BACKGROUND

The resting EEG paradigm is a well-suited neuroscience tool for individuals with
developmental disabilities and infants because it is inexpensive, noninvasive, and does
not demand an overt response (Coben, 2009).

Differences in resting EEG spectral power have successfully discriminated children with
ASD from controls and correlate with clinical characteristics (Wang et al., 2013).
Resting EEG activity may differentiate high- and normal-risk infants (Bosl et al., 2011).
Alpha asymmetry is associated with mood reactivity and cognitive functioning (Gotlib,
1998).

Atypical patterns of alpha asymmetry have been observed in school-age children with
autism (Stroganova et al., 2007).

Atypical trajectories of alpha asymmetry have been observed in high-risk infants
(Gabbard-Durnam et al., 2007), which demonstrates that alpha asymmetry is a
promising potential ASD endophenotype.

Previous resting EEG studies suggest a U-shaped profile of electrophysiological power
alterations in ASD, with excessive power in low-frequency, such as theta, and high-
frequency power (Wang et al., 2013).

Current Study

The experiment measured and compared electrophysiological brain activity in infants at
high-risk for ASD with activity in infants at normal-risk over the first two years of life
using the resting EEG paradigm.
« High-risk infants (HR): infants with an older sibling diagnosed with ASD
 Normal-risk infants (NR): infants with no first-degree relatives with ASD
We evaluated the hypotheses that, relative to NR infants, HR infants would display:
« Differing patterns of alpha asymmetry.
« Differentiated resting EEG activity in theta spectral power.
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Figure 4: Theta (3-5 Hz) power levels for infants <12 m (left) and infants >12 m (right).

In infants < 12 months, there was not a significant difference in the number of bad trials

between males (M = 59.93, SD = 23.140) and females (M = 52.62, SD = 23.905; p = .882)

as well as NR (M = 56.36, SD = 20.190) and HR (M =56.97, SD = 24.985; p = .218) (Fig.

5).

In infants > 12 months, there was not a significant difference in the number of bad trials

between males (M = 56.21, SD = 20.602) and females (M = 52.75, SD = 28.429; p = .1306)

as well as NR (M =54.43, SD = 21.110) and HR (M = 56.07, SD = 26.470; p = .194).

* Indicates that spectral power results were not due to the number of trials excluded.

In infants < 12 months, there was a significant difference in alpha asymmetry between HR

than NR infants (p = .023). However, in infants > 12 months, there was no significant

difference (p = .508).

 Alpha symmetry was greater in the younger cohort of infants. While the effect was not
significant in the older cohort, the pattern of results was in the same direction.

In infants < 12 months, there were significant interactions in hemisphere*risk for theta (p =
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.022) but in infants > 12 months, there were significant interactions in hemisphere*sex*risk

for theta (p =.0195).

 Forinfants < 12 m, NR infants demonstrated left-lateralized theta asymmetry and HR
infants demonstrated right-lateralized theta asymmetry.
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PARTICIPANTS & METHODS
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CONCLUSIONS & FUTURE DIRECTIONS
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