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Abstract The concept of the population attributable 
risk (PAR) percent has found widespread application 
in public health research. This quantity describes the 
proportion of a disease which could be prevented if a 
specific exposure were to be eliminated from a target 
population. We present methods for obtaining point 
and interval estimates of partial PARs, where the 
impact on disease burden for some presumably modi-

fiable determinants is estimated in, and applied to, a 
cohort study. When the disease is multifactorial, the 
partial PAR must, in general, be used to quantify the 
proportion of disease which can be prevented if a 
specific exposure or group of exposures is eliminated 
from a target population, while the distribution of 
other modifiable and non-modifiable risk factors is 
unchanged. The methods are illustrated in a study of 
risk factors for bladder cancer incidence (Michaud DS 
et al., New England J Med 340 (1999) 1390). A user-

friendly SAS macro implementing the methods 
described in this paper is available via the worldwide 
web. 
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Introduction 

What percent of cases would be prevented if it were 
possible to eliminate one or more exposures from a 
particular target population? The population attribut-

able risk (PAR) answers this question. The PAR provides 
information about the public health significance of one 
or more exposures on the burden of disease in a popu-

lation by accounting for both the strength of the asso-

ciation on the outcome and the prevalence of the 
exposure in the population to which the PAR is applied. 
The PAR was first formulated for a single binary 
exposure [1] and subsequently extended to the multi-

variate setting [2]. To calculate the PAR, one must 
estimate the relative risks for the risk factor(s) of 
interest as well as those for additional risk factors which 
may be potential confounders for the disease outcome 
in a multivariate model. In addition, prevalences must 
be estimated from the target population. A variety of 
names for the PAR have been used in the literature. 
According to a recent survey [3], the most common are 
attributable risk (AR) [1], etiologic fraction [4], attrib-

utable risk percentage [5] and attributable fraction [6]. 
A unified approach for the calculation of the attribut-

able risk using multivariate models in case-control 
studies has been given, in which the concept of the 
partial PAR was first introduced [7]. A comprehensive 
overview of these methods, which discussed the issues to 
consider in correctly implementing PAR estimation 
techniques and interpreting the results was given later 
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[8]. Most of the literature has focused on point and 
interval estimation of the PAR in case-control studies. 

In this paper, we derive the variance of the partial 
PAR where both the relative risks and population 
prevalences are estimated from the same cohort study. 
In a multifactorial disease setting, at least some key 
risk factors, such as age and family history, are not 
modifiable. This limits the practical utility of the full 
PAR, so we do not consider it further here. An 
example is given from a cohort study of risk factors for 
bladder cancer incidence in the Health Professionals’ 
Follow-up Study (Michaud et al., 1999). The use of 
publicly available software in SAS is illustrated in this 
example. 

Full and partial PAR for cohort studies 

The population attributable risk (PAR) is formulated 
as a function of relative risk(s) and the prevalence(s) of 
the risk factor(s). In its simplest form (Eq. 1), there is 
one exposure at two levels (exposed versus unexposed) 

pðRR � 1Þ 1 
PAR ¼ ¼ 1 � 

pðRR � 1Þ þ 1 pðRR � 1Þ þ 1 
ð1Þ

1 ¼ 1 �P2 
s¼1 p sRRs 

where RR is the relative risk, p is the prevalence of the 
exposure in the population and s indexes the two strata 
determined by the value of the risk factor. 

Equation 1 was generalized to the multifactorial 
setting (Eq. 2), when there are multiple exposures at 
multiple levels, as PS 

s¼1 psðRRs � 1Þ 1 
PARF ¼ ¼ 1 � ð2ÞPS PS1 þ ðRRs � 1Þ RRss¼1 ps s¼1 ps

In Eq. 2, RRs and ps, s = 1; . . . ; S, are the relative 
risks and the prevalences in the target population for 
the sth combination of the risk factors. Eq. 2 evalu-

ates the proportional reduction expected in the 
number of diseased individuals if all the known risk 
factors were eliminated from the target population. 
We will refer to this as the full PAR (PARF). In an 
evaluation of a preventive intervention in a multi-

factorial disease setting, the interest is in the percent 
of cases associated with the exposures to be modified, 
when other risk factors, possibly non-modifiable, exist 
but do not change as a result of the intervention. The 
partial PAR(PARp) was proposed [7] to estimate this 
quantity. The term partial here evokes the partial 

correlation coefficient in linear regression theory, 
involving the effect of a group of variables on an 
outcome after adjusting for the effects of another 
group. The PARp is preferred over PARF when the set 
of risk factors of interest includes some factors which 
cannot be modified (even theoretically), such as age 
and family history of the disease. Under the assump-

tion of no interaction of the index exposure effects with 
the background risk factors, the PARp is formulated as PS PT PS PT 

t¼1 pstRR1sRR2t � t¼1 pstRR2ts¼1 s¼1PARp ¼ PS PT 
s¼1 t¼1 pstRR1sRR2t PT 

t¼1 p:tRR2t¼ 1 � ð3ÞPS PT 
t¼1 pstRR1sRR2ts¼1 

where t denotes a stratum of unique combinations of 
levels of all background risk factors which are not 
under study, t = 1; . . . ; T and RR2t is the relative risk in 
combination t relative to the lowest risk level, where 
RR2,1 = 1. As previously, s indicates an index exposure 
group defined by each of the unique combinations of 
the levels of the index risk factors, that is, those risk 
factors to which the PARp applies, s = 1; . . . ; S, and 
RR1s is the relative risk corresponding to combinations 
relative to the lowest risk combination, RR1;1 ¼ 1. The 
joint prevalence of exposure group s and stratum t is 
denoted by pst, and p.t = Ss

S 
=1 pst. 

The partial PAR, as given by Eq. 3, represents the 
difference between the number of cases expected in 
the original cohort and the number of cases expected if 
all subsets of the cohort who were originally exposed to 
the modifiable risk factor(s) had eliminated their 
exposure(s) so that their relative risk compared to the 
unexposed was 1, divided by the number of cases 
expected in the original cohort. 

To estimate PARp or PARF in a cohort study, one 
must first estimate the relative risks for the exposure(s) 
of interest and for the confounders, typically but not 
necessarily with a multiplicative model for the inci-

dence rate of disease, I(E, C), such as 

IðE; CÞ ¼ expfb0 E þ b0 Cg ð4Þ1 2

using a Poisson or pooled logistic regression model [9], 
where E is a row vector of index exposure variables, 
and may include one or more binary or polytomous 
exposures and their interactions, C is a row vector of 
background risk factors, usually including a row vector 
of indicator variables for age groups considered 
homogeneous with respect to disease risk, and may 
also include one or more binary or polytomous risk 
factors and their interactions. These models should 
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include all higher order interactions suggested by the ddata, as usual, or the resulting PAR will be biased. 
There is a 1–1 relationship between RR1s and a rep-

arameterization of Eq. 4. We define E as a vector of p1 

categorical variables, E = ðE1; . . . ; Ep1 Þ, which have 
ðS1; . . . ; Sp1 Þ levels. C is a vector of p2 categorical vari-

ables, C = ðC1; . . . ; Cp2 Þ, which have ðT1; . . . ; Tp2 Þ levels. 
Without loss of generality, we assume that the reference 
levels in the set of binary indicator variables generated 

0to represent ðE0; C0Þ , which must be the levels with 
lowest risk, are the first levels. We then generate the 
binary indicator variables e¼ ðe12; . . . ; e1S1 ; e22; . . . ; 

0 e2S2 ; . . . ; ep12; . . . ; ep1 Sp1 
Þ and c¼ ðc12; . . . ; c1T1 ;c22; . . . ; 
0c2T2 ; . . . ; cp22; . . . ; cp2Tp2 
Þ of which the model 

b0Iðe; cÞ ¼ expf 1e þ b0 2cg ð5Þ 

is a function. Each unique set of possible values for e 
can be assigned a subscript s, s = 1; . . . ; S, where 

p1 

S ¼ Su , and each unique set of possible values for c 
u¼1

Q
can be assigned a subscript t, t = 1; . . . ; T, where 

p2 

T ¼ Tu. For each es, the corresponding relative risk 
u¼1 

for the index exposure variables, RR1s,  is  
SP�p1 

RR1s ¼ expf b1jesjg and for each ct, the corre-
j¼1 

Q

sponding relative risk for the index background risk 
TP�p2 

factors, RR2t, is  RR2t ¼ expf b2jctjg. Following the 
j¼1 dconditions for confounding of the PAR derived pre-

viously [10], unless age is either not a risk factor for 
the outcome of interest or is unassociated with the 
index exposure(s), the relative risks for age must be 
incorporated into the estimators given by Eqs. 2 and 3 
[11, 12]. Hence, the Cox model, which in many epi-

demiologic applications conditions out the relative 
risks for age and assumes in its standard implemen-

tation no interactions with other model covariates 
[13], is typically not useful in this setting, unless age is 
jointly unassociated with all other risk factors in 
model, Eq. 5. 

The prevalences for the combinations of back-

ground and index risk factors to be considered are 
estimated as multinomial probabilities from the per-

son-time under follow-up in the cohort as the empirical 
fraction of person-time of follow-up among cohort 
members in each unique level of index exposures and 
background risk factors, and denoted p̂st; s ¼ 1; . . . ; S; 
t ¼ 1; . . . ; T. These are substituted into Eqs. 2 and 3. dThe asymptotic variance of PARp is derived in 
Appendix 1 using the multivariate delta method for the 
cohort study setting, as given previously in a more 

general form [14, 15]. Appendix 2 illustrates the cal-dculation of the PARp and its 95% confidence limits 
with our user-friendly, fully-documented, publicly avail-

able macro (http://www.hsph.harvard. edu/ 
faculty/spiegelman/par.html). 

As seen in Eqs. 2–3, the PAR is a function of the 
relative risks and the prevalences of the exposures and 
confounders. When the PAR is estimated in a case-

control study where the target population is the study �� 
base from which the cases arose, Cov ^ RRuvpst; d is non-

zero when s = u and t = v, and 0 otherwise. We show in 
Appendix 1 that, asymptotically, in a cohort study,�� 
cov p̂st; d ¼ 0; ðs; uÞ¼1; . . . ; S; ðt; vÞ ¼ 1; . . . ; T, as  RRuv 

was given more generally previously [15]. 
The PAR is not strictly additive. Additivity concerns 

the relationship between the PAR for two or more risk 
factors to the sum of PARs for each of these risk fac-

tors separately. The sum of the crude PARs for each 
factor of interest obtained by collapsing over all other 
factors is generally less than the joint PARF for the risk 
factors taken together [16]. However, the sum of the 
individual PARps representing the effect of removing 
one risk factor while keeping other factors unchanged 
will generally be more than the PARF for all the risk 
factors taken together [17]. 

Another important property of the PAR is its dis-

tributivity [18]. The crude PARF from a multilevel 
exposure equals the PARF calculated from combining 
those categories into a single exposed category [2, 18, 
19]. Insofar as the distributive property may hold 
approximately when there are several multilevel 
exposures, it may be statistically and computationally 
efficient to collapse categories, since even a modest 
number of multilevel exposures may create a very large 
number of joint levels with sparse information, leading 
to unstable prevalence estimates that will destabilize 
the overall PARF or PARp. However, it should be 
noted that the distributive properly strictly holds only dfor the PARF , and will be an approximation for the dPARP [18]. 

The role of fluid intake and cigarette smoking 
in bladder cancer prevention [20] 

In the Health Professionals’ Follow-up Study, fluid 
intake and cigarette smoking were the strongest mod-

ifiable risk factors for bladder cancer. We selected 
these two risk factors to examine the proportion of 
bladder cancer that could be prevented by certain 
public health interventions in 45,253 members of the 
Health Professionals’ Follow-up Study, a cohort of male 
health professionals, who were followed between 1986 
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and 1996 for the incidence of bladder cancer, during 
which time 238 cases occurred among 442,508 
person-years with complete index exposure data. Fur-

ther details on this study have been given previously 
[20]. Fluid intake was ascertained at baseline through 
the reported frequency of 22 beverages. Current 
smoking status (yes/no) was updated every 2 years, and 
pack-years were given at baseline. Pooled logistic 
regression models adjusted for age in 5 year age 
groups, calendar year of questionnaire return (five 
periods), geographic region (five regions), baseline 
energy intake (in quintiles) and baseline intake of 
fruits and vegetables (four groups) were fit to the data 

to estimate the relative risks of these background risk 
factors, as well as the relative risks of the index expo-

sures: fluid intake (quintiles), current smoking status 
(yes/no), and pack-years of smoking (six categories). 
Table 1 gives the frequency distribution of each of 
the background risk factors and the index exposures, 
and the relative risks of the index exposures and 
background risk factors. Based on these data and dthe methods discussed above, we calculated the PARps 
corresponding to interventions focused on smoking 
cessation or prevention and increasing fluid intake 
(Table 2). If all HPFS cohort members increased 
their fluid intake to more than 2.4 liters per day, 

Table 1 Prevalences and 
relative risks for study of risk 
factors for bladder cancer in 

Variable Prevalencea 

(%) 
Relative risk 
(95%CI) 

the Health Professionals 
Follow-up Study (n = 45, 253) 

Fluid intake 
(ml/day) 

Quintile 5 20 1.0 

Quintile 4 20 1.57 (0.98–2.54) 
Quintile 3 20 2.07 (1.30–3.30) 
Quintile 2 20 1.88 (1.15–3.05) 
Quintile 1 20 2.29 (1.41–3.72) 

Current smoking No 92 1.0 
Yes 8 1.48 (1.00–2.17) 

Pack-years of None 48 1.0 
cigarette smoking 

< 10 10 1.44 (0.84–2.48) 
10– < 25 19 1.94 (1.31–2.86) 
25– < 45 14 2.44 (1.67–3.58) 
45– < 65 7 2.88 (1.85–4.49) 
65+ 3 3.79 (2.30–6.24) 

Region West 21 1.0 
Midwest 27 1.36 (0.88–2.11) 
South 27 1.68 (1.10–2.56) 
Northeast 23 1.91 (1.25–2.91) 
Pacific, missing 1 1.33 (0.32–5.57) 

Age (years) < 50 27 1.0 
50– < 55 16 2.81 (1.29–6.16) 
55– < 60 15 4.04 (1.94–8.42) 
60– < 65 15 6.00 (2.97–12.12) 
65– < 70 13 9.55 (4.82–18.91) 
70– < 75 9 14.29 (7.18–28.45) 
75– < 80 4 14.55 (6.85–30.91) 
80+ 1 27.60 (10.50–72.55) 

Fruit and vegetable 7.5+ 25 1.0 
intake (servings/day) 

5– < 7.5 25 1.28 (0.89–1.83) 
3.5– < 5 25 1.09 (0.73–1.64) 
< 3.5 25 1.42 (0.93–2.15) 

Total Energy Quintile 1 20 1.0 
Intake (kcal/day) 

Quintile 2 20 1.35 (0.92–1.98) 
Quintile 3 20 1.04 (0.68–1.59) 
Quintile 4 20 1.09 (0.69–1.70) 
Quintile 5 20 1.37 (0.87–2.17) 

Calendar period 1994–1995 20 1.0 
1992–1993 20 1.31 (0.85–2.01) 
1990–1991 20 1.77 (1.17–2.69) 

a Note: prevalences may not 
add to 100% due to rounding 

1988–1989 
1986–1987 

20 
20 

2.04 (1.34–3.10) 
1.52 (0.96–2.41) 
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dTable 2 PARp (95% CI) for several risk factors for bladder cancer in the Health Professionals Follow-up Study [20] 

Exposure dPARF from 
crude model 

dPARp from 
multivariate model 

gPARp from collapsed 
multivariate model 

Fluid intake 0.41 (0.15, 0.62) 0.43 (0.17, 0.63) 0.40 (0.16, 0.59) 
Current smoking 0.08 (0.03, 0.13) 0.05 (–0.02, 0.12) 0.07 (0.01, 0.13) 
Pack-years of cigarette smoking 0.50 (0.32, 0.64) 0.43 (0.21, 0.62) 0.41 (0.25, 0.55) 
Fluid intake + current smoking 0.49 (0.23, 0.69) 0.46 (0.17, 0.67) 0.44 (0.18, 0.64) 
Fluid intake + pack-years 0.77 (0.55, 0.89) 0.68 (0.36, 0.86) 0.65 (0.40, 0.81) 

of cigarette smoking 
Current smoking + pack-years 0.50 (0.28, 0.67) 0.45 (0.20, 0.65) 0.44 (0.27, 0.59) 

of cigarette smoking 
Fluid intake + current smoking + pack-years 0.77 (0.53, 0.90) 0.69 (0.36, 0.87) 0.67 (0.40, 0.83) 

of cigarette smoking 
Number of combinations of index exposure 60 (of 60) 66,155 (of 240,000) 16,793 (of 32,000) 

and background risk factors observed 
in the study (of total possible) 

an estimated 43% (95% CI 17%–63%) of bladder 
cancer would be avoided. If all HPFS cohort members 
increased their fluid intake to more than 2.4 liters per 
day and quit smoking, an estimated 46% (95% CI 
17%–67%) of the incident cases of bladder cancer 
would be avoided. If all HPFS cohort members 
increased their fluid intake to more than 2.4 liters per 
day and had never smoked at all, an estimated 69% 
(95% CI 36%–87%) would have been avoided. dAppendix 2 illustrates the calculation of these PARps 
with our publicly available macro (http://www. 
hsph.harvard.edu/faculty/spiegelman/par. 
html). 

Although the additivity approximation worked for 
the combined effects of increased fluid intake and 
smoking cessation (43% + 5% = 48%), while the cor-drectly calculated PARp was 46%, the additive 
approximation broke down more substantially for the 
combined effects of increased fluid intake and lifetime 
smoking prevention (43% + 5% + 43% = 91%), while dthe correctly calculated PARp was 69% (Table 2). The dPARp for fluid intake when modeled by quintiles of 
intake was 43%, but when we grouped those with low 
fluid intake (below the fifth quintile) together into a dsingle exposed group, the PARp was 40% (Table 2). 
Hence, as noted previously [19], the distributive 
property often holds approximately in multifactorial 
disease settings although it is strictly true only for the 
full PAR given by Eqs. 2 and 3. Interestingly, not only 
did the point estimates and confidence bounds differ 
for index exposures to which the distributive property 
was applied, but they also differ for binary risk factors 
in the model which in a univariate setting would not be daffected by this change. For example, the PARp for 
smoking cessation went from 5% (95% CI 2%–12%) 
to 7% (95% CI 1%–13%) when the distributive 

property was applied to pack-years of smoking and 
fluid intake. From a comparison of the ratio of the dstandard errors of the PARp to the point estimates, 
there was no obvious efficiency gain here in collapsing 
risk factors categories to apply the distributive 
property approximation. 

Some authors have incorrectly suggested that a 
PARp can be validly estimated by using the simple PS ^

p̂s:ðebs �1Þ b̂g s 

1þ ^ ebs �1Þformula PARp ¼ Ps¼
S 
1 

^
, where e is the mul-

s¼1 
ps:ð 

tivariate-adjusted relative risk comparing the sth level 
of the exposure to the reference level obtained by fit-

ting (Eq. 5) by Poisson or pooled logistic regression 
and p̂s: is the marginal prevalence of level s of exposure 
in the cohort study. With a bit of algebra, some 
re-arrangement of Eq. 3 reveals that unless RR2t = 1  
for all t = 1; . . . ; T , or unless the index exposures are 
not associated with the background risk factors, i.e. dunless pst = ps. p.t, this method of estimating PARp will 
be biased, as has been shown previously as early as d1983 [11, 12]. For example, the PARp correctly calcu-

lated from Eq. 3 was 5.0% for cessation of smoking; 
using this incorrect method, it was under-estimated by 
26% as 3.7%. That is, an estimated 5% of the incident 
cases of bladder cancer would have been eliminated in 
the Health Professionals’ Follow-up Study if all those dcurrently smoking quit. The PARp correctly calculated 
from Eq. 3 was 40% for low fluid intake, defined as 
below the fifth quintile, using the distributive approx-

imation which appeared to be reasonable here; using 
the incorrect method described above, little difference 
was seen—it was estimated as 39%. The correlations 
between the index exposures, fluid intake, current 
smoking and pack-years, and the highest risk back-

ground factors in our data are low. The highest 
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correlation observed with an important background 
risk factor is that between age and pack-years, 0.19. It 
should be noted that in simulation studies, presumably 
with much higher correlations between index and 
background risk factors, severe bias has been reported 
when this biased method is used [11]. 

Discussion 

dThe variance of the partial PAR was derived for cohort 
studies. It was noted that Poisson or pooled logistic 
regression models, rather than the Cox model, are 
needed to estimate the relative risks, because estimates 
of the relative risks of all background risk factors and 
index exposures are necessary, including those of age, 
if unbiased estimates of the PARp are to be obtained. 
Investigators can switch from the perhaps more stan-

dard Cox regression analysis of their cohort study to 
Poisson or pooled logistic regression analysis by 
transforming the data into counting process format [21] 
(also known as person-time format), if it is not already 
in that form, from the one record per person structure, 
and by grouping the primary time variable, typically 
age, into a series of suitable indicator variables to be 
entered into the new model. 

The methods were applied to a study of bladder 
cancer incidence in relation to increased fluid intake 
and smoking cessation and prevention. Publicly-avail-

able user-friendly software using a newly developed 
SAS macro was illustrated. Since to our knowledge, no 
other such software is publicly available, this addresses 
a significant need, as noted in Benichou’s recent review 
[8]. It should be noted that Mezzetti et al. [22] provided 
a SAS macro for the point and interval estimation of dthe partial PAR in case-control studies, based upon 
formulas given by [7, 23], where the estimated expo-

sure prevalences are correlated with the estimated 
relative risks. In cohort studies, as shown in Appendix 1, 
these asymptotic correlations are 0, and hence the 
variance formula is not valid in this setting. In addition, dthe formula for the point estimate for the partial PAR 
used in case-control studies uses an estimate of the 
proportion of cases that are exposed [24], rather than 
an estimate of the exposure prevalence in the study 
basis as the cohort study version does. In a cohort 

study, the latter quantity can be estimated with sub-

stantially more data, and hence, the estimator which 
uses estimates of exposure in the cases alone, although 
valid, is likely to be inefficient. To be certain of this 
conjecture, this issue would need further study. 

As always, the estimated PARp and its estimated 
confidence bounds will be valid only when the 
assumptions used to estimate it are valid. The relative 
risk model (Eq. 4), and consequently, its reparame-

terization, Eq. 5, must be correctly specified, and the 
risk factors not included in the intervention to be 
evaluated should not be intermediates on the causal 
pathways of any of the index exposures. As always, the 
relative risk and prevalence estimates are assumed to 
be unbiased estimates of their underlying parameters. 
For this to be true, it is assumed that no information 
bias, residual or unmeasured confounding, or selection 
bias is present. 

Although the relative risks for the background risk 
factors and index exposures can typically be most val-

idly estimated in a well designed epidemiologic cohort 
study, for the evaluation of public health interventions 
it is often of greatest interest to estimate the joint 
prevalences of the risk background factors and index 
exposures in a more general population to which these 
interventions may be applied, such as complex popu-

lation-based surveys such as NHANES [25] or NHIS d[26]. The variance of the PARp for this situation has 
been derived [27] and some SAS code has been pro-

vided, although enhanced user-friendliness is needed 
for broader applicability. The specific derivation of the dvariance and implementation of software for PARps 
calculated in cohort studies, which allow for interven-

tions on some but not all of a polytomous index 
exposure (e.g. eliminating both under-weight and over-

weight in the prevention of ovulatory infertility) [28], dand for PARps which consider interventions that alter 
the prevalences of the index exposures without entirely 
eliminating high risk groups, also called the general-

ized impact fraction [15, 29, 30], are also needed. The 
partial population attributable risk can be a useful tool 
for translating the results of analytic epidemiology to 
public health practice. 
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Cancer Causes Control �� dAppendix 1: Derivation of the Var PARp 

�� dVar PARp !PT d
t¼1 p̂:t RR2t¼ Var PS PT d d^ RR1sRR2ts¼1 t¼1 pst 

0
@f ðp; RR1; RR2Þ ¼ Varðf ðp̂; d RR2ÞÞRR1; d

@p ^
RRp; c

@f ðp; RR1; RR2Þ^ 
@p ^

RR 

Var p 
p;c" # h�� i@f ðp; RR1; RR2Þ 0 0 0 d dþ Var RR RR0 1 2

@ RR0 1; RR0 2 ^
p;cRR" # 

@f ðp; RR1; RR2Þ 
0 

@ RR0 1; RR0 2 ^
p;cRR 

ð6Þ 

where 

@f ðp; RR1; RR2Þ b RR2t � a RR2tRR1s¼ ;
b2@pst PT@f ðp; RR1; RR2Þ a t¼1 pstRR2t¼ �  ;

@RR1s b2 PS@f ðp; RR1; RR2Þ bp:t � a s¼1 pstRR1s¼ ;
@RR2t b2 

T S T 

a ¼ p:tRR2t; b ¼ pstRR1sRR2t; 
t¼1 s¼1 t¼1 

X XX
0

where S s pst = p.t, and  RR1 ¼ RR1;1; RR1;2; . . . ; RR1S 
0

and RR2 ¼ RR2;1; RR2;2; . . . ; RR2T are the vectors of 
the relative risks corresponding to the modifiable and 
unmodifiable risk factors respectively. 

b0 es1Under the proportional hazards model, RR1s ¼ e , 
where es is the vector of values of the binary indicators 
corresponding to the sth combination of modifiable 
exposure variables, of which there are S combinations, 

b0 ct2and RR2t ¼ e where ct is the vector of values of the tth 
combination of unmodifiable background risk, of which h�� i00 0d dthere are T combinations. Then, Var RR RR ¼h�� i 1 2 

^ ; ^ 0 DRD0 , where R ¼ Var b0 b0 , and D = [(Duv),
1 2 

u ¼ 1; . . . ; S þ T; v ¼ 1; . . . ; p1 þ p2] where 8 @RR1;u> if u6S and v6p1> @b1;v>< @RR2;u�S if u[S and v[p1Duv ¼ @b2;v�p1>>> 0 if u6S and v[p1: 
0 if u[S and v6p1 

@RR1;uUnder the proportional hazards model, ¼@b1;v 
b0 euve 1eu , where euv is the vth element of the vector eu, 
@RR2;u�S b0 2and ¼ cu�S;v�p1 e

cu�S , where cu�S;v�p1 is the v – @b2;v�p 

p1th element of the vector cu�S. dThe variance of the PARp is estimated by replacing, �� 
p̂; d

^ ; ^ 0 
in Eq. 6, ðp; RRÞ with RR ��, S with the estimated 

variance-covariance matrix of b0 b0 obtained from 
1 2 

the pooled logistic regression model or Poisson 
regression model used to fit (Eq. 5). In a cohort 
study, the multinomial distribution is used to 
estimate the variance-covariance matrix of p̂, 
where p = (p1;1; p1;2; . . . ; pST ), and Covðp̂st; p̂uvÞ ¼  

p̂stð1 � p̂stÞ=n  if s  ¼ u & t ¼ v 
, and n is the total �p̂stp̂uv =n  if s  6 u or  u  ¼ v¼ 6

number of units of person-time of follow-up observed. 

In the spirit of transformation suggested by Leung 
and Kupper [31], to improve the asymptotic behavior dof the 95% confidence intervals of PARp and to ensure 
that the confidence intervals remain within the range of 
–100% to 100%, it is useful to calculate the confidence 
intervals using the Fisher’s Z transformation, that is h �� i d dVar Fisherz PARp ��1 d dh�� �� i2 Var PARp d d1 þ PARp 1 � PARp 

dThen the 95% confidence interval for the PARp is 
estimated as qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi d c2 PARp 1:96 Var ½Fisherzðd Þ�PARp

e � 1 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; d c2 PARp 1:96 Var ½Fisherzðd Þ�PARp

e þ 1 "sffiffiffiffiffiffiffiffiffiffiffiffiffiffi # 
1þdPARpwhere Fisherzð dPARpÞ ¼ log : 
1�dPARp �� 

In a cohort study, it can be shown Cov p̂; ̂  b 0 
^ by a double expectation argument: The estimators b 

and p are the solutions of the following estimating ^ 

equations, 
nX @gðei; ci; bÞ 

Ubðb; pÞ ¼  ½Yi � EðYijgðei; ci; bÞÞ� ¼ 0 
@ðb0; p0Þ0 

i¼1 

Upðb; pÞ 0 1 
0ðSþT�p1�p2Þ� 1 B Cn¼@P A ½Iðei ¼Es & ci ¼CtÞ�EðIðei ¼Es & ci ¼CtÞÞ� 

i¼1 

¼ 0; 
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where Yi is 1 if the unit of person-time is a case and 0 
otherwise, gðei;ci;bÞ will typically be the expit or 
exponential function, depending on whether pooled 
logistic regression or Poisson regression is used to 
estimate b, E(�) is the expectation operator, and Ið�Þ is 
an S + T vector of indicator functions which take 
values 1 when the condition inside the parentheses is 
true and 0 otherwise. Because they are unbiased score i��hi��h

^ ^ functions, E Ubi b;p̂  ¼ 0 and E Upi b;p̂  ¼ 0, 

Continued 

Program: 

fruv1-fruv3; /* lowest 3 categories of 
fruit-and-
vegetable intake */ 

title ‘make dataset of joint prevalences of 
modifiable and unmodifiable risk 

factors’; 
proc sort data=all; by 

volrnk0 volrnk1 volrnk2 volrnk3 

i = 1; . . . ; n. This implies that region1 region2 region3 region4 i����h agegrp2 - agegrp8 
^ ^ smkcCov Ubi b; p̂  ; Upi b; p̂  

packyr2-packyr6 i����h
^ period1 period2 period3 period4 ^ U 0b; ̂  b; p̂¼ EYi;ci ;ei Ubi p pi calor2-calor5 i����h fruv1-fruv3; ^ ^ U 0¼ Ec;eEYjc;e Ubi b; p̂  
pi b; p̂  run; 

proc means noprint data=all; var bladder; 
output out=phats n=fq; 
by

@gðei; ci; bÞ volrnk0 volrnk1 volrnk2 volrnk3 

" 
¼ Ec;eEYjc;e ½Yi � EðYijgðei; ci; bÞÞ� 

@ðb;0 p0Þ0 region1 region2 region3 region4 

agegrp2 - agegrp8 

smkc 

packyr2-packyr6 

#01 CA 
0 B@ 0ðSþT�p1 �p2 Þ� 1 

n 

i¼1 fruv1-fruv3; 

P period1 period2 period3 period4 ½Iðei ¼Es & ci ¼ CtÞ�EðIðei ¼ Es & ci ¼ CtÞÞ� calor2-calor5 

run; 
%par(bdata=betas, pdata=phats, n_or_p=n, 

n_or_pname=fq,
@gðei; ci; bÞ fixedvar=agegrp2 agegrp3 agegrp4 agegrp5 agegrp6 

" 
¼ Ec;e 

@ðb;0 p0Þ0 agegrp7 agegrp8 period1 
period2 period3 period4 
region2 region3 region4 region5 calor2 calor3 #1 CA 

00 B@ 0ðSþT�p1�p2Þ� 1 calor4 calor5 
fruv862 fruv863 fruv861 n 

i¼1 packyr6 

P
modvar=smkc packyr2 packyr3 packyr4 packyr5 ½Iðei ¼ Es & ci ¼ CtÞ � EðIðei ¼ Es & ci ¼ CtÞÞ� 
volrnk0 volrnk1 volrnk2 volrnk3); 

½Yi � EðYijgðei; ci; bÞÞ� ¼ 0:EYjc;e 
Output: 

option for the variance-covariance matrix of the 
prevalences is FIXED . 

Partial PAR (95% CI) for 

modifiable vbls : VOLRNK0 VOLRNK1 VOLRNK2 
VOLRNK3 SMKC PACKYR2 

PACKYR3 PACKYR4 PACKYR5 PACKYR6 
fixed vbls : AGEGRP2 AGEGRP3 AGEGRP4 AGEGRP5 
AGEGRP6 AGEGRP7 AGEGRP8 

PERIOD1 PERIOD2 PERIOD3 PERIOD4 REGION2 REGION3 
REGION4 REGION5 CALOR2 

CALOR3 CALOR4 CALOR5 FRUV862 FRUV863 FRUV861 
0.692 (0.366 , 0.869) 
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