Differential Brain Activity in Alcoholics and Social Drinkers to Alcohol Cues: Relationship to Craving

Hugh Myrick, MD

Center for Drug and Alcohol Programs Alcohol Research Center Medical University of South Carolina

### Background

- Functional imaging techniques have been increasingly used to evaluate craving
- Techniques include SPECT, PET, fMRI
- Considerable data with cocaine
- Few studies with alcohol

### **Standard Methodology**

### Subject is given a cue

- Pictures or video
- Handling paraphernalia
- Imagery
- Odor
- Sip or infusion
- Craving rated
- Images obtained

## Imaging and Craving for Alcohol

|                 | Technique | Cue              | Findings                                           |
|-----------------|-----------|------------------|----------------------------------------------------|
| Modell, 1995    | SPECT     | taste            | R Caudate                                          |
| George, 2001    | fMRI      | taste/<br>visual | L DLPC, Anterior<br>thalamus                       |
| Schneider, 2001 | fMRI      | odor             | R Amg/hippo area, Sup<br>Temp gyrus, cerebellum    |
| Braus, 2001     | fMRI      | visual           | Ventral putamen, basal ganglia                     |
| Wrase, 2002     | fMRI      | visual           | Ventral striatum, Ant Cing,<br>Orbitofrontal gyrus |
| Hommer, 1997    | PET       | mCPP             | Blunted OFC and PFC,<br>↑cerebellum and post cing  |

## Methods

- While in a Philips 1.5 T MRI scanner, 10 non-treatment seeking alcoholics and 10 age and gender matched social drinking controls were given a sip of their favorite alcoholic beverage
- Subjects were then shown a 13 minute randomized presentation of visual cues (alcohol, non-alcohol beverage, and two control conditions) while changes in regional brain activity were measured in 15 transverse T2\*- weighted BOLD slices
- After each block of cues, subjects were asked to rate their current urge to drink alcohol
- Post scanning, fMRI data and subjective craving results were compared between the alcohol and control groups

### **Stimulus Presentation**



# **1.5T Control Room**



## Examples of the various visual cues from Normative Appetitive Picture System (NAPS) Alcohol (A) Visual Control (C) Rest (R) Beverage (B) **Time Course of the Presentation of Stimuli During fMRI Sip of Preferred Beverage** A B C B A C B A C B B B C A B C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C</t A

Time (min)

\*Craving rated after each block

R

**Comparisons:** Alcohol - Beverage Alcohol - Vis Ctrl Vis Ctrl - Rest

Beverage - Vis Ctrl **Beverage - Rest** 

2 3 4 5 6 7 8 9 10 11 12 13

## **Demographics**

|                    | Alcohdics<br>(n=10) | Social Drinking<br>Controls (n=10) | Statistics     |
|--------------------|---------------------|------------------------------------|----------------|
| Age                | 33.60±11.51         | 33.10±1044                         | Nonsignificant |
| Education          | $15.15 \pm 1.73$    | 16.30±1.57                         | Nonsignificant |
| Gender (% Male)    | 80%                 | 80%                                | Nonsignificant |
| Race (% Caucasian) | 70%                 | 100%                               | Nonsignificant |

## **Alcohol Use Parameters**

|                         | Alcoholics<br>(n=10) | Social Drinking<br>Controls (n=10) | Statistics              |
|-------------------------|----------------------|------------------------------------|-------------------------|
| Drinks In Past<br>Month | 164.39 ± 99.54       | 11.93 ± 10.34                      | t = 4.82, df=18, p<0.01 |
| Drinks/Drinking<br>Day  | 8.17 ± 4.14          | 2.18 ± 1.34                        | t = 4.35, df=18, p<0.01 |
| Amount of<br>Craving    | $42.60 \pm 22.17$    | 8.30 ± 12.02                       | t = 4.30, df=18, p<0.01 |
| Frequency of<br>Craving | 35.90 ± 23.79        | 8.30 ± 12.02                       | t = 3.28, df=18, p<0.01 |
| OCDS *                  | $9.80 \pm 4.78$      | 2.6 ± 1.84                         | t = 4.77, df=18, p<0.01 |

\* Obsessive Compulsive Drinking Scale

## Within MRI Craving Ratings by Stimulus Condition



\* Craving was rated on an analog rating scale (Range = 0 - 100)

## Image Data Analysis

- Data were motion detected and corrected to <1mm using MEDx 3.3</li>
- Data were then temporally filtered, spatially normalized into Talairach space, and spatially smoothed
- Individual z maps were generated using a delayed boxcar model, temporal smoothing, and an uncorrected F threshold of 0.999
- A cluster analysis was performed using SPM96 in MEDx3.3 on the group data (1-tailed z-map threshold of p<.05 and spatial extent threshold of p<.05)</li>
- A priori the alcohol minus beverage brain activity was considered the most salient contrast.

## **Alcohol - Beverage Condition**



Alcoholics (n=10)

Controls (n=10)

Z=1.645 Ex .05

## **Alcohol - Beverage Condition**



#### Alcoholics (n=10)

#### Controls (n=10)

Z=1.645 Ex .05

# Correlation of Image Data with Real Time Craving Ratings



# Other Study Findings...

|                 | INSULA | CINGULATE | NAC | OFC |
|-----------------|--------|-----------|-----|-----|
| COCAINE         |        |           |     |     |
| Grant, 1996     |        | Х         |     | Х   |
| Breiter, 1997   | X      |           | Х   |     |
| Mass, 1998      |        | Х         |     |     |
| Childress, 1999 |        | Х         |     |     |
| Wang, 1999      | Х      |           |     | Х   |
| Garavan, 2000   |        | Х         |     |     |
| Kilts, 2001     |        | Х         | Х   |     |
| Wexler, 2001    | Х      |           |     |     |
| HEROIN          |        |           |     |     |
| Sell, 2000      | Х      |           |     | Х   |
| NICOTINE        |        |           |     |     |
| Brody, 2002     | Х      | Х         |     | Х   |

### Limitations

- Small sample size
- Exclusion of subjects due to head movement

 Unable to find between group differences in brain activity

## Conclusions

- Alcoholics, when exposed to alcohol cues, have increased brain activity in areas that have been reported to subserve craving for other substances of abuse.
- Furthermore, this study adds to a growing literature supporting the notion that craving for alcohol can be accomplished in the MRI environment

# Future Directions Philips 3T: Big Maggie

- Potential benefits of multichannel acquisition (SENSE)
  - Reduce spatial distortion
  - Faster image acquisition
  - Better Signal-to-noise



## Old T/R headcoil vs SENSE headcoil



## SENSE: best signal in 240 seconds



### Improvements

- Left: April 2003 (TR = 4s)
- Right: November 2003 (x2.3, TR = 1.8s)





## **3T Control Room**



# New Stimulus Presentation Hardware



### Acknowledgements

- Raymond F. Anton, Xingbao Li, Scott Henderson, David Drobes, Konstantin Voronin, Mark George
- NIAAA K Award 5 K23 AA00314
- Alcohol Research Center 2 P50 AA107
- Center for Advanced Imaging Research