Developmental Electrophysiology Laboratory Yale Child Study Center

Background

- Psychiatric co-morbidities in autism spectrum disorder (ASD) are
- common, occurring in as many as 72% of children with ASD¹. • Children with ASD often have deficits in aspects of cognitive efficiency, specifically working memory, processing speed, and/or executive functioning, though findings are mixed².
- Psychiatric comorbidity has negative consequences on cognitive functioning, including executive functioning.
- Understanding whether secondary conditions or comorbidities have unique or shared impact on ASD compared to other diagnostic groups has important implications for assessment and treatment.

Objective: To study the effect of comorbidity on cognitive efficiency in individuals with ASD compared to individuals with other childhood psychiatric conditions.

Methods

Procedures:

- Use of archival clinic database from an academic medical center clinic specializing in developmental disability evaluations.
- Cognitive assessments were conducted by licensed psychologists, and final consensus diagnosis was determined by a multidisciplinary team consisting of psychology, psychiatry, and speech/language specialists following comprehensive evaluation.

Measures:

- Wechsler Intelligence Scale for Children, 3rd & 4th Edition (WISC-III, WISC-IV)
- Wechsler Adult Intelligence Scale, 3rd Edition (WAIS-III)
- Behavior Rating Inventory of Executive Function (BRIEF)

Inclusion/Exclusion Criteria:

- Primary diagnosis of ASD (ASD) or other psychiatric disorder (Non-ASD).
- Excluded: Children diagnosed with a primary or comorbid Intellectual Disability, cerebral palsy, or children with no clinical diagnosis.

Participant Demographics:							
	N		Sex (M, F)	Age (SD)			
ASD	307		225, 46	9.76 (3.75)			
Non-ASD	108	79, 14 10.90 (3.84))			
Non-ASD Group Diagnoses		n			n		
ADHD		17	Obsessive Compulsive Disorder		1		
Anxiety Disorders		17	Oppositional Defiant Disorder		1		
Conduct Disorder		2	Reactive Attachment Disorder		3		
Global Developmental Delay		5	Childhood Schizophrenia		3		
Major Depressive Disorder		6	Tourette's Syndrome		3		
Mood Disorders		5	Other		3		
Language Disorders		14					

• There was a significant difference in age between the ASD and Non-ASD group, *t*(399)=-2.66, *p*<.01.

• There was no significant difference in sex $[\chi^2(3,415)=3.77, p=.29]$.

• There was no significant difference in race $[\chi^2(6,415)=3.61, p=.73]$. ASD Group: Caucasian: 37%; Asian: 1%; African American: 1%; Indian: <1%; and Multi-racial: 2%. Non-ASD Group: Caucasian: 36%; Asian: 4%; African American: 2%; Indian: n/a; and Multi-racial: 3%.

The effect of comorbidity on cognitive efficiency in autism spectrum disorder

Brianna Lewis, Kathryn McNaughton, Adam Naples, James McPartland

Child Study Center, Yale University School of Medicine, New Haven, CT, USA

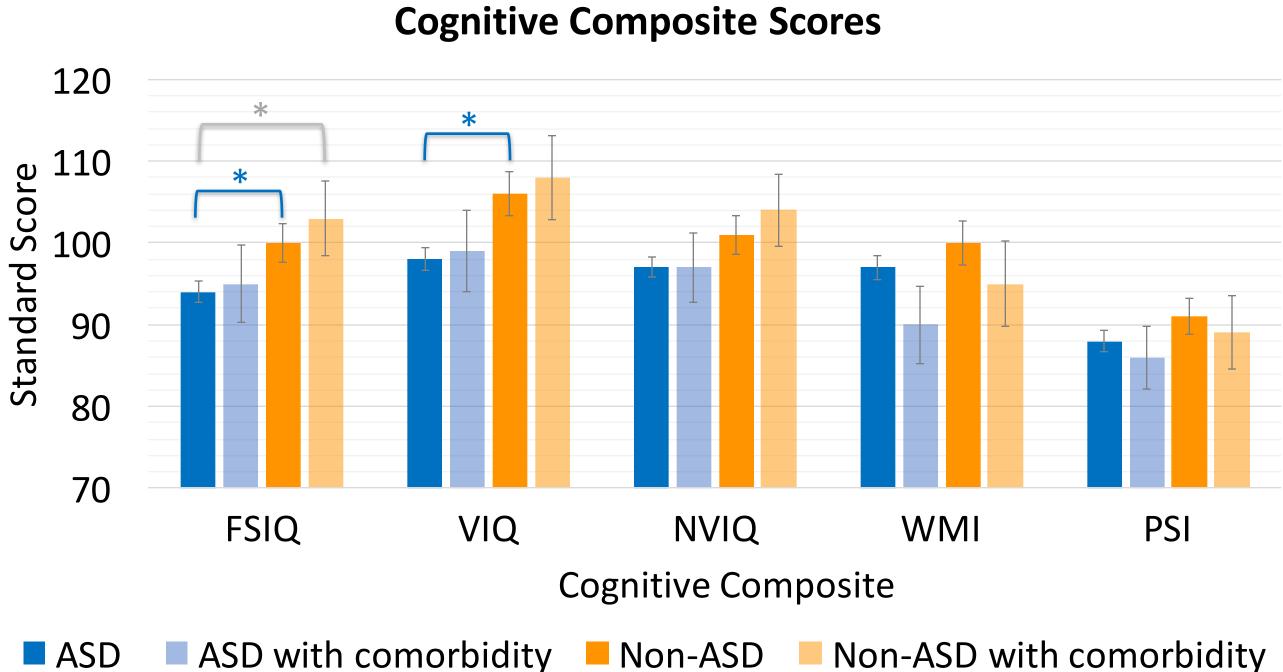
Methods, cont.

Statistical Analyses:

Comparison of group differences were analyzed using factorial ANCOVAs with the independent variables of either diagnostic group (ASD and non-ASD) and/or comorbidity group (presence or absence of a comorbid or secondary diagnosis) controlling for age.

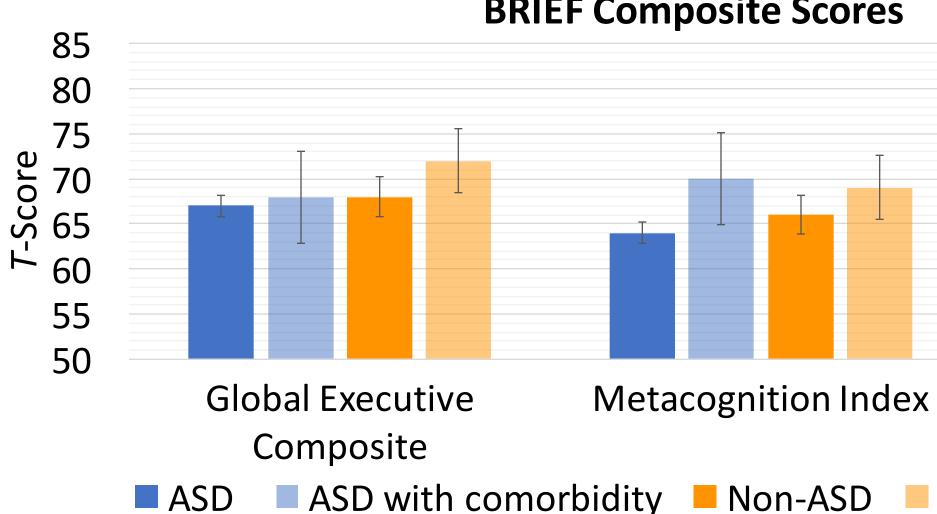
Results

Diagnostic Group Comparison

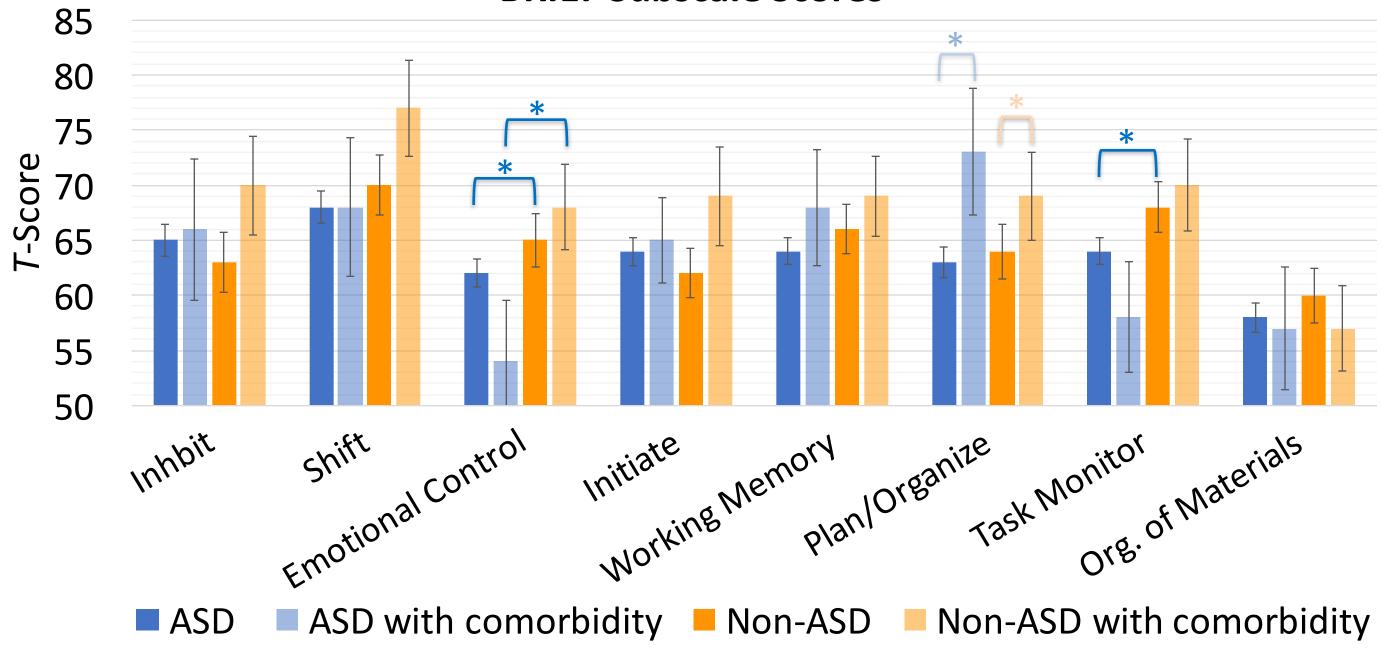

- The ASD group had significantly lower Full Scale IQ (FSIQ) than the Non-ASD group [*F*(1,381)=8.50, *p*<.01].
- Of the Verbal, Nonverbal, Working Memory and Processing Speed composite scores, there was only a significant difference in Verbal Standard Scores between the ASD and Non-ASD group [F(1,340)=9.59,*p*<.01].

Comorbid or Secondary Diagnosis Group Comparisons

• Comorbid conditions were diagnosed in 7% (*n*=22) of individuals with ASD and 20% (n=22) of individuals in the non-ASD group ($\chi^2=14.70$, p<.01).


Comorbid or Secondary Diagnosis	ASD [<i>n</i> (%)]	Non-ASD [<i>n</i> (%)]
ADHD	5 (2%)	4 (4%)
Learning Disorder	9 (3%)	6 (6%)
Tourette's Syndrome	4 (1%)	1 (<1%)
Childhood Schizophrenia	1 (<1%)	0
Other developmental conditions	2 (<1%)	0
Mood or Anxiety Disorder	0	11 (10%)

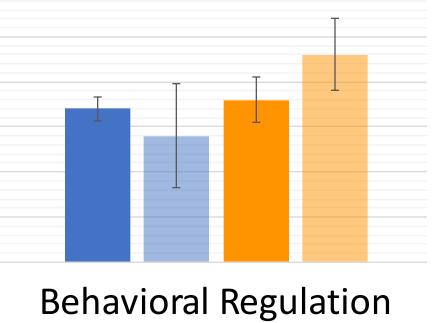
- **FSIQ:** There was no significant interaction between diagnostic group and comorbidity status on FSIQ [F(1,379)=0.20, p=.66]. There was a main effect of diagnostic group [F(1, 379)=5.06, p=.03].
- Verbal: There was no main effect of comorbidity [F(1,338)=0.13, p=.72], but there was a main effect of diagnostic group [F(1,338)=5.04, p=.03] on Verbal Standard Scores. There was no significant interaction between comorbidity and diagnostic group [F(1,338)=0.01, p=.91].
- **Nonverbal:** There was no main effect of comorbidity status [*F*(1,338)=0.34, *p*=.56] or diagnostic group [*F*(1,338)=2.66, *p*=.10].
- Working Memory and Processing Speed: There was no main effect of comorbidity status or diagnostic group on WMI [(F(1,283)=2.30, p=.13), (F(1,283)=1.25, p=.26)] or PSI [(F(1,277)=0.48, p=.49), (F(1,277)=0.82, p=.26)] *p*=.37)].


ASD

Executive Functioning (EF):

- 96)=5.27, *p*=.02] than the ASD group.
- $(M^{a}=54, SE=5.59)$ groups (p=.05).

1. Leyfer, O. T., Folstein, S. E., Bacalman, S., Davis, N. O., Dinh, E., Morgan, J., & Lainhart, J. E. (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. Journal of Autism and Developmental Disorders, 36, 849–861. 2. Hill, E.L. (2004). Executive dysfunction in autism. *Trends Cogn Sci*, 8(1):26–32. doi:10.1016/j.tics.2003.11.003


McPartland Lab

Email: mcp.lab@yale.edu

Results, cont.

• There were no significant differences in overall executive functioning (GEC), Behavioral Regulation Index (BRI), or Metacognitive Index (MI). **BRIEF Composite Scores**

ASD with comorbidity Non-ASD with comorbidity • Children in the Non-ASD group had significantly greater deficits in Emotional Control [F(1,105)=4.68, p=.03] and Task Monitoring [F(1, 1)]

• Post hoc analyses revealed the same effect for Emotional Control between the Non-ASD with comorbidity (*M^a*=68, *SE*=3.9) and ASD with comorbidity

• Children with a comorbid condition in both diagnostic groups had

significantly greater deficits in Planning/Organizing [F(1,104)=4.19, p=.04]; there was no significant interaction [F(1,104)=0.39, p=.54].

Discussion

Comorbidity did not differentially impact core cognitive abilities or cognitive efficiency in children with ASD or another psychiatric condition. • Comorbidity increased impairment in one domain of EF in both ASD and Non-ASD groups, specifically planning and organizing work or activities. Analysis with a larger sample with comorbidity is needed.

• A limitation was the small sub-samples on the BRIEF, as well as within each comorbid condition that did not allow for more nuanced analysis of specific disorder(s) differential impact on cognitive processes.

References

