used in the fast multipole calculations was 5 (i.e.p = 4 so thatp + k = 5).

The number of iterations used in the GMRES solver was 40. For the optimization, we

used the conjugate gradient method (Press et al., 1992). Figures 7.23-7.30 and tables 7.7

and 7.8 show results and timing information for these experiments. The explanation for

the values of these two tables are identical to those of tables 7.3-7.4. Note that prior to

the registration, the number of misclassified voxels (NMV) was 264093. We see that the

RBF registration computes a warp that better aligns the two images. In addition, as the
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Grid Size 83 103 123 163 203

Time (function) (sec) 22.68 23.13 22.31 23.003 22.40
Time (gradient) (sec) 144.54 152.96 153.53 144.77 152.07

Ratio 6.3726 6.61 6.88 6.29 6.79
Iterations 10 10 10 10 10

NMV 38757 28486 33383 39199 39701

Table 7.7: Running times and other values for star registered to flower with a B-spline
transformation. See text for explanation of values.

Number of Points 512 1000 1728 4096 8000
Time (function) (sec) 36.77 79.18 143.37 443.73 556.8
Time (gradient) (sec) 287.23 483.88 916.1 2950.04 4075.58

Ratio 7.8115 6.11 6.34 6.65 7.3
Iterations 10 10 10 10 10

NMV 31155 22366 14891 10729 10170
Time steps 4704 4704 4956 5586 6468

Checkpoints 20 20 20 20 20

Table 7.8: Running times and other values for star registered to flower with an RBF
transformation. See text for explanation of values.

B-spline grid size is increased, the registration actuallygets worse, though this might

not have happened if we had regularized the B-spline.

7.3 Registration Evaluation with the IBSR Database

For the next set of experiments, we used magnetic resonance human brain images from

the IBSR database from Harvard (IBSR, 2004). The database consists of 18 images and

each one was segmented manually by experts. About 30-40 labels were then assigned

to these segmented structures. Figure 7.33 shows a slice of one of these images and

its corresponding segmentation. The database thus provides a good way of measuring

the accuracy of the registration. In these experiments, we used images 9 and 10 from
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Figure 7.21: Shows 3 orthogonal slices and surface rendering of flower. The
“supershape” parameters area = 1, b = 1, m = 5.2, n1 = 0.04, n2 = 1.7, and
n3 = 1.7.
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Figure 7.22: Shows 3 orthogonal slices and surface rendering of star. The “supershape”
parameters area = 1, b = 1, m = 5.2, n1 = 0.2, n2 = 1.7, andn3 = 1.7.
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Figure 7.23: Result of star registered to flower with corresponding warped grid image
as well as surface rendering of transformed image for a B-spline grid of 8×8×8 (total
number of control points: 512).

Figure 7.24: Result of star registered to flower with corresponding warped grid image
as well as surface rendering of transformed image for an RBF transformation consisting
of 512 points.

Figure 7.25: Result of star registered to flower with corresponding warped grid image as
well as surface rendering of transformed image for a B-spline grid of 10×10×10 (total
number of control points: 1000).
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Figure 7.26: Result of star registered to flower with corresponding warped grid image
as well as surface rendering of transformed image for an RBF transformation consisting
of 1000 points.

Figure 7.27: Result of star registered to flower with corresponding warped grid image as
well as surface rendering of transformed image for a B-spline grid of 12×12×12 (total
number of control points: 1728).

Figure 7.28: Result of star registered to flower with corresponding warped grid image
for an RBF transformation consisting of 1728 points.
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Figure 7.29: Result of star registered to flower with corresponding warped grid image as
well as surface rendering of transformed image for a B-spline grid of 16×16×16 (total
number of control points: 4096).

Figure 7.30: Result of star registered to flower with corresponding warped grid image
as well as surface rendering of transformed image for an RBF transformation consisting
of 4096 points.

Figure 7.31: Result of star registered to flower with corresponding warped grid image as
well as surface rendering of transformed image for a B-spline grid of 20×20×20 (total
number of control points: 8000).
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Figure 7.32: Result of star registered to flower with corresponding warped grid image
as well as surface rendering of transformed image for an RBF transformation consisting
of 8000 points.

the database. They were skull-stripped and cropped to dimensions 138×147×116 and

141×152×126, respectively.

In this section, in addition to experiments with the original IBSR images, we also

describe experiments with added noise, with the RBF controlpoints placed on a regular

grid, and with different degrees of the FMM approximating polynomials.

7.3.1 Comparison to Affine and B-Spline

We evaluate the performance of our FMM with AD method by comparison to an affine

registration and a B-spline registration. For the RBF, we used a thin plate spline

(multiquadric withτ = 0, k = 1), and the degree of the polynomials used in the fast

multipole calculations was 5 (i.e.p = 4 so thatp + k = 5). The number of iterations

used in the GMRES solver was 40. For the optimization, we usedthe conjugate gradient

method (Press et al., 1992). The points were randomly placedon the nonzero voxels of

the gradient magnitude image. Figures 7.34 through 7.43 show the overlap calculations
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for various affine, B-spline, and RBF registrations. Table 7.9 shows the meaning of the

letters in these figures. In addition, tables 7.10-7.13 showtiming information and other

values. The meaning of these values is identical to those of table 7.4. Note that prior to

the affine registration, the number of misclassified voxels (NMV) was 426085, and after

the affine registration, the the number of misclassified voxels was 408122.

We see that mutual information gives better results than sumof squared differences, as

can be seen by comparing figures 7.34- 7.38 to figures 7.39-7.43. This is especially

noticeable by the smaller brain structures such as the thalamus, caudate, putamen,

pallidum, hippocampus, and amygdala (E-J) where the SSD gets increasingly worse

as we increase the number of control points. The mutual information, by contrast, does

not have this problem.

7.3.2 Registration Evaluation with Added Noise

The next experiment was the same as the previous RBF registration with 8000 points

except that noise was added to the images as shown in figure 7.44. This will allow us to

assess the robustness of our algorithm to noise. As shown in figures 7.45-7.46, we see

that favorable results are obtained even in the presence of noise though not as good as

without noise.
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7.3.3 RBF Registration with Control Points Placed on a Grid

To help better compare RBFs to B-splines, we performed an RBFbased registration with

control points placed on a regular grid, like a B-spline, rather than irregularly on nonzero

values of the gradient magnitude image. This will help us seeif it is the meshless

nature of RBFs which is important or is it simply the RBFs themselves which account

for their success. The next experiment was the same as the previous 8000 point RBF

registration without noise except that control points wereplaced on an 18×20×23 grid

(8280 points). As shown in figures 7.47-7.48, we see that the results placed on a grid

are similar to results placed adaptively on nonzero gradient points, though most of the

structures did slightly worse than the adaptive registration while some of the structures

did slightly better. Based on these experiments, the advantage of the flexibility of control

point placement for human brain images is not clear. However, further work on the

optimal placement of control points is necessary to fully answer this question.

7.3.4 Comparison of RBF Registration with and without the FMM

We now describe experiments comparing how an RBF based registration that uses the

FMM compares to one that does not. While the accuracy of the FMM is well understood,

and is related to the polynomial degreep + k (Cherrie et al., 2002). However, the

use of this approximation in a gradient-based optimizationneeds to be examined. In

particular, we are interested in finding out if the computed gradients (from the automatic

differentiation) are the same or close in value. We therefore ran two sets of experiments

with a sum of squared differences metric using the same images from the IBSR database
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as before with 8000 control points, one without the FMM and one with the FMM using

several different polynomial degrees (k = 1 andp was set to the values shown in Table

7.14; see the discussion immediately following Eq. (4.10)). Table 7.14 shows the results.

In the second column of the table, the average relative difference,

1

24000

24000∑

i=1

|ai − bi|
|ai|

, (7.5)

is used to measure the accuracy, whereai are the gradient components without FMM and

bi are the gradient components with FMM. We see that we get better agreement between

both methods as we increasep, as would be expected, especially oncep becomes 4 or

higher. Additionally, while this experiment only analyzedthe initial evaluation of the

objective function in the optimization, we found that when we ran the full optimization

for values of 4 or higher, there was no significant differencein the overlap measure (Eq.

7.1) for the brain structures. For these reasons, we chose a value of 4 for the experiments

in this chapter.

7.4 Discussion

Given the above synthetic and real image experiments, it would appear that it is still

too premature to strongly advocate the use of RBFs over B-splines in general at this

time. The experiments, however, indicate that RBFs generally perform as well or better

than B-splines and that in certain situations may improve performance. We have shown

the feasibility of these powerful computational mechanisms for registration and believe
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Figure 7.33: Shows a (skull stripped) slice of an image from the IBSR database along
with its corresponding labeled image.

that, in spite of the computational overhead, they will prove to be useful in registration

and elsewhere.
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Letter Structure Groupings
A All 2,3,4,5,7,8,10,11,12,13,14,

15,16,17,18,24,26,28,41,42,43,44,
46,47,49,50,51,52,53,54,58,60

B Brain 2,3,7,8,10,11,12,13,16,17,18,
26,28,41,42,46,47,49,50,51,

52,53,54,58,60
C Cortex 3,17,18,42,53,54
D White Matter 2,41
E Thalamus 10,49
F Caudate 11,50
G Putamen 12,51
H Pallidum 13,52
I Hippocampus 17,53
J Amygdala 18,54
K Subcort 10,11,12,13,26,49,50,51,52,58
L Lateral Ventricle 4,43
M CSF 4,5,14,15,24,43,44
N Cerebellum 7,8,46,47
O Brain Stem 16,28,60

Table 7.9: Key to brain labels.
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Figure 7.34: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 9×10×11,

and an RBF registration of 1000 points, all using an SSD metric.
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Figure 7.35: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 12×12×14,

and an RBF registration of 2000 points, all using an SSD metric.
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Figure 7.36: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 15×15×18,

and an RBF registration of 4000 points, all using an SSD metric.
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Figure 7.37: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 18×20×23,

and an RBF registration of 8000 points, all using an SSD metric.
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Figure 7.38: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 23×25×28,

and an RBF registration of 16000 points, all using an SSD metric.
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Figure 7.39: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 9×10×11,

and an RBF registration of 1000 points, all using an MI metric.
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Figure 7.40: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 12×12×14,

and an RBF registration of 2000 points, all using an MI metric.
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Figure 7.41: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 15×15×18,

and an RBF registration of 4000 points, all using an MI metric.
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Figure 7.42: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 18×20×23,

and an RBF registration of 8000 points, all using an MI metric.
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Figure 7.43: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using no

registration, an affine registration, a B-spline registration with a grid size of 23×25×28,

and an RBF registration of 16000 points, all using an MI metric.
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Grid Size 9×10×11 12×12×14 15×15×18 18×20×23 23×25×28
Time-func (sec) 18.4 18.4 19.1 17.9 17.98
Time-grad (sec) 104.4 106.3 109.5 110.4 111.9

Ratio 5.69 5.78 5.74 6.17 6.23
Iterations 10 10 10 10 10

NMV 350161 336669 331172 320941 302968

Table 7.10: Running times and other values for an IBSR brain registration with a B-
spline transformation and an SSD metric. See text for explanation of values.

Number of Points 1000 2000 4000 8000 16000
Time-func (sec) 84.2 185.5 458.96 1292.95 1391.07
Time-grad (sec) 531.09 1221.27 3116.72 9326.9 9632.09

Ratio 6.3 6.58 6.79 7.21 6.92
Iterations 10 10 10 10 10

NMV 323439 312686 303395 291562 279996
Time steps 5216 5468 5972 6980 8996

Checkpoints 20 20 20 20 20

Table 7.11: Running times and other values for an IBSR brain registration with an RBF
transformation and an SSD metric. See text for explanation of values.

Grid Size 9×10×11 12×12×14 15×15×18 18×20×23 23×25×28
Time-func (sec) 40.8888 36.6 41.1666 39.333 37.227
Time-grad (sec) 287.727 266 297.9 288.09 274.18

Ratio 7.0368 7.2678 7.2364 7.3249 7.3651
Iterations 10 10 10 10 10

NMV 350161 336669 331172 320941 302968
Time steps 4710 4710 4710 4710 4710

Checkpoints 20 20 20 20 20

Table 7.12: Running times and other values for an IBSR brain registration with a B-
spline transformation and an MI metric. See text for explanation of values.
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Number of Points 1000 2000 4000 8000 16000
Time-func (sec) 69.265 147.879 478.9126 720 1332.504
Time-grad (sec) 434.5 955.36 3247.9 5985 9643.636

Ratio 6.27 6.46 6.78 8.3125 7.2373
Iterations 10 10 10 10 10

NMV 323439 312686 303395 291562 279996
Time steps 5216 5468 5972 6980 8996

Checkpoints 20 20 20 20 20

Table 7.13: Running times and other values for an IBSR brain registration with an RBF
transformation and an MI metric. See text for explanation ofvalues.

Figure 7.44: Slices of images from the IBSR database with added noise.
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Figure 7.45: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using

no registration, an affine registration, an RBF registration of 8000 points without noise,

and an RBF registration of 8000 points with noise, all using an SSD metric.
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Figure 7.46: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using

no registration, an affine registration, an RBF registration of 8000 points without noise,

and an RBF registration of 8000 points with noise, all using an MI metric.
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Figure 7.47: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using

no registration, an affine registration, an RBF registration of 8000 points distributed on

the gradient image, and an RBF registration with points placed on an 18×20×23 grid

(8280 points), all using an SSD metric.
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Figure 7.48: Shows the fractional overlap, Eq. (7.1), for labeled brain structures using

no registration, an affine registration, an RBF registration of 8000 points distributed on

the gradient image, and an RBF registration with points placed on an 18×20×23 grid

(8280 points), all using an MI metric.
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Average Relative Error, Eq. 7.5
p=2 8.1299
p=3 0.603192
p=4 0.148773
p=5 0.0422957
p=6 0.0189292
p=7 0.0102788

Table 7.14: Registration accuracy with and without the FMM.



Chapter 8

Conclusion

This work presented a new system for meshfree nonrigid registration based on radial

basis functions, automatic differentiation, and the fast multipole method. The motivation

for using RBFs in this work was their meshfree nature and excellent smoothness

properties. Our goal was to develop better numerical strategies for dealing with them in

registration problems and thereby demonstrate their superiority to grid based methods

in their ability to handle a wider class of images, especially 3D MRI brain images.

Although more work remains in order to fully substantiate this claim, nevertheless, the

methodologydescribed in this work is new to the field of image registration, and we

believe that it can be of use to other image analysis problemsas well.

In addition, there are many other issues remaining for further research. For instance, one

important area which we have not addressed in this work is that of the incorporation of

constraints into the registration. This thesis was mainly concerned with intensity based

registration. However, because of the meshfree nature of the transformation and the
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fact that constraints can be placed anywhere, constraints can therefore also be placed

anywhere in space. Since the independent variables are the displacements of the control

points, we can constrain the displacements and thereby restrict the motion of certain

control to a specific areas.

Another issue we have not addressed is that of parallelism. Both the fast multipole

method and the checkpointing method are readily parallelizable and we have not

exploited this in our work. Recently, processor technologyhas hit a brick wall in

terms of speed improvements, and, instead, manufactures are starting to pack multiple

processors on a single chip. The average workstation soon may have numerous

processors on one chip. Hence, parallelism will become increasingly important as it

goes mainstream in the coming years, and algorithms will be required to make use of

this parallelism to achieve better performance. Developing registration algorithms that

exploit parallelism may thus be a fruitful avenue of research.

Furthermore, more advances and developments have been madein relation to solving

the linear system associated with the RBFs as well as the FMM.For instance, domain

decompositions methods have been used for solving the linear system (Beatson et al.,

2001b). Although more complex than GMRES, better results have been reported with

them (Beatson et al., 2001b). Also kernel independent methods have been developed

(Beatson and Newsam, 1998; Ying et al., 2004, 2003), thus potentially increasing the

class of RBFs that can be used. More work remains in incorporating these ideas into

registration algorithms.

Yet another avenue of further research is higher order derivatives, needed, for example,
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in Newton-type optimization. In this work, we only considered first order derivatives,

namely gradients. Unfortunately, unlike the cheap gradient rule, there is no such

rule for higher order derivatives such as Hessians. But, as pointed out by Griewank

(2000), computing every single component of the Hessian is usually not needed for most

problems. However, deciding what parts of the Hessian to compute requires exploiting

features unique to registration metrics, an endeavor whichmay yield interesting results.
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