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Privacy-first health research with federated learning
Adam Sadilek1✉, Luyang Liu 1, Dung Nguyen2,3, Methun Kamruzzaman 2, Stylianos Serghiou 1, Benjamin Rader4,5,
Alex Ingerman 1, Stefan Mellem 1, Peter Kairouz1, Elaine O. Nsoesie 6, Jamie MacFarlane1, Anil Vullikanti2,3, Madhav Marathe2,3,
Paul Eastham1, John S. Brownstein4,7, Blaise Aguera y. Arcas1, Michael D. Howell1 and John Hernandez 1✉

Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized
repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable
building complex machine-learned models that are trained in a distributed fashion. These techniques facilitate the calculation of
research study endpoints such that private data never leaves a given device or healthcare system. We show—on a diverse set of
single and multi-site health studies—that federated models can achieve similar accuracy, precision, and generalizability, and lead to
the same interpretation as standard centralized statistical models while achieving considerably stronger privacy protections and
without significantly raising computational costs. This work is the first to apply modern and general federated learning methods
that explicitly incorporate differential privacy to clinical and epidemiological research—across a spectrum of units of federation,
model architectures, complexity of learning tasks and diseases. As a result, it enables health research participants to remain in
control of their data and still contribute to advancing science—aspects that used to be at odds with each other.
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INTRODUCTION
Protecting privacy is crucial in designing, running, and interpreting
health studies. However, most health research to date uses data
stored in a centralized database (i.e., a database stored in a single
site), where analysis and model fitting is done with full access to
the sensitive underlying data. Recent advances in distributed
machine learning (i.e., machine learning utilizing data stored
across two or more sites) enable building complex machine-
learned models without necessitating such centralized databases.
Federated learning is a subfield of machine learning where
multiple participants—sometimes referred to as devices or clients
—collaborate in learning a joint model1. Federated learning
techniques enable calculation of research study endpoints in a
privacy-preserving fashion such that private data never leaves a
given device (e.g., a research participant’s smartphone, wearable
or implanted device) or system (e.g., academic research center,
clinical trial site or medical data repository). Each client’s raw data
are stored locally and remain under control of and private to that
participant. Only focused model updates leave the clients1,
enabling the aggregation of learned patterns into a single global
model without raw data disclosure. The communication between
clients can be peer-to-peer but typically involves a central
orchestrator that receives and aggregates clients’ updates.
The federated learning approach enables two types of benefits.

First, a higher quality model can be learned by leveraging a
broader set of data points, beyond what could be done with the
data held by any one participant or data silo. This is particularly
important for modern machine learning models that often involve
large numbers of parameters and by extension require large
amounts of data for training. The second benefit is privacy—
everyone involved keeps their raw and—in general—sensitive
data local and private. Differential privacy is directly incorporated
into the approach to protect individuals’ privacy.

These characteristics make federated learning particularly
appealing for scalable health research, where a large fraction of
the population may want to contribute to novel health findings,
but have reservations about sharing raw data and digital signals.
While federated learning has generated significant interest in the
machine learning community in recent years, with a specific focus
on smartphone-based analytics and learning2 and learning across
data silos of various healthcare systems3–7, its applications to
clinical and epidemiological studies over individuals’ data are only
beginning to emerge—for example in a new study on respiratory
infections8. At this point, however, only specific large homo-
genous units of federation, such as at the level of a healthcare
system, have been studied in detail in prior work, and the focus
has been on traditional classification tasks.
As a result, considerable challenges and open questions remain

that to our knowledge have not been systematically studied to
date. In particular, health research often involves a relatively small
number of participants (small N) in each study, limited number of
“rows” of data per participant, a large number of multifactorial
variables, and potentially unequal levels of patient participation.
Specifically, health study data is typically non-IID—not indepen-
dent and identically distributed—which is compounded by the
fact that in the federated regime, individual data points are
distributed across many devices that participate asynchronously.
Since many machine learning methods work under the assump-
tion of IID, it is important to empirically examine its effects in a
federated setting as well. Further, in a large number of clinical
studies, the focus is not on prediction, but correlational analysis to
understand the associations between different factors, and
hypothesis testing. Prior methods are often ad-hoc, which can
be a problem in generalizing to a new dataset with a potentially
different level of federation. Here we examine the broader
spectrum of units of federation—from the extreme of each
subject being one unit to large units on a per-country basis—and
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a spectrum of machine learning tasks and complexities. Finally,
prior studies have not fully considered privacy, which is not
guaranteed by default in an arbitrary federated learning setup,
and needs to be treated, implemented, and studied explicitly.
Our work demonstrates the successful use of federated learning

in the presence of these challenges in homogeneous data silo
settings (i.e., where the output of federated computation from one
data silo is composable with the output from another silo).
Specifically, in this work we reproduce eight diverse health studies
in terms of study design, statistical analysis and sample size,
spanning the past several decades in a purely federated setting,
where each unit of federation keeps their data private but still
contributes to the aggregate model. We randomly sampled seven
observational studies and one clinical trial that generated new
knowledge on various clinical and epidemiological problems, and
made the underlying raw data publicly available. The focus of
these studies ranges from diabetes to heart disease to SARS-CoV-2
and MERS-CoV to patient mortality prediction based on electronic
medical records.
The complexity of the models and underlying data also cover a

wide gamut: from regression models with a few variables and
relatively small number of patients to deep neural net models with
17,527,793 parameters, involving tens of thousands of patients.
We employed such powerful models to incorporate complex and/
or unstructured signals, such as free form text from caregiver
notes within electronic medical records, and sequential data (e.g.,
time series of hospital encounters where each encounter has its
own complex structure). We note that recent advances in
federated learning on images point the way towards including
further multi-modal signals in distributed models; our work
focuses on textual, categorical, and sequential data.
Finally, to test various units of federation, we experiment with

the extreme case of each patient being its own unit, as well as
with groups of patients. Four out of the eight datasets are studied
at both the individual level of federation as well as larger generally
non-IID units (silos), such as hospital unit, community, or country.
These groupings were taken from the original data structure to
mimic real-world settings and complexities as closely as possible
and are summarized in Table 1. To explore a broader range of
types of silos when the original data does not contain such
naturally-occurring silos, we also silo the data randomly using a
Dirichlet distribution and run cross-silo experiments on the
resulting grouping. Additionally, rather than developing a custom
technique to federate learning of one specific class of models as done
in prior work, we demonstrate how such encompassing work can be
achieved within the unified framework of TensorFlow.

RESULTS
Overview
We identified eight studies with publicly available data. These
represented a gamut of study designs (four cohort studies, three
case series, one clinical trial), statistical tasks (three prediction
tasks in terms of AUROC, five inference tasks in terms of relative
risks) and sample sizes (Range, 159–53,423) (Table 1). In all studies,
we compare—side by side—the results of the originally published
model with its federated counterpart, and with/without central
and local differential privacy. The comparison is done across
several key dimensions: in terms of robustness of the model—how
well does it generalize and capture unseen data; model
interpretation—are optimal model parameters found in all cases
and do they have the same values; and finally scalability—can
federated learning support studies with a wide range of the
number of participants and the amount of data each subject
generates (both small and large), and the impact of privacy
constraints. We find that the results from federated learning are
on par with centralized models, both in terms of performance Ta
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(measured as Area Under the Receiver Operating Characteristic
Curve) and interpretation (measured as odds ratio or coefficient)
(Table 2). Unlike prior work, which is typically tailored to a specific
fixed setting, we use TensorFlow for all our analyses, which
provides an openly available, well-documented systematic and
unified methodology for federated learning.
Furthermore, we contrast privacy properties and the utility of

these new distributed methods with traditional central differential
privacy methods (see “Methods”) used in classical settings. As
there are growing concerns about the ability to maintain the
privacy of research participant data as it becomes increasingly
feasible to re-identify individuals through combining multiple
sources of electronic health data9,10 we show that new methods
involving federated learning and differential privacy can provide
very strong privacy protections with minimal reduction in utility.
This work’s primary focus is on cross-device (cross-patient)

settings, where the unit of federation is a single individual.
However, we also show the same approach generalizes to the
cross-silo setting, where the unit of federation is larger, such as a
hospital unit, a healthcare system, or even a country (see
Supplementary Note 1 for a formal problem definition). To do
so, we concentrate on two broad classes of models used in
medical research: logistic regression (LR) and deep neural network
(DNN) (Supplementary Discussion 1). While logistic regression is a
special instance of a broader class of neural models, we treat it
separately as it still underpins a large fraction of health studies
done to date, due to its relative simplicity and interpretability. To
quantify differences in performance and interpretation of models
trained in a centralized fashion to those trained in a distributed
way, we use the same mathematical formulation of the core
model (e.g., model formula, loss function) and apply it to the same
data. The key difference is in how the training data is stored and
accessed (centralized vs. federated) and how the model optimiza-
tion is implemented.
Since in general in the federated setting not all participants may

be available at any one time, we explore model quality as a
function of subjects’ participation rate. Across the datasets, we find
that only a minority of clients need to participate in any one round

of federated learning to achieve the maximum attainable
performance in terms of AUC (Fig. 1). These sub-populations are
sampled at random with replacement for each round. Based on our
analyses, we expect that 2% of the randomized participants would
suffice to obtain 99% of the expected model performance in terms
of AUC. This makes the federated setup quite robust to platform-
independent bias caused by device dropout, as only a small
proportion of the total devices need to be available at any one
time (Supplementary Discussion 3). Furthermore, all experiments in
this work were performed on an inexpensive commodity desktop
computer and took only an order of minutes of runtime until

Table 2. Summary of original and federated results reproduced in this work.

Study Topic Sample Results Comparison Metric Traditional Centralized
Modela

Federated Replications

Per-Patient Per-Silob

Heart Failure 1. Survival Prediction (full model)
2. Survival Prediction (with variable selection)

AUC 0.82
0.82

0.85
0.83

N/A

Diabetes 1. Diabetes prediction at 5-years AUC 0.84 0.875 N/A

MIMIC-III 1. Inpatient mortality prediction AUC 0.780±
0.012

0.777 ±
0.011

0.777 ±
0.014

SARS-CoV-2 1. CV2+ve in Female vs. Male
2. CV2+ve in Recent vs. Never Cancer

OR 0.35 (0.32–0.38)
1.88 (1.36–2.60)

0.35 (0.32–0.38)
1.99 (1.45–2.68)

0.35 (0.32–0.38)
2.07 (1.50–2.86)

Avian Influenza 1. Fatality with each day before
hospitalization
2. Fatality in Indonesia vs. group of countries

OR 1.33 (1.11–1.60)
0.23 (0.04–1.27)

1.34 (1.12–1.61)
0.25 (0.05–1.37)

1.33 (1.11–1.60)
0.24 (0.04–1.33)

Bacteraemia 1. Relapse with line-associated
infection source
2. Relapse with presence of
immunosuppression

Coefficient 1.57 (SE: 0.45)
1.07 (SE: 0.41)

1.59 (SE: 0.23)
1.12 (SE: 0.30)

N/A

Azithromycin 1. Adverse events in azithromycin treated Coefficient −0.11 (SE: 0.09) −0.29 (SE: 0.19) N/A

Tuberculosis 1. Extrapulmonary TB in individuals with HIV Coefficient 1.16 (SE: 0.09) 1.35 (SE: 0.08) 0.15 (SE: 0.07)c

Odds ratios shown as point estimates (95% confidence intervals). Model beta coefficients shown as estimate (standard error).
OR odds ratio, AUC Area under the Receiver Operating Characteristic Curve.
aAs reported in original study or replicated in centralized fashion with statsmodel.
bExample silos include hospital level, patient groups, and country level. Not all existing datasets allow meaningful grouping at various levels.
cProblem under-specification issue—see additional details in Supplementary Discussion 2 (extrapulmonary tuberculosis).

Fig. 1 Area under the ROC curve (AUC) as a function of fraction of
participants in each federated (server) round of learning for
replicated model of SARS-CoV-2 and Cancer. Shown in log scale to
highlight details at the low participation levels. We see that even at a
2% participation rate, the model still achieves 99% of the maximum
attainable AUC. We observe this pattern across all the datasets
studied. 80% of the whole dataset was used to train the model and
the rest 20% used for validation.
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convergence. As we discuss below, while federated learning
introduces a communication overhead as participating devices
need to communicate, parts of the computation are distributed
across devices, which results in computational requirements similar
to the ones needed in a traditional (i.e., centralized) approach.
We now turn to briefly describe all datasets used in this study

(Table 1) along with prior work we reproduce here in a federated
setting. The datasets and models reproduced here vary along
many axes, namely the number of examples, class balance/
imbalance, number of independent variables, the amount and
nature of the signals leveraged (e.g., continuous, discrete,
categorical, textual, embedded, time series), focus on various
metrics (e.g., ROC AUC, hypothesis testing, odds ratio, coefficient
interpretation, test of statistical significance), and model architec-
tures (e.g., regression models, neural networks of various depth,
sequential models). We discuss general challenges in reproducing
statistical models in Supplementary 5. In this section, we focus on
a sample of diverse results and report the remainder in
Supplementary Discussion 2. We highlight that in all datasets
tested and across all axes considered, the federated method
reaches the same conclusion as the original work.

Heart failure
The Heart Failure Clinical Records Dataset from the University of
California Irvine data repository involves 299 individuals with left
ventricular systolic dysfunction and New York Heart Association
class III or class IV heart failure ranging from 40 to 95 years of
age11. The dataset was collected in 2015 from the Faisalabad
Institute of Cardiology and the Allied Hospital in Faisalabad in
Pakistan. The dataset is used to predict survival, based on 13
attributes including age, sex, blood pressure, left ventricular
ejection fraction, diabetes, anemia, and creatinine levels.
The original work presents two logistic regression models—one

with all variables and one with only three observed variables
(ejection fraction, serum creatinine, and time of followup in
months). Our federated setting achieves 0.85 AUC (95% con-
fidence interval of 0.85–0.86) in the full model formulation (cf. 0.82
in the original work) and 0.83 AUC (0.82–0.84) in the latter setup
with variable selection (cf. 0.82 in the original work). The higher
AUC score in our setting is due to the addition of regularization
while optimizing model parameters, which also allows the new
method to subsume the semi-manual variable selection done in
the original work. Mirroring the original study, all metrics are
reported as means over 100 executions with randomized training-
testing data splits. Adding a central differential privacy module
(Supplementary Discussion 4) reduces AUC to 0.83 (0.82–0.84) for
the full model (cf. 0.82 in the original work which does not
consider any DP protections), but provides strong guarantees
(ε= 0.165 and δ= 10−5). With local DP, the federated architecture
achieves also 0.83 AUC (0.82–0.84) with local ε= 1.36 and local
δ= 10−9 per round. We note this is a very small dataset containing
only 299 examples and this experiment demonstrates our
methods apply also in situations where data is limited.

Electronic medical records (MIMIC-III)
MIMIC-III is a freely available critical care electronic health records
(EHR) database involving comprehensive data from ~40,000
distinct patients age 16 and older, spanning over 53,000 hospital
admissions to Beth Israel Deaconess Medical Center between 2001
and 201212. The dataset contains 4579 charted observations and
380 laboratory measurements associated with hospital admis-
sions. Each patient in the dataset has a time series of medical
encounters involving procedures, medications, diagnoses and
other complex signals, such as medical notes. Compared with
other tasks with only numerical and simple categorical features,
these medical notes are much more complex and require more
sophisticated natural language processing models to interpret. In

this work, we developed a deep neural network that takes medical
note tokens into large embedding layers, and learns each token’s
representation end-to-end alongside the attached fully connected
layers. We further extend this to work in a federated learning
environment. This allows us to test federated learning in a setting
where each patient is represented by a large amount of diverse
and multi-modal data points on a timeline.
We build a deep neural network to predict inpatient mortality

with data up to 24 h after admission, using patient age, gender,
Clinical Classification Software diagnosis codes, RxNorm medica-
tion codes, Current Procedural Terminology procedure codes, and
free-text medical notes as input variables. The model architecture
contains an input layer, three hidden layers with 512, 256, and 128
neurons respectively, and an output layer with a sigmoid
activation function (Supplementary Discussion 1, Supplementary
Fig. 2). We train the model using the Adam optimizer with a
learning rate of 0.01. In addition, and use L1 regularization with
magnitude 0.0001 and L2 with 0.01.
To explore different levels of federation, we partition the

dataset on a per-patient basis (unit of federation is a single
patient) and in groups of patients (per-silo basis). In particular, the
per-patient federation follows the cross-device federated learning
setting, where each client holds data of a single patient, while the
per-silo federation setting splits patients into multiple groups
(silos) using a Dirichlet distribution, which simulates the case each
hospital or organization holds their patients’ data.
To demonstrate the efficacy of federated learning on this

dataset, we compare the ROC curve of three different experi-
ments: (1) TF centralized model: A traditional server-side trained
model assumes all data is available on a centralized server. (2) TF
federated cross-device model: A model trained on clients on a per-
patient basis. Each training round has 16 participating patients,
and we trained the model for 500 rounds. (3) TF federated cross-
silo model: A model training on clients on a per-silo basis. We use
a Dirichlet distribution with parameter alpha of 10 to randomly
group all patients to 20 groups of various sizes according to the
distribution, and select 5 groups at random to participate in each
federated training round. The median and interquartile range of
patient counts in each group are 200 and 40, respectively.
We measure the performance of three models using the AUC

metric and find that all three models achieve comparable
performance with greatly overlapping confidence intervals (Fig. 2).

Fig. 2 Receiver operating characteristic curves for the three
learning setups on MIMIC-III data predicting inpatient mortality.
Shaded areas show 95% confidence intervals.
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SARS-CoV-2 and cancer
The Malignancy in SARS-CoV-2 Infection database is a large
community-based registry of over 84,000 people who were tested
between February 22 and April 1, 2020 for SARS-CoV-2 in the
Veneto region of Italy13. The dataset has been used to understand
the risk of SARS-CoV-2 infection and health outcomes, based on
age, sex, and cancer history.
Rugge et al. (2020) presented the following observations:

1. The risk of hospitalization is lower among females (OR, 0.35;
95% CI, 0.32–0.38).

2. Compared to young people, COVID-19 positive patients
aged 70 years or more were at a higher risk of hospitaliza-
tion (OR, 4.02; 95% CI, 3.58–4.52).

3. Individuals diagnosed with cancer within 2 years before
acquiring the infection showed the highest risk of hospita-
lization (OR, 1.88; 95% CI, 1.36–2.60).

We split our experiments into six sections and compare
performance between both centralized and federated learning
models. To test various units of federation, we experiment with
the extreme case of each patient being its own unit (Supplemen-
tary Figs. 3 and 4), as well as with groups of patients
(Supplementary Fig. 5). Supplementary Fig. 3 shows the ability
of the federated approach to learn coefficients equivalent with the
original work. Supplementary Fig. 4 shows an agreement in odds
ratios across the models. The full remainder of the experiments are
reported in Supplementary Discussion 2 and key results summar-
ized in Table 2, Figs. 3 and 4. Each of our models reproduces the
results of the original study.

DISCUSSION
This paper focuses on federated learning across individual
patients’ data that can be stored independently of each other.
By contrast, most existing applications of federated learning to
health research involve several bulk data holders (for example,
academic research centers, pharmaceutical companies, or hospi-
tals) collaboratively training models on their entire joint datasets,
containing data about many individuals, all at once14. The two
approaches are termed “cross-device” and “cross-silo” federated
learning respectively, and are described in-depth in Kairouz et al.1.
Cross-silo federated learning has already been applied in the

healthcare arena to power clinical research among participating
hospitals or pharmaceutical companies15,16. In these applications,
each participant holds a significant amount of data, sufficient for
independent analysis; federated learning improves the quality of
this analysis by leveraging data held by multiple participants. By
contrast, in this work, we focus on those scenarios commonly
found in epidemiological health studies, specifically studies with
many participants, each of whom has relatively small amounts of
non-IID, labeled data. The approach described here can be
appropriate for health studies involving smartphone/wearable
data and virtual clinical studies (also called decentralized clinical
studies) that directly recruit individual research participants
without relying on clinical sites for recruitment.
Applications of cross-device federated learning for medical

research include: (1) training models on data that is held directly
by individuals—for example, health or behavioral data collected
on their phones—without requiring a trusted centralized collector,
and (2) making use of data signals that are too sensitive or
resource-intensive to transmit to a central location. There exists

Fig. 3 The odds ratio other than red color are generated using our models. The odds ratio generated by our models are consistent with the
odds ratio of the original study. The vertical bar along with each coefficient shows 95% confidence level of corresponding ratio.
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significant prior work evaluating federated learning in the cross-
device setting, where many clients each hold their own training
examples17–19. Especially when combined with differential privacy,
the literature demonstrates privacy gains in these scenarios14,20.
While this paper focuses on model training via federated learning

(FL), federated analytics (FA)—the application of data science
techniques to data that is stored locally on client devices21—holds
similar promise for health research. Within the scope of federated
analytics lie averages, histograms, heavy-hitter identification,
quantiles, set cardinality, covariance matrix estimation, clustering,
dimensionality reduction, graph connectivity, and more.
In FL as discussed in this paper, the fundamental training

procedure is the same no matter the model, supporting the
generality of the experimental results, but FA algorithms vary
widely. As a result, comparisons between FA algorithms and their
classical, centralized counterparts do not necessarily generalize.
Some state-of-the-art FA algorithms are highly interactive, like FL,
with individual clients able to contribute many times to iteratively
refine the results1, while others, like federated averaging, can be
completed in a single, trivial pass over the clients. For the former,
the non-IID nature of the federated data can be significant; for the
latter, imperfect client sampling is the only source of divergence
from the centralized computation.
Indeed, the major common thread among FA algorithms as

compared to their central counterparts is the effect of client
sampling on the results. However, because sampling effects
depend entirely on the reliability and availability of clients, and
these in turn depend on the implementation details of the
federated system, we do not attempt to characterize their impact
here. Doing so in a general way is an area for further research.
This work demonstrates for the first time that in a broad

portfolio of health studies featuring varying study designs,
prediction and inference tasks, prediction model types and sizes,
levels of federation (individual, hospital unit, community, country)
and signal modalities of varying complexities, that models
learned in a decentralized privacy-first fashion using federated
learning achieve comparable results to the traditional, centrally-
trained models. Furthermore, we show that the clinical insights
gained from each model are equivalent across these two regimes

and that these results hold even when local and central
differential privacy protections are added, which is typically not
captured in prior work.
Additionally, rather than developing a custom technique to

federate learning of one specific class of models as done in prior
work, we demonstrate how such encompassing work can be
achieved within the unified framework of TensorFlow. A broad
range of models can be implemented in this framework, including
generalized linear models, risk prediction models, deep neural
models, sequence models, and time-to-event models22. The
methodology introduced here is quite general as it captures a
spectrum of units of federation (individual patients/subjects →
hospital units → healthcare systems → … → countries) and uses
multiple model architectures.By contrast, prior work heavily
focused on a single point on this spectrum—learning across silos
at the level of healthcare systems and often for a fixed model
architecture without differential privacy.
As a result, this work is the first to apply modern and general

federated learning methods to clinical studies and demonstrates
how research can be done with significantly stronger privacy
protection guarantees and without reducing its power or validity.
Finally, we find that application of federated techniques to
modeling health data introduces new open questions and
challenges in terms of a more complex computational framework,
limits on arbitrary data exploration, training requirements for
analysis and the introduction of platform-dependent bias. These
issues require careful consideration at the experimental design
stage and are further discussed in Supplementary Discussion 3.
The principal class of limitations stems from the distributed

nature of the federated study setup. This by design constraints
arbitrary data exploration because such ability would erode the
privacy guarantees. We mitigate this by leveraging federated
analytics to securely monitor relevant statistics about the pool of
participants. For example, distributions over data can be computed
in real-time in order to detect possible emerging biases. We
elaborate on these points in Supplementary Discussion 3.
Additionally, this work simulates and evaluates applications of

federated learning within existing datasets. As such, even though
it has provided valuable insights and a confirmation of the validity

Fig. 4 The estimated coefficients of Statsmodels (GLM), TF-Centralized (Tensorflow Probability) and TF-Fed-Patient (Tensorflow
Probability with Federated Learning, using patient as the unit). The plots show the coefficients and their 95 %confidence intervals of nine
variables of different univariate logistic regression models. The significance of all models and variables is almost consistent with the original
study: eight over nine variables have the same conclusions and only one (Acquisition status) does not (TF-Centralized and TF-Fed-Patient both
show it is significant, while GLM and the original study state otherwise). In the original study, the variable has a p value of 0.06 which lies near
the borderline of significance (p ≤ 0.05).
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of its estimates, future prospective studies are needed to reinforce
our findings. To that end, we are currently running one such
distributed study8.
Finally, further work will focus on FL over multimodal datasets

involving images, audio, and video. We are also planning to
extend—to FL scenarios—interesting prior work on representa-
tion learning over sequential EHR data similar to MIMIC-III data
studied here.

METHODS
Overview
A typical health study records each participant or patient as a row of data
values. These represent outcomes of measurements on the subject,
demographic variables, and other data fields the study tracks. The row also
contains an outcome (dependent) variable the study is aiming to explain in
terms of the other data fields. The vast majority of studies to date have
been run in a “classical” fashion, where such rows of data—each for one
subject—are concatenated together and stored in a centralized database
table or a spreadsheet accessible to the researchers. Here, we explore an
alternative setup where the rows are not concatenated, but instead remain
decentralized, simulating a setting where the data is generated or stored
on the subjects’ devices such as smartphones or wearables. Using
federated learning, these private rows contribute to learning the global
salient associations between the independent and dependent variables
just like in the centralized setting, while keeping the raw and potentially
very sensitive data local and under control of each individual participant.
The regime just described sets the unit of federation at a very fine-

grained level of individual subjects. As we will see, the approach presented
here generalizes without modifications to cover the entire spectrum of
federation units: from subject-level single rows, to multiple rows per
subject, all the way to patients grouped at a healthcare system level.
To make use of the existing datasets but lift them to a federated setting,

we partition the original centralized dataset to simulate the data being
physically distributed across research participants, each of which is treated
as an individual client and contributing with various participation rates to
jointly learn a model. That is merely an artifact of available data for prior
studies we reproduce here. With the exception of MIMIC-III, the existing
datasets have already been collapsed to one row of data per participant.
However, this approach works more generally in a setting where each
participant captures multiple data examples, and the aggregation happens
as part of the local computation. In that setting, each participant may
contribute multiple data rows to the computation, loosening the
constraints that early aggregation imposes. This is shown in our
experiments on electronic health records, which consist of complex
sequential data spanning a period of hospitalization (see Supplementary
Discussion 2).

Privacy technologies
Protecting the privacy of epidemiological study participants is a key
motivation of our work. Because privacy is not a binary or scalar quality,
reasoning about the privacy properties of any system requires a careful
evaluation of its threat model, broken down by the actors/participants. A
thorough treatment of the privacy threat model for federated learning and
related technologies is given in Kairouz et al.1. Here, we concentrate our
discussion on three core technologies and their compositions: federated
learning, secure aggregation, and differential privacy (Supplementary
Discussion 4).

Federated learning
In a Federated learning setting, the data held by clients can only be
accessed by the clients themselves. A global computation may involve
many clients participating; however, each client keeps its data local,
performs local computations over it, and only allows a focused update or
summary of what has been computed to be shared with the central
orchestrator. The use of focused updates embodies the principle of data
minimization: the updates that leave the client are maximally focused on
the task at hand, as opposed to the raw data which can be used for a
variety of different tasks if it were shared directly. The updates provided by
clients only need to be ephemerally held by the recipient server until
aggregation can be performed.

The baseline federated learning setting offers a number of practical
privacy improvements over centralizing all the training data, but there is
currently no formal guarantee of privacy in the baseline federated learning
model. Attacks focusing on reversing training data from the updates have
been described in the literature23. Additionally, the issue of model data
memorization may manifest itself in the process of federated learning24,
just as it does with traditional, centralized machine learning25,26. Where it is
important to address these concerns, additional privacy technologies such
as differential privacy and secure aggregation (see Supplementary
Discussion 4) may be used together with federated learning.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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