Processing ITC data using ORIGIN 5.0

1. Launch the MicroCal processing software (Origin 5.0 with Microcal ITC

feature) Microcal Inc. ITC.Ink icon on a desktop.

2. The following window appears:

- 3. Click "Read Data" and open the data file : "*.itc" in this case "RNAse****.itc"
- 4. Once the data file is loaded, the following window appears:

- 5. At this point the data can be corrected for heat of dilution of the ligand (which are the heats observed at the end of titration, where no binding events are happening and majority of heat observed are from dilution of titrant).
- 6. Go to "Window" (on the main tab) "Name of the data file" selection (in this case "window" → "RNAse103007")
- 7. The following window appears:

Mic	rocal Origin - UNTI	TLED - [RNA	\se10300]				
Eile	e Edit Yiew Plot		ath <u>T</u> ools F <u>o</u> ri	mat <u>W</u> indow			
			≥ 6 k) 🗖 🗄	<u>Å</u>	
	DH	INJV	Xt	Mt	XMt	NDH	
	M	M	M	M	X	M	
1	-12.49578		1 0	0.0504	0.02643	-6576.72582	
2	-76.5581		<u>3 0.00133</u>	0.05036	0.10584	-13431.24642	
<u> </u>	-/b.b/5/2		3 0.00532	0.05026	0.18542	12220 00000	
4	-76.03730		<u>3 0.01327</u>	0.05015	0.20010	-13167 567	
6	-74 03893		3 0.01723	0.03003	0.34507	-12989 28575	
7	-72.08799		3 0.02119	0.04984	0.50539	-12647.01591	
8	-69.89562		3 0.02513	0.04973	0.5858	-12262.38961	
9	-66.87644		3 0.02907	0.04963	0.66638	-11732.70942	
10	-62.58374		3 0.033	0.04952	0.74712	-10979.60306	
11	-57.9531		3 0.03692	0.04942	0.82803	-10167.20969	
12	-52.3641		3 0.04084	0.04932	0.9091	-9186.68393	
14	-45.3917		3 0.04474	0.04921	0.99035	-7963.4559	
15	-32 /19515		3 0.05252	0.04311	1 15333	-5700 9037	
16	-26.51929		3 0.0564	0.0489	1.23508	-4652.50678	
17	-22.25841		3 0.06027	0.0488	1.31699	-3904.98409	
18	-18.94247		3 0.06413	0.0487	1.39906	-3323.24007	
19	-16.17843		3 0.06799	0.0486	1.48131	-2838.32117	
20	-13.72115		3 0.07183	0.04849	1.56372	-2407.21972	
21	-12.47567		3 0.07567	0.04839	1.64629	-2188.7138	
22	-10.91302		3 0.0795	0.04829	1.72903	-1914.56508	
23	-9.00032		<u>3 0.00332</u> 3 0.08713	0.04019	1 89502	-1594 59175	
25	-8,59761		3 0.09094	0.04799	1.97826	-1508.35218	
26	-8.0037		3 0.09473	0.04789	2.06167	-1404.15791	
27	-7.57929		3 0.09852	0.04778	2.14525	-1329.70062	
28	-7.27702		3 0.1023	0.04768	2.22899	-1276.6695	
29	-6.82534		3 0.10606	0.04758	2.3129	-1197.42795	
30	-6.35986		<u>3 0.10983</u>	0.04748	2.39698	-1115.76492	Script Window
31	-5.97998		3 0.11358	0.04738	2.48122	-1049.11853	
32	-5.86642		<u>3 U.11732</u> 3 0.12106	0.04728	2.50503	-1029.19613	
34	-5.78283		3 0.12479	0.04713	2 73495	-1014 53233	
35	-5.15273		3 0.12851	0.04699	2.81986	-903.98838	
36			- 0.13222	0.04689			RNAse10300 Temperature: 30.00349
	↓₩ [#]\$ \$;	 T 2 0	·//= •				
	v = ?						
						1	
Y							

- Scroll down to the last injections and compute an average value for NDH for the last 5-15 injections; make sure these injections are really of similar heats and represent pure dilution effects; for the RNase103007 file, this value is ~-1073.
- 9. Go to "Math" \rightarrow "Simple Math" on the main tab.
- 10. The following window appears:

Math on/between Data Set					
<u>A</u> vailable Data:	Y:				
RNAse10300_DH RNAse10300_INJV RNAse10300_Mt RNAse10300_NDH RNAse10300_Xt	▲ => Y1: 	Help Y=Y1 (+,-,*,/) Y2 Y,Y1:data set Y2:data or number			
RNAse10300BASE RNAse10300BEGIN	• ОК	Cancel			

- 11. Select "RNase*** NDH" press "=>" button and populated the Y1 window
- 12. Choose the "operator" as "-" and populate the "Y2" window with the average heat of dilution computed in step 8 (for RNase10300, the value is "-1073").

Math on/between Data Set						
<u>A</u> vailable Data:	Y: RNAse10300_NDH					
RNAse10300_DH	► => Y1: RNAse10300_NDH					
RNAse10300_INJV						
RNAse10300_Mt	Y=Y1 (+,-,*,/) Y2					
RNAse10300_NDH	Uperator (+ - ") Y,Y1:data set Y2:data					
RNAse10300 Xt	or number					
RNAse10300BASE	<u> </u>					
RNAse10300BEGIN						
, 						

13.Click "OK" to subtract the heats of dilution from all measured heats. 14.Change display window to "DeltaH" ("window" \rightarrow "DeltaH").

the heats should be corrected for heat of dilution as illustrated:

Biophysical Resource

15. You may correct the concentrations at this point if needed, but choosing "Concentration" and changing the values for cell and ligand.

For Data RNAse10300	ОК			
	Cancel			
C in Syringe(mM) 1.9				
C in Cell(mM) 0.0504				
Cell Vol.(ml) 1.426	7			

16. Remove the results for first injection by choosing "Remove Bad Data" (under "Data Control" section on left hand side); select the data point for the first injection

and hit "enter" key, which should delete the result for first injection:

Biophysical Resource

- 17. Now you are ready to choose the model for fitting the data from the "Model Fitting" section.
- 18. For single sets of sites: choose "One Set of sites" and the following window appear:

HHMI Biopolymer – Keck Foundation Biotechnology Resource Laboratory

Yale University

🔀 NonLinear	Curve Fitting: A	itting Sessi	on	<u> </u>		
Eunction Action	on <u>O</u> ptions <u>S</u> cr	ipts				
fy f) 🎹 📕	1 🖻 🧭	161	• <i>*</i>		
Parameter	Value	Vary? Ei	rror De	pendency		
N	0.9903	🗹 ±				
К	1.27E5	🗹 ±				
н	-1.444E4	🗹 ±	-			
Press 'Esc' key to stop fitting iterations						
				-		
Chi-Sqr 1	Iter. 10 Iter.	10 Simplex I	ter.	Done		
Enter fitting session and perform nonlinear curve fitting. Basic Mode						

with the initial guesses computed by the software and the red curve for fitted values displayed on the "DeltaH" window:

19. Choose "1 Iter." (single iteration and monitor the progression to make sure the fit is converging properly and eventually do "10 Iter." until the Chi-Sqr value does not change with subsequent iterations.

HHMI Biopolymer – Keck Foundation Biotechnology Resource Laboratory

Biophysical	Resource
-------------	----------

Yale University

😿 NonLinear C	urve Fitting: Fil	ting Sessio	on				
Eunction Action Options Scripts							
fy fg fb	A 🆩 🖊	P = 🧭	KH []	7 , ,,,,,,			
Parameter	Value	Vary? Er	ror	Dependency			
N	1.022	🗹 ± 0.	00501	0.3985			
к	4.768E5	🗹 ± 2.	279E4	0.5399			
н	-1.301E4	🔽 ± 87	7.06	0.6747			
Chi-sqr is not reduced. Chi-sqr = 21843.12441 Total 8 rounds in this session (14)Levenberg-Marquardt Chi-sqr is not reduced. Chi-sqr = 21843.12441 Total 8 rounds in this session ▼							
Chi-Sqr 1 Iter. 10 Simplex Iter. Done							
Perform a specified number of Levenberg-Marquardt Basic Mode iterations.							

20. Choose "Done" and the results will be displayed on the DelatH page:

