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Data and Model

Assume that {(xi,Yi), i = 1, . . . , n} is a random sample from
population (x,Y).
Let Di = (xi,Yi) and Dn = (D1, · · · ,Dn) be the observed data.
Y is a univariate response.
x is a d-dimensional predictor.
(x,Y) has joint distribution F. And,

Yi = xT
i β + εi, i = 1, . . . , n, (1)

where β is a d-dimensional vector of unknown parameters, and the
error terms εi are i.i.d. with unknown distribution G, E(εi) = 0, and εi is
independent of xi.
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The Goal

Some of the coefficients in β are zero and their variables do not
contribute to Yi.
Without loss of generality, let β = (βT

1 ,β
T
2 )T , where β1 ∈ Rs and

β2 ∈ Rd−s.
� The true regression coefficients are β0 = (βT

01,β
T
02)T with each

element of β01 being nonzero, and β02 = 0.

Let xi = (xT
i1,x

T
i2)T , where xi1 and xi2 are the covariates

corresponding to β1 and β2.⊙
Select important explanatory variables in the regression model.
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Literature

∞ methods . . . penalization methods
Still∞ . . . examples include:
� Bridge regression (Frank and Friedman, 1993)
� LASSO (Tibshirani, 1996)
� SCAD (Fan and Li, 2001)
� Adaptive LASSO (Zou, 2006)
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How to Deal with Outliers

Many of the methods are closely related to the least squares
method
⇒ The least squares method is sensitive to outliers with finite samples
�oo Outliers can present serious problems

F In the presence of outliers, how to replace the least squares
criterion with a robust one?
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Penalized Robust Regression

Fan and Li (2001) introduced a general framework of penalized robust
regression estimators, i.e., to minimize

Γn(β) =

n∑
i=1

φ(Yi − xT
i β) + n

p∑
j=1

pλnj(|βj|) (2)

with respect to β, where φ(·) is the loss function and pλnj(·) the penalty
function.
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Penalized Robust Regression

The varieties include
Wang et al. (2007): φ(t) = |t|, pλnj(|βj|) = λnj |βj|
Wu and Liu (2009): the penalized quantile regression
φ(t) = t{τ − 1(t < 0)} with 0 ≤ τ ≤ 1, and pλnj(|βj|) is either the
SCAD penalty or the adaptive LASSO penalty
Kai et al. (2011): a penalized composite quantile loss (Zou and
Yuan, 2008)
Johnson and Peng (2008): a rank-based approach
Wang and Li (2009): a weighted Wilcoxon-type SCAD
Leng (2010): regularized rank regression
Bradic et al. (2011): the penalized composite quasi-likelihood
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Basic Questions

What is the breakdown point for a penalized robust regression
estimator?
Is its influence function bounded?
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Motivation and Idea

To study the robustness of variable selection procedures
⇒ We need to introduce a new robust variable selection procedure
⇐ We use the exponential loss function as in Adaboost (Friedman

et al., 2000)
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Exponential Squared Loss

Exponential squared loss is defined as

φγ(t) = 1− exp(−t2/γ),

where γ controls the degree of robustness for the estimators.
When γ is large, φγ(t) ≈ t2/γ ⇒ the least squares.
For a small γ, observations with large absolute values of
ti = Yi − xT

i β will result in large losses of φγ(ti), and therefore have
a small impact on the estimation of β.
⇑ A smaller γ would limit the influence of an outlier on the estimators.
⇓ It could also reduce the sensitivity of the estimators.

F How to select γ so that the estimators are robust and possess
desirable finite and large sample properties?
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Adaptive Loss

We maximize

`n(β) =

n∑
i=1

exp{−(Yi − xT
i β)2/γn} − n

d∑
j=1

pλnj(|βj|) (3)

with respect to β.
This is a special case of (2) for any given γn ∈ (0,+∞).
(3) is distinct from (2) because γn is adaptive and data driven.
⇒ A high breakdown point and high efficiency.
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Notation

Let β̂n = (β̂
T
n1, β̂

T
n2)T be the resulting estimator of (3),

an = max{p′λnj
(|β0j|) : β0j 6= 0},

bn = max{p′′λnj
(|β0j|) : β0j 6= 0},

and

I(β, γ) =
2
γ

∫
xxTe−r2/γ

(
2r2

γ
− 1
)

dF(x, y), r = Y − xTβ.
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Regularity Condition

Assume

(C1): Σ = E(xxT) is positive definite, and E||x||3 <∞.

Condition (C1) ensures that the main term dominates the
remainder in the Taylor expansion.
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Consistency and Normality

Theorem

Assume that condition (C1) holds, bn = op(1), and I(β0, γ0) is negative
definite.
(i) If γn − γ0 = op(1) for some γ0 > 0, there exists a local maximizer β̂n

such that ‖β̂n − β0‖ = Op(n−1/2 + an).
(ii) (Oracle property) If

√
nan = Op(1), 1/mins+1≤j≤d (

√
nλnj) = op(1),√

n(γn − γ0) = op(1), and with probability 1,

lim
n→∞

inf lim
t→0+

inf
{

min
s+1≤j≤d

p
′
λnj

(|t|)/λnj

}
> 0, (4)

then we have (a) sparsity, i.e., β̂n2 = 0 with probability 1 and (b)
asymptotic normality.
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Asymptotic Normality

Specifically,

√
n(I1(β01, γ0) + Σ1)

{
β̂n1 − β01 + (I1(β01, γ0) + Σ1)−1∆

}
(5)

D−→ N (0,Σ2) ,

where

Σ1 = diag{p′′λn1
(|β01|), · · · , p

′′
λns

(|β0s|)},

Σ2 = cov(exp(−r2/γ0)
2r
γ0

xi1),

∆ =
(

p
′
λn1

(|β01|)sign(β01), · · · , p′λns
(|β0s|)sign(β0s)

)T
,

I1(β01, γ0) =
2
γ0

E
[

exp
(
−r2/γ0

)(2r2

γ0
− 1
)] (

Exi1xT
i1
)
.
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Special Cases

Some penalties do not satisfy the conditions in the theorem.
� LASSO is inconsistent, and the oracle property does not hold.
� Zou (2006) proposed the adaptive LASSO, and showed that it

enjoys the oracle property.

The adaptive LASSO penalty: pλnj(|βj|) = λnj |βj|, λnj = τnj/|β̃j|k for
some k > 0, where β̃ = (β̃1, · · · , β̃d)T is a

√
n-consistent estimator

of β0, and τnj’s are the regularization parameters.
With this penalty in (3), the estimators are

√
n-consistent and have

the oracle property under the following condition (C2) in addition
to the regularity condition (C1).
(C2): max1≤j≤s (

√
nλnj) = op(1) and 1/mins+1≤j≤d (

√
nλnj) = op(1).
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Special Cases

max1≤j≤s (
√

nλnj) = op(1) implies
√

nan = Op(1) by the definition of
an.
Some data-driven methods for selecting λnj, e.g., cross-validation,
may not satisfy condition (C2).
(C2) holds for BIC.
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Finite Sample Breakdown Point⊙
To measure the maximum fraction of outliers in a sample that an

estimator can tolerate before returning arbitrary values (Hampel, 1971;
Donoho, 1982; Donoho and Huber, 1983).

Dm = {D1, · · · ,Dm} m bad points.
Dn−m = {Dm+1, · · · ,Dn} n− m good points.
Let β̂(Dn) denote a regression estimator based on sample Dn.
The addition breakdown point of an estimator β̂n:

BP(β̂n; Dn−m) = min
{

m
n

: sup
Dm

‖β̂(Dn)− β̂(Dn−m)‖ =∞
}
,

where || · || is the Euclidean norm.

Note: The notation Dn is somewhat abused here for convenience. In the regression setting, many estimators such as S-estimator

(Rousseeuw and Yohai, 1984), MM-estimator, τ -estimator (Yohai and Zamar, 1988), and REWLS-estimator (Gervini and Yohai,

2002), can achieve the highest asymptotic breakdown point of 1/2.
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Finite Sample Breakdown Point

What is the breakdown point, denoted by BP(β̂n; Dn−m, γn), for our β̂n
with the tuning parameter γn?

Take an initial estimator β̃n.

ζ(γn) =
2m
n

+
2
n

n∑
i=m+1

φγn

{
ri(β̃n)

}
,

where ri(β) = Yi − xT
i β. Note that ζ(γn) ∈ (0, 2].

anm = (n− m)−1 max
β∈Rd

]{i : m + 1 ≤ i ≤ n and xT
i β = 0}.

If a set of d regressor variables is linearly independent, then
anm = (d − 1)/(n− m).
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Finite Sample Breakdown Point

Theorem

For any penalty function of the form pλnj(|βj|) = λnjg(|βj|), where g(·) is
a strictly increasing and unbounded function defined on [0,∞], and the
weight λnj is positive for all j = 1, · · · , d. If
m/n ≤ ε < (1− 2anm)/(2− 2anm), anm < 0.5, and
ζ(γn) < (1− ε)(2− 2anm) hold, then, for any initial estimator β̃n of β0,
we have

BP(β̂n; Dn−m, γn) ≥ min
{

BP(β̃n; Dn−m),
1− 2anm

2− 2anm
, 1− ζ(γn)

2− 2anm

}
.
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Finite Sample Breakdown Point

What does the theorem tell?
It provides the lower bound for the breakdown point.
The bound depends on the breakdown point of an initial estimate
and the tuning parameter γn.
If β̃n is a robust estimator with asymptotic breakdown point 1/2,
and γn is chosen such that ζ(γn) ∈ (0, 1], then BP(β̂n; Dn−m, γn) is
asymptotically 1/2.

⇒ How to select γn?
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Finite Sample Breakdown Point

What penalties can the theorem be applied for?
+ LASSO, adaptive LASSO, the Lq penalty with q > 0, logarithm

penalty, elastic-net penalty, and adaptive elastic-net penalty.
? SCAD (Fan and Li, 2001) and MCP (Zhang, 2010).
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Influence Function

⊙
To measure the stability of estimators given an infinitesimal

contamination (Hampel, 1968).

δz: the point mass probability distribution at a fixed point
z = (x0, y0)T ∈ Rd+1.
Given the distribution F of (x,Y) in Rd+1 and proportion ε ∈ (0, 1),
the mixture distribution of F and δz is Fε = (1− ε)F + εδz.
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Influence Function

Suppose that λnj’s have the limit point λ0j’s. Define

β∗0 = arg min
β

{∫ (1− e−(y−xTβ)2/γ0
)

dF
}

+

d∑
j=1

pλ0j(|βj|)

 ,
β∗ε = arg min

β

{∫ (1− e−(y−xTβ)2/γ0
)

dFε

}
+

d∑
j=1

pλ0j(|βj|)

 .
Note: β∗0 is a shrinkage of the true coefficient β0 to 0.

Let IFj(z;β∗0) be the j-th element of the influence function.
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Influence Function

Theorem

IFj(z;β∗0) =

{
0 if β∗0j = 0,
−Γj

{
2 exp

(
−r2

0/γ0
)

r0x0/γ0 + ν2
}
, otherwise,

where Γj denotes the j-th row of {2A(γ0)/γ0 − B}−1, r0 = y0 − xT
0β
∗
0,

ν2 =
{

p
′
λ01

(|β∗01|)sign(β∗01), · · · , p′λ0d
(|β∗0d|)sign(β∗0d)

}T
,

B = diag
{

p
′′
λ01

(|β∗01|), · · · , p
′′
λ0d

(|β∗0d|)
}
,

and

A(γ) =

∫
xxT exp

{
−(y− xTβ∗0)2/γ

}{2(y− xTβ∗0)2

γ
− 1
}

dF(x, y).
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Adaptive LASSO Penalty

If the regularization parameter is selected by the BIC described,
according to condition (C2), we have λ0j = 0 for j = 1, · · · , s, and
λ0j = +∞ for j = s + 1, · · · , d.

The corresponding influence functions of the zero coefficients are
zero.
For the nonzero coefficients, the influence functions have the form

IFj(z;β∗0) = −Γj
{

2 exp
(
−r2

0/γ0
)

r0x01/γ0
}
.
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Regularization Parameter λnj

To reduce computational complexity and guarantee consistent variable
selection, we choose the regularization parameter by minimizing a
BIC-type objective function (Wang et al., 2007):

n∑
i=1

[
1− exp{−(Yi − xT

i β)2/γn}
]

+ n
d∑

j=1

τnj |βj| /|β̃nj| −
d∑

j=1

log(0.5nτnj) log(n).

This leads to λnj = τ̂nj/|β̃nj|, where τ̂nj = log(n)
n .
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Tuning Parameter γn

The tuning parameter γn controls the degree of robustness and
efficiency of the proposed robust regression estimators.

To select γn, we propose a data-driven procedure which yields
both high robustness and high efficiency simultaneously.
We determine a set of the tuning parameters such that the
proposed penalized robust estimators have asymptotic breakdown
point at 1/2.
We select the tuning parameter with the maximum efficiency.
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Tuning Parameter γn

1 Find the pseudo outlier set of the sample:
Sn = 1.4826× mediani

∣∣∣ri(β̂n)− medianj(rj(β̂n))
∣∣∣. Then, take the

pseudo outlier set Dm = {(xi,Yi) : |ri(β̂n)| ≥ 2.5Sn}, set
m = ]{1 ≤ i ≤ n : |ri(β̂n)| ≥ 2.5Sn}, and Dn−m = Dn/Dm.

2 Update the tuning parameter γn: Let γn be the minimizer of
det(V̂(γ)) in the set G = {γ : ζ(γ) ∈ (0, 1]}, where
V̂(γ) = {Î1(β̂n)}−1Σ̃2{Î1(β̂n)}−1, and

Î1(β̂n) =
2

γ

 1

n

n∑
i=1

exp
(
−r2

i (β̂n)/γ
)( 2r2

i (β̂n)

γ
− 1

)
 1

n

n∑
i=1

xix
T
i

 ,
Σ̃2 = cov

{
exp
(
−r2

1(β̂n)/γ
) 2r1(β̂n)

γ
x1, · · · , exp

(
−r2

n(β̂n)/γ
) 2rn(β̂n)

γ
xn

}

ζ(γn) =
2m

n
+

2

n

n∑
i=m+1

φγn

{
ri(β̃n)

}
.

3 Update β̂n.
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Implementation

Set β̂n as the MM estimator and detect the outliers in Step 1.
Compute ζ(γn).
By the breakdown theorem, asymptotic breakdown point is 1/2.
To attain a high efficiency, choose the tuning parameter γn by
minimizing the determinant of asymptotic covariance matrix in
Step 2.
Since the calculation of of det(V̂(γ)) depends on estimate β̂n,
update β̂n in Step 3 using the block coordinate gradient descent
(BCGD) algorithm (Tseng and Yun, 2009).
Repeat Steps 1-3 once.
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Design

n = 100, 200, 400, 800, d = 8, and β = (1, 1.5, 2, 1, 0, 0, 0, 0)T .
Generate xi = (xi1, · · · , xid)T from a multi-normal distribution
N(0,Ω2), where the (i, j)-th element of Ω2 is ρ|i−j|, ρ = 0.5.
The error term follows a Cauchy distribution.
Replicate 1000 times.
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Settings of Influential Points

Influential points in the predictors: Covariate xi follows a mixture of
d-dimensional normal distributions 0.8N(0,Ω1) + 0.2N(µ,Ω2),
Ω1 = Id×d, µ = 31d, 1d is d-dimensional vector of ones, and the
error term follows a standard normal distribution;
Influential points in the response: Covariate xi follows a
multi-normal distribution N(0,Ω2), and the error term follows a
mixture normal distribution 0.8N(0, 1) + 0.2N(10, 62);
Influential points in both the predictors and response: Covariate xi

follows a mixture of d-dimensional normal distributions
0.8N(0,Ω1) + 0.2N(µ,Ω2), and the error term follows a Cauchy
distribution.
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Competitive Methods

CQR-LASSO: the composite quantile regression (Zou and Yuan,
2008).
� We set the quantiles τk = k/10 for k = 1, 2, · · · , 9.

LAD-LASSO: least absolute deviation (Wang et al., 2007).
The oracle method based on MM-estimator.
Our method (ESL-LASSO).
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Performance Measures

The performance is compared by
the positive selection rate (PSR) – the proportion of selected
causal features related to all causal features (Chen and Chen,
2008);
the non-causal selection rate (NSR) – the average restricted only
to the true zero coefficients (Fan and Li, 2001);
and the median and median absolute deviation (MAD) of the
model error (Fan and Li, 2001).
the model error

ME =
(
β̂n − β0

)T
E
[
xxT] (β̂n − β0

)
.
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Result: Setting 1

Model error
n Method γ̄n ζ̄(γn) PSR NSR Median MAD

ESL-LASSO 3.965 0.260 0.982 0.999 0.076 0.040
CQR-LASSO −− −− 1.000 0.877 0.041 0.021

100 LAD-LASSO −− −− 1.000 0.581 0.057 0.030
Oracle −− −− 1.000 1.000 0.034 0.018

ESL-LASSO 4.450 0.309 1.000 1.000 0.027 0.013
CQR-LASSO −− −− 1.000 0.935 0.019 0.010

200 LAD-LASSO −− −− 1.000 0.539 0.028 0.012
Oracle −− −− 1.000 1.000 0.017 0.009

ESL-LASSO 4.500 0.331 1.000 1.000 0.012 0.006
CQR-LASSO −− −− 1.000 0.966 0.010 0.005

400 LAD-LASSO −− −− 1.000 0.498 0.0142 0.007
Oracle −− −− 1.000 1.000 0.009 0.005

ESL-LASSO 4.500 0.338 1.000 1.000 0.005 0.003
CQR-LASSO −− −− 1.000 0.988 0.005 0.002

800 LAD-LASSO −− −− 1.000 0.498 0.007 0.003
Oracle −− −− 1.000 1.000 0.004 0.002
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Result: Setting 2

Model error
n Method γ̄n ζ̄(γn) PSR NSR Median MAD

ESL-LASSO 4.315 0.454 0.939 1.000 0.352 0.231
CQR-LASSO −− −− 1.000 0.781 0.066 0.033

100 LAD-LASSO −− −− 1.000 0.738 0.113 0.061
Oracle −− −− 1.000 1.000 0.051 0.026

ESL-LASSO 4.449 0.633 1.000 1.000 0.080 0.039
CQR-LASSO −− −− 1.000 0.789 0.046 0.023

200 LAD-LASSO −− −− 1.000 0.712 0.050 0.026
Oracle −− −− 1.000 1.000 0.025 0.013

ESL-LASSO 4.496 0.638 1.000 1.000 0.027 0.012
CQR-LASSO −− −− 1.000 0.864 0.021 0.010

400 LAD-LASSO −− −− 1.000 0.686 0.023 0.011
Oracle −− −− 1.000 1.000 0.012 0.006

ESL-LASSO 4.499 0.642 1.000 1.000 0.009 0.005
CQR-LASSO −− −− 1.000 0.910 0.010 0.006

800 LAD-LASSO −− −− 1.000 0.633 0.011 0.005
Oracle −− −− 1.000 1.000 0.006 0.003
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Result: Setting 3

Model error
n Method γ̄n ζ̄(γn) PSR NSR Median MAD

ESL-LASSO 4.565 0.662 1.000 0.989 0.174 0.101
CQR-LASSO −− −− 1.000 0.675 0.173 0.097

100 LAD-LASSO −− −− 1.000 0.488 0.113 0.061
Oracle −− −− 1.000 1.000 0.098 0.050

ESL-LASSO 3.654 0.722 1.000 1.000 0.058 0.030
CQR-LASSO −− −− 1.000 0.778 0.068 0.031

200 LAD-LASSO −− −− 1.000 0.487 0.051 0.025
Oracle −− −− 1.000 1.000 0.049 0.023

ESL-LASSO 3.589 0.850 1.000 1.000 0.022 0.012
CQR-LASSO −− −− 1.000 0.856 0.031 0.016

400 LAD-LASSO −− −− 1.000 0.459 0.023 0.011
Oracle −− −− 1.000 1.000 0.023 0.011

ESL-LASSO 3.525 0.833 1.000 1.000 0.010 0.005
CQR-LASSO −− −− 1.000 0.912 0.015 0.008

800 LAD-LASSO −− −− 1.000 0.435 0.011 0.005
Oracle −− −− 1.000 1.000 0.012 0.006
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Observations

ESL-LASSO yields larger model error than LAD-LASSO and
CQR-LASSO when the sample size is small, because it involves
some consistent estimators in its selection procedure.
As the sample size increases, the medians and MADs of the
model error decrease in all three settings.
Although ESL-LASSO’s are always larger than CQR-LASSO’s,
they are smaller than LAD-LASSO’s if the sample size is at least
200 in the first setting.
ESL-LASSO’s are smaller than both LAD-LASSO’s and
CQR-LASSO’s if the sample size is large enough in Settings 2 and
3.
The PSR is around 1 for all three methods in all settings.
The NSR of the ESL-LASSO estimator is as close 1 while the
NSR of the LAD-LASSO and CQR-LASSO ranges from 0.431 to
0.738, and from 0.675 to 0.988, respectively.
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Boston Housing Price

The dataset was downloaded from
http://lib.stat.cmu.edu/datasets/boston (Harrison and
Rubinfeld, 1978; Belsley et al., 1980).
There are 506 observations in the dataset. The response variable is
medv (median value of owner-occupied homes in thousand dollars),
and there are 13 predictors.
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Boston Housing Price

The predictors: crim (per capita crime rate by town), zn (proportion of
residential land zoned for lots over 25,000 sq.ft), indus (proportion of
non-retail business acres per town), chas (Charles River dummy
variable: equal to 1 if tract bounds river; 0 otherwise), nox (nitrogen
oxides concentration: parts per 10 million), rm (average number of
rooms per dwelling), age (proportion of owner-occupied units built prior
to 1940), dis (weighted mean of distances to five Boston employment
centres), rad (index of accessibility to radial highways), tax (full-value
property-tax rate per ten thousand dollar), ptratio (pupil-teacher ratio
by town), black (1000(Bk − 0.63)2, where Bk is the proportion of blacks
by town), lstat (lower status of the population (percent)).

Heping Zhang (C2S2, Yale University) Beijing 48 / 58



Boston Housing Price

Method
Variable ESL-LASSO CQR-LASSO LAD-LASSO MM OLS

crim 0 0 0 -0.097 -0.101
zn 0 0 0 0.072 0.118

indus 0 0 0 -0.005 0.015
chas 0 0 0 0.038 0.074
nox 0 0 0 -0.097 -0.224
rm 0.590 0.422 0.503 0.491 0.291
age 0 0 0 -0.117 0.002
dis 0 -0.057 -0.013 -0.235 -0.338
rad 0 0 0 0.156 0.290
tax -0.105 -0.133 -0.058 -0.208 -0.226

ptratio -0.076 -0.153 -0.155 -0.179 -0.224
black 0 0.040 0.085 0.124 0.092
lstat -0.131 -0.334 -0.243 -0.174 -0.408
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Plasma Beta-carotene Level

The dataset was downloaded from
http://lib.stat.cmu.edu/datasets/Plasma_Retinol.
We only analyze the data from the 273 female patients.
To study the relationships between the plasma beta-carotene level
(betaplasma) and the following 10 covariates: age, smoking status
(smokstat), quetelet, vitamin use (vituse), number of calories
consumed per day (calories), grams of fat consumed per day (fat),
grams of fiber consumed per day (fiber), number of alcoholic drinks
consumed per week (alcohol), cholesterol consumed (cholesterol), and
dietary beta-carotene consumed (betadiet).
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Histograms of Betaplasma and Cholesterol

Histogram of plasma beta−carotene level
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Histograms of Betaplasma and Cholesterol

Method
Variable ESL-LASSO CQR-LASSO LAD-LASSO

age 0 0 0
smokstat 0 0 0
quetelet 0 -0.057 0
vituse 0 0 0

calories 0 0 0
fat 0 0 0

fiber 0.114 0.077 0.058
alcohol 0 0 0

cholesterol 0 0 0
betadiet 0 0 0.075
MAPE 0.559 0.503 0.568
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Bootstrap Results

Model Error
Dataset Method No. of non-zeros Median MAD

BHP ESL 3.710(0.830) 0.381(0.021) 0.180(0.069)
CQR 7.025(1.015) 0.286(0.016) 0.258(0.020)
LAD 5.020(0.839) 0.277(0.017) 0.113(0.075)

PBC ESL 0.305(0.462) 0.459(0.030) 0.180(0.054)
CQR 2.915(1.026) 0.453(0.032) 0.299(0.050)
LAD 2.570(1.020) 0.429(0.036) 0.176(0.161)
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Remarks

Proposed a robust variable selection procedure via a penalized
regression with the exponential squared loss.
Investigated the sampling properties and studied the robustness
properties of the proposed estimators.
Illustrated that our estimators possessed the highest finite sample
breakdown point, and the influence functions are bounded with
respect to outliers in either the response or the covariate domain.

Heping Zhang (C2S2, Yale University) Beijing 55 / 58



Remarks

How to select both γn and regularization parameters λnj in a
data-driven way is a difficult problem, since selection of γn

depends on the choice of λnj and an estimate of β.
Although the data-adaptive methods such as cross-validation can
be applied, it could cause huge computation and may not satisfy
condition (C2).
We chose regularization parameters λnj via a simple BIC criterion,
and then proposed a data-driven approach to selecting the tuning
parameter γn.
We demonstrated the advantages of our methodology via
simulation study and application.
Our simulation studies revealed that the performance of
ESL-LASSO is comparable to the oracle procedure irrespective of
the presence and the mechanisms of outliers.
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