Comparing RNA & Protein Abundance

M Gerstein & P Emani

- Past Context: to work in the Center
 - Quantifying the moderate statistical correlation between protein & RNA
 - o PARE server
- **EMpire** (Current result)
 - Leveraging the correlation to better assign peptides to isoforms
 - EM algorithm better assigns dominant isoforms, with greater interpretability

- uORFs (Current result)
 - Affect translation & relationship between protein & RNA
 - Feature integration to find small subset of uORFs that most alter translation
- Future Direction:
 Protein v RNA using matched samples in the Brainspan dataset + single-cell data

Why relate amounts of protein & mRNA?

Gene expression - major place for regulation (easy to measure)

VS.

Concentration of protein - major determinant of activity

Expectations from simple kinetic models:

$$\frac{dP_i}{dt} = k_{s,i} [mRNA_i] - k_{d,i} P_i$$
At steady state: $P_i = \frac{k_{s,i} [mRNA_i]}{k_{d,i}}$

where $k_{s,i}$ and $k_{d,i}$ are the protein synthesis and degradation rate constants

Outliers from trend interesting

Early result on mRNA vs Protein, using 2D gels

PARE

(Brown (Brown additional datasets	
[flows	
download PARE	
)	

[Yu et al., BMC Bioinfo. '07]

Open-source code Downloadable

Analyze all or GO subset

Log-log plot of correlation
-linear fit
-outliers labeled

Calculation of mutual information

- Past Context: to work in the Center
 - Quantifying the moderate statistical correlation between protein & RNA
 - o PARE server
- **EMpire** (Current result)
 - Leveraging the correlation to better assign peptides to isoforms
 - EM algorithm better assigns dominant isoforms, with greater interpretability

- uORFs (Current result)
 - Affect translation & relationship between protein & RNA
 - Feature integration to find small subset of uORFs that most alter translation
- Future Direction:
 Protein v RNA using matched samples in the Brainspan dataset + single-cell data

Integration of RNA-seq and Proteomic Data for Isoform Interpretation

 $\boldsymbol{\omega}$

Challenge for Isoform-Level Interpretation of Proteomics Data Multimapping

- Different assays reflecting expression at various levels
- More reads at earlier stage assay (RNA-Seq > FP > MS)
- Leverage other assays for better estimation

9

EMpire (Expectation Maximisation Propagation of Isoform abundance from RNA Expression)

EMpire (Expectation Maximisation Propagation of Isoform abundance from RNA Expression)

Larger principal isoform dominance = **Less** ambiguity in major isoform identification

soform fraction

Biologically informative priors improve isoform level interpretation of MS/MS peptides, by increasing dominance of principal isoform

- Past Context: to work in the Center
 - Quantifying the moderate statistical correlation between protein & RNA
 - o PARE server
- **EMpire** (Current result)
 - Leveraging the correlation to better assign peptides to isoforms
 - EM algorithm better assigns dominant isoforms, with greater interpretability

- uORFs (Current result)
 - Affect translation & relationship between protein & RNA
 - Feature integration to find small subset of uORFs that most alter translation
- Future Direction:
 Protein v RNA using matched samples in the Brainspan dataset + single-cell data

Upstream open reading frames (uORFs) may shift the expected balance between mRNA & protein

protein level change.

[McGillivray et al., NAR ('18)]

genome-wide uORFs N = 1.3 million

From a "Universe" of 1.3 M pot. uORFs

The population of functional uORFs may be significant

- Ribosome profiling experiments have low overlap in identified uORFs.
- This suggests high false-negative rate, and more functional uORFs than currently known.

Prediction & validation of functional uORFs using 89 features

- All near-cognate start codons predicted.
- Oross-validation on independent ribosome profiling datasets and validation using in vivo protein levels and ribosome occupancy in humans (Battle et al. 2014).

A comprehensive catalog of functional uORFs

Predicted functional uORFs may be intersected with disease associated variants.

[McGillivray et al., NAR ('18)]

180K: Large predicted positive set likely to affect translation
Calibration on gold standards, suggests getting ~70% of known

- Past Context: to work in the Center
 - Quantifying the moderate statistical correlation between protein & RNA
 - o PARE server
- **EMpire** (Current result)
 - Leveraging the correlation to better assign peptides to isoforms
 - EM algorithm better assigns dominant isoforms, with greater interpretability

- uORFs (Current result)
 - Affect translation & relationship between protein & RNA
 - Feature integration to find small subset of uORFs that most alter translation
- Future Direction:
 Protein v RNA using matched samples in the Brainspan dataset + single-cell data

Leveraging New Datasets

Schematic workflow

MicroRNA intervention

Sousa et al., Science 2017, 358, Pgs. 1027–1032.

- Past Context: to work in the Center
 - Quantifying the moderate statistical correlation between protein & RNA
 - o PARE server
- **EMpire** (Current result)
 - Leveraging the correlation to better assign peptides to isoforms
 - EM algorithm better assigns dominant isoforms, with greater interpretability

- uORFs (Current result)
 - Affect translation & relationship between protein & RNA
 - Feature integration to find small subset of uORFs that most alter translation
- Future Direction:
 Protein v RNA using matched samples in the Brainspan dataset + single-cell data

genecensus.org/expression/translatome

D Greenbaum, R Jansen, M Gerstein

Proteomics.gersteinlab.org (PARE)

E Yu, A Burba, M Gerstein

github.com/rkitchen/EMpire

B Carlyle, R Kitchen, J Zhang, R Wilson, T Lam, J Rozowsky,

K Williams, N Sestan, M Gerstein, A Nairn

github.gersteinlab.org/uORFs

P McGillivray, R Ault, M Pawashe, R Kitchen,

S Balasubramanian, M Gerstein

Brainspan data

P Emani, T Galeev, N Sestan, A Nairn