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Summary

As a technical supplement to Zhu and Zhang (2004), we give detailed information on how

to establish asymptotic theory for both maximum likelihood estimate and maximum modified

likelihood estimate in mixture regression models. Under specific and reasonable conditions,

we show that the optimal convergence rate of n−
1
4 for estimating the mixing distribution is

achievable for both the maximum likelihood and maximum modified likelihood estimates. We

also derive the asymptotic distributions of the two log-likelihood ratio testing statistics for

testing homogeneity.
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1 Notation and Assumptions

We consider a random sample of n independent observations {yi, Xi}n
1 with the following density

function

pi(yi,xi; ω) = [(1− α)fi(yi,xi; β, µ1) + αfi(yi,xi; β, µ2)]gi(xi), (1)

where gi(xi) is the distribution function of Xi, ω = (α, β, µ1, µ2) is the unknown parameter

vector, in which β (q1 × 1) measures the strength of association contributed by the covariate

terms and the two q2 × 1 vectors, µ1 and µ2, represent the different contributions from two

different groups. The log-likelihood function Ln(ω) is given by

Ln(ω) =
n∑

i=1

log[(1− α)fi(β, µ1)/fi∗ + αfi(β, µ2)/fi∗], (2)

where fi∗ = fi(yi,xi; β∗, µ∗) and fi(yi,xi; β, µ) = fi(β, µ1).

In light of the symmetry for α, without loss of generality, we only consider α ∈ [0, 0.5] only.

Define the parametric space Ω as

Ω = {ω : α ∈ [0, 0.5], β ∈ B, ||µ1|| ≤ M, ||µ2|| ≤ M}

= [0, 0.5]× B ×B(0, M)×B(0, M), (3)

where M is a large positive scalar such that ||µ∗|| < M , B(0, M) is a ball in Rq2 centered at 0

with radius M, and B is a subset of Rq1 .

One of the key hypotheses involving mixture models is whether the mixture regression is

warranted. In family studies, it means whether or not the trait of interest is familial. This

hypothesis can be stated as follows:

H0 : α∗(1− α∗)||µ1∗ − µ2∗|| = 0, v.s. H1 : α∗(1− α∗)||µ1∗ − µ2∗|| 6= 0, (4)

where || · || is the Euclidean norm of a vector.
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Let ∆ denote the incremental operator such as ∆β = β − β∗. Define

(∆β)T Fi,1(β, µ1) =
fi(β, µ1)− fi(β∗, µ1)

fi(β∗, µ∗)
and (∆µ1)

T Fi,2(µ1) =
fi(β∗, µ1)− fi(β∗, µ∗)

fi(β∗, µ∗)
.

When fi(β, µ1) has a continuous derivative with respect to β, Fi,1(β, µ1) is simply the first

derivative.

Our results also require higher order increments. To avoid unnecessarily complicated matrix

and tensor-product notations, we only define the higher order increments for a scalar µ1. The

notations can be defined by analogue for a vector µ1. Define

Fi,3(β, µ1)∆β = Fi,1(β, µ1)− Fi,1(β∗, µ1),

Fi,4(µ1)∆µ1 = Fi,1(β∗, µ1)− Fi,1(β∗, µ∗),

Fi,5(µ1)∆µ1 = Fi,4(µ1)− Fi,4(µ∗),

Fi,6(µ1)(∆µ1) = Fi,2(µ1)− Fi,2(µ∗),

Fi,7(µ1)∆µ1 = Fi,6(µ1)− Fi,6(µ∗).

If all fi(β, µ)’s have partial derivatives up to third order with respect to (β, µ), these functions

{Fi,k : k = 1, · · · , 7} are simple the corresponding partial derivatives.

Next, for any µ, we define the general form of wi(µ); however, it should be noted that Fi,6(µ)

is a symmetric matrix in this case. Let

wi(µ) = (Fi,1(β∗, µ∗)
T , Fi,2(µ∗)

T , dvecs[Fi,6(µ)]T )T ,

Wn(µ) =
1√
n

n∑
i=1

wi(µ), Jn(µ) =
1

n

n∑
i=1

wi(µ)wi(µ)T ,

where Wn(µ) is a r×1 vector and Jn(µ) is a r× r matrix, and for any symmetric q2× q2 matrix

B, we define

dvecs(B) = (b11, 2b21, b22, 2b31, 2b32, b33, · · · , 2bq21, · · · , 2bq2,q2−1, bq2q2)
T .
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Finally, let

k1(ω) = (1− α)(∆µ1) + α(∆µ2),

k2(ω) = Vecs[(1− α)(∆µ1)
⊗2 + α(∆µ2)

⊗2],

K(ω) = (∆β, k1(ω), k2(ω)),

in which a⊗2 = aaT , ∆µ1 = µ1 − µ∗, ∆µ2 = µ2 − µ∗, and

Vecs(B) = (b11, b21, b22, · · · , bq21, · · · , bq2q2)
T

for a generic symmetric q2 × q2 matrix B.

The following assumptions are sufficient conditions to derive our asymptotic results.

Assumptions:

(1.1) The sets n1/2(B − β∗)/bn can be locally approximated by a convex cone Λβ∗ , where

bn →∞ and bnn
−1/2 < ∞, and B − β∗ = {β − β∗ : β ∈ B}.

(1.2) (Identifiability) As n → ∞, supω∈Ω n−1|Ln(ω) − Ln(ω)| → 0 in probability, where

Ln(ω) = E{Ln(ω)}. For every δ > 0, we have

lim infn→∞n−1[Ln(ωn)− sup
ω∈Ω/Ω∗,δ

Ln(ω)] > 0,

where ωn is the maximizer of Ln(ω) and

Ω∗,δ = {ω : ||β − β∗|| ≤ δ, ||µ1 − µ∗|| ≤ δ, α||µ2 − µ∗|| ≤ δ} ∩ Ω

for every δ > 0.

(1.3) For a small δ0 > 0, let Bδ0 = {(β, µ) : ||β − β∗|| ≤ δ0 and ||µ|| ≤ M},

sup
(β,µ)∈Bδ0

{|| 1
n

n∑
i=1

Fi,1(β, µ)||+|| 1
n

n∑
i=1

Fi,3(β, µ)||+|| 1
n

n∑
i=1

Fi,2(µ)||+
6∑

k=4

||1
n

n∑
i=1

Fi,k(µ)||} = op(1),

sup
||µ||≤M

{|| 1√
n

n∑
i=1

Fi,k(µ)||} = Op(1), k = 4, 6, 7,
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sup
(β,µ)∈Bδ0

1

n

n∑
i=1

{||Fi,1(β, µ)||3 + ||Fi,3(β, µ)||3 + ||Fi,2(µ)||3 +
7∑

k=4

||Fi,k(µ)||3} = Op(1),

Moreover, max1≤i≤n sup(β,µ)∈Bδ0
{||Fi,1(β, µ)||+ ||Fi,2(µ)||2} = op(n

1/2).

(1.4) (Wn(·), Jn(·)) ⇒ (W (·), J(·)), where these processes are indexed by ||µ|| ≤ M , and

the stochastic process {(W (µ), J(µ)) : ||µ|| ≤ M} has bounded continuous sample paths

with probability one. Each J(µ) is a symmetric matrix and ∞ > sup||µ||≤M λmax[J(µ)] ≥

inf ||µ||≤M λmin[J(µ)] > 0 holds almost surely. The process W (µ) is a mean-vector Rr-valued

Gaussian stochastic process {W (µ) : ||µ|| ≤ M} such that E[W (µ)W (µ)T ] = J(µ) and

E[W (µ)W (µ′)T ] = J(µ, µ′) for any µ and µ′ in B(0, M).

Comments on (1.1): Assumption (1.1) is related to the following definition of Andrews

(1999), who generalized a definition of Chernoff (1954). Let’s introduce two geometrical con-

cepts: a convex cone and the distance between a point and a set. A set Λ ⊂ Rq1 is called a convex

cone if “λ ∈ Λ” implies “aλ ∈ Λ for all a > 0 and ”λ1, λ2 ∈ Λ” implies ”a1λ1 + (1 − a1)λ2”

for all a1 ∈ [0, 1]. The distance between a point z ∈ Rq1 and a set Λ ⊂ Rq1 is defined by

dist(z, Λ) = infλ∈Λ ||z − λ||. A sequence of sets {n1/2(B − β∗)/bn ⊂ Rq1 : n ≥ 1} are called

locally approximated by a cone Λβ∗ provided that

dist(kn(β), Λβ∗) = o(||kn(β)||) for any kn(β) ∈ n1/2(B − β∗)/bn such that ||kn(β)|| → 0,

and

dist(λn, n
1/2(B − β∗)/bn) = o(||λn||) for any λn ∈ Λβ∗ such that ||λn|| → 0.

Detailed discussions about this assumption can be found in Subsection 4.3 of Andrews (1999).

Comments on (1.2): Assumption (1.2) is a generalized definition of the identifiable unique-

ness; see Definition 3.1 of Pötscher and Prucha (1991). Assumption supω∈Ω n−1|Ln(ω) −

Ln(ω)| →p 0 is the uniform laws of large numbers (LLN). Some sufficient conditions for the

uniform LLN have been presented in the literature; see Andrews (1992) and Pollard (1990).
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Comments on (1.3): Assumption (1.3) generalizes Assumption (P0) of Dacunha-Castelle

and Gassiat (1999). The major difference lies in that Assumption (1.3) only requires that all

fi(β, µ)’s possess partial derivatives up to order 3. Especially, if {yi, Xi}n
1 are independent and

identical observations, a simple sufficient condition for Assumption (1.3) is that

sup
ω∈Ω

||∂2
ωfi(yi, Xi; ω)/fi∗(yi, Xi)|| ≤ m(yi, Xi) ,

∫
[m3(yi, Xi)fi∗(yi, Xi)gi(Xi)]dyidXi < +∞.

We prefer Assumption (1.3) since it is the minimum requirement to prove Theorem 1. The

existence and measurability of {Fi,k : k = 1, · · · , 7} and corresponding supreme functions might

be handled by imposing some measurable condition on all {Fi,k, fi(β, µ) : i = 1, · · · , n; k =

1, · · · , 7} and using results in Appendix C of Pollard (1984). Other conditions on {Fi,k : k =

1, · · · , 7} are quite reasonable. For instance, Theorem 1 of Andrews (1992) can be used to

validate that

sup
(β,µ)∈Bδ0

|| 1
n

n∑
i=1

Fi,3(β, µ)|| → 0 in probability.

Comments on (1.4): Assumption (1.4) is a direct generalization of Assumption (P1) of

Dacunha-Castelle and Gassiat (1999) and the strong identifiability conditions used in Chen

(1995) and Chen and Chen (2001). Some discussions of this assumption in some explicit

examples can be found in those papers. A sufficient condition for sup|µ|≤M ||Jn(µ)−J(µ)|| →p 0

is given by following:

sup
|µ|≤M

||Jn(µ)− EJn(µ)|| →p 0 and lim
n→∞

sup
|µ|≤M

||J(µ)− EJn(µ)|| = 0.

For example, we can use the uniform LLN results to prove sup|µ|≤M ||Jn(µ)−EJn(µ)|| →p 0. To

prove that Wn(µ) weakly converges to a Gaussian process W (µ), we need to use the functional

central limit theorem; see Pollard (1990).
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2 Maximum Likelihood Estimate and Log-likelihood Ra-

tio Statistic

In this section, we mainly present the asymptotic theory for the maximum likelihood estimate

under the model (1) and the log-likelihood ratio statistic for testing the hypothesis (4) if H0 is

true.

Consider the maximum likelihood estimate ω̂M = (α̂M , β̂M , µ̂1M , µ̂2M) = argmaxω∈ΩLn(ω).

The key idea of our approach is that we first establish a quadratic approximation for Ln(ω),

which is the cornerstone of the asymptotics; see Andrews (1999) and Zhu and Zhang (2002).

We will show that

2Ln(ω) = 2K(ω)Wn(µ2)−K(ω)T Jn(µ2)K(ω) + op(1) (5)

holds uniformly in {ω ∈ Ω : ||K(ω)|| ≤ C0/
√

n} for some constant C0. By using this approxi-

mation of Ln(ω), we have the following asymptotic result.

Theorem 1. Under Assumptions (1.1)-(1.4), the following results hold:

(i) K(ω̂M) = Op(n
−1/2).

(ii)

2Ln(ω̂M) = sup
||µ2||≤M

{
Wn(µ2)

T Jn(µ2)
−1Wn(µ2)− inf

ω∈Ωµ2

Qn(
√

nK(ω), µ2)

}
+ op(1)

→d sup
||µ2||≤M

V 0T (µ2)J(µ2)V
0(µ2), (6)

where Ωµ2 = {ω ∈ Ω : µ2 is fixed},

Qn(
√

nK(ω), µ2) = [
√

nK(ω)− Jn(µ2)
−1Wn(µ2)]

T Jn(µ2)[
√

nK(ω)− Jn(µ2)
−1Wn(µ2)],

and V 0(µ2) is defined in the proof of Theorem 1.

To our knowledge, Theorem 1 (i) provides the convergence rate of K(ω̂M) for the first time

under model (1). In the literature, the common effort is to derive the convergence rate for the
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estimate, ω̂M , itself. Our result has several implications. First, we confirm that the convergence

rate of β̂ (maximum likelihood estimate) is n−1/2 under the defined conditions. Van der Vaart

(1996) proved a similar result under semiparametric mixture models. Second, under H0, we

prove that only k1(ω̂M) and k2(ω̂M) can reach the rate of n−1/2, which is useful for determining

the asymptotic distributions of the estimates.

To illustrate the usefulness of Theorem 1, let us explain how Theorem 1(i) strengthens and

generalizes a theorem in Chen (1995). Consider the true mixing distribution G(µ) = I{µ ≥ µ∗}

in the case of q2 = 1. Using ω̂M , we construct ĜM(µ) = G(µ̂1M , µ̂2M , α̂M) = (1 − α̂M)I{µ ≥

µ̂1M} + α̂MI{µ ≥ µ̂2M}. Theorem 1 of Chen (1995) states that the optimal rate convergence

for estimating G(µ) by using ĜM(µ) in L1 norm is at most n−1/4. However, it does not imply

the exact rate for the L1 distance between ĜM(µ) and G(µ),
∫

µ
|ĜM(µ)−G(µ)|dµ. In contrast,

Theorem 1(i) can deduce that ĜM(µ) converges to G(µ) at the optimal rate under a broader

model than the one considered in Chen (1995). Specifically, we have

Corollary 1. Under assumptions of Theorem 1, we have∫
µ

|ĜM(µ)−G(µ)|dµ = Op(n
−1/4). (7)

Now, we are ready to consider the log-likelihood ratio statistic as follows:

LRn = sup
ω∈Ω

2Ln(ω)− sup
ω∈Ω0

2Ln(ω),

where Ω0 = {ω ∈ Ω : α = 0.5, µ1 = µ2}. It is noteworthy that even if we confine ω ∈ Ω0,

the equation (5) is still true in that k2(ω) = 0. Therefore, (5) is a unified equation, regardless

ω ∈ Ω0. Thus,

sup
ω∈Ω0

2Ln(ω) = Wn(µ∗)
T J−1

n (µ∗)Wn(µ∗)− inf
ω∈Ω0

Qn(
√

nK(ω), µ∗) + op(1).

To better understand the forgoing approximation, let us examine the case, in which β∗ is

an interior point of B. The standard asymptotic theory assures that supω∈Ω0
2Ln(ω) converges
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to χ2
q1+q2

in distribution and

sup
ω∈Ω0

2Ln(ω) = Wn(µ∗)
T H(HT Jn(µ∗)H)−1HT Wn(µ∗) + op(1),

where H = [Iq1+q2 ,0
T ]T is a (q1 + q2 + q2(q2− 1)/2)× (q1 + q2) matrix. Thus, the log-likelihood

ratio statistic

LRn = 2Ln(ω̂M)− sup
ω∈Ω0

2Ln(ω)

= sup
||µ2||≤M

V̂ (µ2)
T Jn(µ2)V̂ (µ2)−Wn(µ∗)

T H(HT Jn(µ∗)H)−1HT Wn(µ∗) + op(1),

where Qn(V̂ (µ2), µ∗) = infλ∈Λβ∗×Λµ2
Qn(λ, µ∗) and Λµ2 will be defined in the proof of Theorem

1.

To prove Theorem 1, we need the following two lemmas. Lemma 1 has been presented in

Zhu and Zhang (2002). We include the proof of Lemma 1 to be self-contained. Lemma 2 follows

easily from some traditional inequalities such as Cauchy-Schwarz inequality, and its detailed

proof is omitted.

Lemma 1. We assume that

(a.1) there is a continuous function of ω, K : Ω → K where K = {K(ω) : ω ∈ Ω}. Let

Ω∗ = {ω : K(ω) = 0} and 0 belongs to cl(K), the closed set of K. There is an estimate

ω̂ ∈ cl(K) such that Ln(ω̂) = Op(1) + supω∈Ω Ln(ω), supω∈Ω Ln(ω) ≥ 0 and K(ω̂) converges to

zero in probability.

(a.2) An inequality

Ln(ω) ≤
√

nK(ω)T W̃n(ω)− n

2
K(ω)T J̃n(ω)K(ω) + op(n||K(ω)||2 + 1) (8)

holds uniformly for the neighborhood NK
ω [op(1)] = {ω : K(ω) = op(1)}.

(a.3) supω∈NK
ω [op(1)] ||W̃n(ω)|| = Op(1).

(a.4) For a fixed Cl > 0, infω∈NK
ω [op(1)] λmin(J̃n(ω)) ≥ C2

l holds almost surely.
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Then, we have K(ω̂) = Op(n
−1/2).

Proof. Let Fn(ω) = K(ω)T W̃n(ω)/||K(ω)||. According to (a.1) and inequality in (a.2), the

following inequality

−Ln(ω)/n + op(n
−1) + ||K(ω)||Fn(ω)/

√
n ≥ 1

2
K(ω)T J̃n(ω)K(ω) + op(||K(ω)||2)

holds uniformly for all ω in the neighborhood NK
ω [op(1)]. Moreover, (a.4) implies that

K(ω)T J̃n(ω)K(ω) ≥ C2
l ||K(ω)||2

almost surely. Also, the op(||K(ω)||2) term can be bounded by C2
l ||K(ω)||2/4 as ω is in

NK
ω [op(1)]. Therefore, we obtain

−Ln(ω)/n + op(n
−1) ≥ C2

l ||K(ω)||2/4− Fn(ω)||K(ω)||/
√

n.

Substituting ω̂ into the above inequality and adding n−1Fn(ω̂)2/C2
l = Op(n

−1) to both sides,

we have

[Cl||K(ω̂)|| − 2√
n

Fn(ω̂)/Cl]
2 ≤ −4n−1Ln(ω̂) + 4n−1Fn(ω̂)2/C2

l + op(n
−1)

≤ Op(n
−1)− 4 sup

ω∈Ω
Ln(ω) + n−14Fn(ω̂)2/C2

l + op(n
−1) ≤ Op(n

−1) + n−14Fn(ω̂)2/C2
l + op(n

−1).

Condition (a.3) implies that the right-hand side of the above inequality is in the order of

Op(n
−1) + op(n

−1). Thus, K(ω̂) = Op(n
−1/2), since Fn(ω̂) = Op(1). This completes the proof

for Lemma 1.

Lemma 2. If Si = Fi + ei and ei =
∑m

j=1 eij, then

n∑
i=1

S3
i ≤ C1[

n∑
i=1

|Fi|3 +
n∑

i=1

m∑
j=1

|eij|3],

and
n∑

i=1

S2
i ≥ C2

n∑
i=1

F 2
i − C3

√√√√ n∑
i=1

F 2
i

n∑
i=1

m∑
j=1

e2
ij,
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where C1, C2 and C3 are some universal constants.

Proof of Theorem 1.

First, we deal with the consistency of the maximum likelihood estimate. To prove that

β̂M−β∗, µ̂1M−µ∗ and α̂M(µ̂2M−µ∗) converge to zero in probability, we need to use Assumption

(1.2) to show that for any δ > 0, d(ω̂M , Ω∗,δ) → 0 in probability, where d(x, A) is defined to

be infy∈cl(A) ||x− y||. Thus, K(ω̂M) = op(1). To see this, Assumption (1.2) implies that given

δ > 0, there exist ε0 > 0 and large N such that ω 6∈ Ω∗,δ implies that n−1[Ln(ωn)−Ln(ω)] ≥ ε0

for all n ≥ N . Thus,

P (ω̂M 6∈ Ω∗,δ) ≤ P (Ln(ωn)− Ln(ωn) + Ln(ωn)− Ln(ω̂M) + Ln(ω̂M)− Ln(ω̂M) ≥ nε0)

≤ P (Ln(ωn)− Ln(ωn) + Ln(ω̂M)− Ln(ω̂M) ≥ nε0) ≤ P (2 sup
ω∈Ω

n−1|Ln(ω)− Ln(ω)| ≥ ε0) →p 0.

From now on, we only consider the consistent estimates in NK
ω [op(1)].

Second, we start to consider the case such that |∆µ2| ≤ xn, where xn converges to zero in

probability as n tends to infinity. To ease the notation, we set q1 = q2 = 1 and will discuss the

general case later. Let

k1(ω) = (1− α)∆µ1 + α∆µ2 and k2(ω) = (1− α)(∆µ1)
2 + α(∆µ2)

2.

With above preparations, Si(ω) = pi(yi,xi; ω)/fi(yi,xi; β∗, µ∗)− 1 can be expressed as

Si(ω) = K(ω)T wi(ω∗) + ei,1(ω),

where K(ω) = (∆βT , k1(ω), k2(ω))T and

ei,1(ω) = (∆β)T Fi,4(µ∗)k1(ω) + (1− α)(∆β)Fi,5(µ1)(∆µ1)
2 + (1− α)(∆β)2Fi,3(β, µ1)+

α(∆β)[Fi,5(µ2)](∆µ2)
2 + α(∆β)2Fi,3(β, µ2) + (1− α)Fi,7(µ1)(∆µ1)

3 + αFi,7(µ2)(∆µ2)
3.

By using Assumption (1.3), it is easy to handle the negligible terms (∆β)T Fi,4(µ∗)k1(ω), (1 −

α)(∆β)T Fi,3(β, µ1)(∆β) and α(∆β)T Fi,3(β, µ2)(∆β).
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Let’s consider some negligible terms as follows:∣∣∣∣∣
n∑

i=1

[
(1− α)(∆µ1)

3Fi,7(µ1) + α(∆µ2)
3Fi,7(µ2)

]∣∣∣∣∣ ≤ n1/2[(1− α)|∆µ1|3 + α|∆µ2|3]Op(1)

≤ n1/2k2(ω)[op(1) + xn]Op(1),∣∣∣∣∣
n∑

i=1

{
(1− α)2(∆µ1)

6[Fi,7(µ1)]
2 + α2(∆µ2)

6[Fi,7(µ2)]
2
}∣∣∣∣∣ ≤ n[(1− α)2|∆µ1|6 + α2|∆µ2|6]Op(1)

≤ nk2
2(ω)[op(1) + x2

n]Op(1),

and |(∆β)
∑n

i=1[(1− α)Fi,5(µ1)(∆µ1)
2 + αFi,5(µ2)(∆µ2)

2]| ≤ n|∆β||k2(ω)|op(1).

It follows from Assumptions (1.3) and (1.4), the inequality log(1 + x) ≤ x − x2/2 + x3/3,

Lemma 2 and above discussions that

Ln(ω) =
n∑

i=1

log[1 + Si(ω)] ≤
√

nK(ω)Wn(µ∗)−
n

2
K(ω)T Jn(µ∗)K(ω)

+op(n||K(ω)||2[Constant + g1(xn)] + 1) + n1/2k2(ω)xnOp(1)

holds for all |∆µ2| ≤ xn and ω ∈ NK
ω [op(1)], where g1(xn) is a function of xn such that

limxn→0 g1(xn) = 0; see for example, g1(xn) has the term x2
nOp(1).

As above, let consider |∆µ2| > xn, then

Si(ω) = K(ω)T wi(µ2) + ei,2(ω),

where

ei,2(ω) = (1− α)(∆β)2Fi,3(β, µ1) + α(∆β)2Fi,3(β, µ2) + k1(ω)Fi,4(µ1)∆β

+α∆µ2(∆β)[Fi,4(µ1)− Fi,4(µ2)] + (1− α)[Fi,6(µ1)− Fi,6(µ2)](∆µ1)
2.

Similar to previous arguments, we only need to focus on two terms α∆µ2(∆β)[Fi,4(µ1)−Fi,4(µ2)]

and (1− α)[Fi,6(µ1)− Fi,6(µ2)](∆µ1)
2. It is easy to find the following relationships:

(∆µ1)
2 ≤ [|k1(ω)|+ |α∆µ2|]2 ≤ Op(1)[k2

1(ω) + k2
2(ω)x−2

n ],
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(∆µ1)
4 ≤ Op(1)[k

4
1(ω) + k4

2(ω)x−4
n ], (∆µ1)

6 ≤ Op(1)[k6
1(ω) + k6

2(ω)x−6
n ],

and

α|∆µ2∆β| ≤ k2(ω)|∆β|x−1
n ≤ [k2

2(ω)x−2
n + |∆β|2].

Similar to previous arguments, we can get

Ln(ω) ≤
√

nK(ω)Wn(µ2)−
n

2
K(ω)T Jn(µ2)K(ω)

+op(n||K(ω)||2[Const + g2(xn)] + 1) + n1/2k2(ω)2x−2
n Op(1),

for |∆µ2| > xn and ω ∈ NK
ω [op(1)], where g2(xn) is a function of xn such that limxn→0 g2(xn) = 0.

Therefore, we have

Ln(ω) ≤
√

nK(ω)[I{|∆µ2| > xn}Wn(µ2) + I{|∆µ2| ≤ xn}Wn(µ∗)]

− n

2
K(ω)T [I{|∆µ2| > xn}Jn(µ2) + I{|∆µ2| ≤ xn}Jn(µ∗)]K(ω)

+ op(n||K(ω)||2[Const + g1(xn) + g2(xn)] + 1) + n1/2k2(ω)[k2(ω)/x2
n + xn]Op(1).

If we minimize the function k2(ω)/x2
n + xn, it is easy to get xn = [2k2(ω)]1/3; therefore, we set

xn to be k2(ω)1/3. Therefore,

n1/2k2(ω)[k2(ω)/x2
n + xn]Op(1) ≤ n1/2k2(ω)k2(ω)1/3Op(1) = [1 + nk2

2(ω)]op(1).

Finally,

Ln(ω) ≤
√

nK(ω)[I{|∆µ2| > k2(ω)1/3}Wn(µ2) + I{|∆µ2| ≤ k2(ω)1/3}Wn(µ∗)]

− n

2
K(ω)T [I{|∆µ2| > k2(ω)1/3}Jn(µ2) + I{|∆µ2| ≤ k2(ω)1/3}Jn(µ∗)]K(ω)

+ op(n||K(ω)||2 + 1)

holds uniformly for all ω ∈ NK
ω [op(1)]. By using Assumption (1.4) and above preparations, we

can check all conditions in Lemma 1; therefore, K(ω̂M) = Op(n
−1/2).
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From now on, we only consider ω ∈ Ω∗,C0/
√

n = {ω ∈ Ω : ||K(ω)|| ≤ C0n
−1/2} for any

C0 > 0. Since

Si(ω) = (1−α)∆βFi,1(β, µ1)+α∆βFi,1(β, µ2)+ (1−α)∆µ1[Fi,2(µ1)−Fi,2(µ2)]+k1(ω)Fi,2(µ2),

we get

max
1≤i≤n

sup
ω∈Ω∗,C0/

√
n

|Si(ω)| ≤ Op(1)√
n

sup
ω∈Bδ0

{|Fi,1(β, µ)|}+ n−1/4Op(1) sup
|µ2|≤M

{|Fi,2(µ2)|} = op(1).

Therefore, Ln(ω) =
∑n

i=1 Si(ω)−0.5
∑n

i=1 S2
i (ω)[1+op(1)] holds uniformly for all ω ∈ Ω∗,C0/

√
n.

Moreover, for ω ∈ Ω∗,C0/
√

n, |
∑n

i=1 ei,2(ω)| = op(1). Finally, we can show that

Ln(ω) =
√

nK(ω)Wn(µ2)−
n

2
K(ω)T Jn(µ2)K(ω) + op(1) (9)

holds uniformly over ω ∈ Ω∗,C0/
√

n.

Until now, we focus on the case where q1 = q2 = 1. It is easy to extend q1 from 1 to any

positive integers; in contrast, it is little tedious to increase the value of q2, because we have to

introduce many new notations. However, all previous arguments still work for general (q1, q2).

For fixed µ2 with ||µ2 − µ∗|| 6= 0, we can show that

Kµ2 = {K(ω) : ω ∈ Ω and µ2 is fixed}

can be locally approximated at ω(µ2)∗ = (λ∗, µ2) = (0, β∗, µ∗, µ2) by the convex cone Λβ × Λµ2

(see Subsection 4.1 in Andrews (1999)), where

Λµ2 = {η : η =

 ∆µ2 Iq2

Vecs(∆µ⊗2
2 ) 0




x1

...

xq2+1

 ,x = (x1, · · · , xq2+1) ∈ [0,∞)×Rq2}.

The reason is that for fixed µ2, we only need to consider λ = (α, β, µ1) in the compact set

[0, 0.5] × B × B(0, M). Moreover, for fixed µ2, K(λ, µ2) = 0 implies that β = β∗, α = 0 and
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µ1 = µ∗ and

K(λ, µ2)−K(λ∗, µ2) =


Iq1 0 0

0 ∆µ2 Iq2

0 Vecs(∆µ⊗2
2 ) 0




β − β∗

α

µ1 − µ∗

+ o(||λ− λ∗||).

Now similar to arguments in Lemma 1 of Andrews (1999) or Theorem 4 of Zhu and Zhang

(2002), we can show that

inf
K∈

√
nKµ2

Qn(K, µ2) = inf
λ∈Λβ∗×Λµ2

Qn(λ, µ2) + op(1)

and

2 sup
ω∈Ωµ2

Ln(ω) = V̂ (µ2)
T Jn(µ2)V̂ (µ2) + op(1)

where V̂ (µ2) is defined to be the unique minimizer of Qn(λ, µ2) over Λβ∗×Λµ2 for fixed µ2 with

||µ2 − µ∗|| 6= 0.

Now, we focus on the case such that ||µ2 − µ∗|| = 0. Since α can take any value in [0, 0.5],

we can temporarily fix α. By using similar arguments above, we can show that

Kα,µ∗ = {K(ω) : ω ∈ Ω and α is fixed and µ2 = µ∗}

can be locally approximated at ω(α)∗ = (α, β∗, µ∗, µ∗) by the convex cone Λβ∗×Rq2×0q2 , which

is independent of α. Therefore,

inf
K∈

√
nKµ∗

Qn(K, µ∗) = inf
λ∈Λβ∗×Rq2×0q2

Qn(λ, µ∗) + op(1)

and

2 sup
ω∈Ωµ∗

Ln(ω) = V̂ (µ∗)
T Jn(µ∗)V̂ (µ∗) + op(1)

where V̂ (µ∗) is defined to be the unique minimizer of Qn(λ, µ∗) over Λβ∗×Rq2×0q2 . Moreover,

we can find that limµ2→µ∗ V̂ (µ2) = V̂ (µ∗).
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Define

Q(V 0(µ2), µ2) = inf
λ∈Λβ∗×Λµ2

Q(λ, µ2), (10)

where Q(λ, µ2) = [λ−J(µ2)
−1W (µ2)]

T J(µ2)[λ−J(µ2)
−1W (µ2)]. By using continuous mapping

theorem, we can show that

2 sup
ω∈Ω

Ln(ω) →d sup
||µ2||≤M

[V 0(µ2)]
T J(µ2)V

0(µ2).

Proof of Corollary 1. Due to the symmetry for µ1 and µ2, without loss of generality, we

assume that µ̂1M ≤ µ̂2M . Moreover, we have to distinguish two different cases: A = {µ̂1M ≤

µ∗ ≤ µ̂2M} and the complement of A, denoted by A. It is easy to see that∫
µ

|ĜM(µ)−G(µ)|dµ = I{A}‖α̂M∆µ̂2M − (1− α̂M)∆µ̂1M |+ I{A}|k1(ω̂M)|.

According to the definitions of k1(ω) and k2(ω), we can show that

α∆µ2 − (1− α)∆µ1 = (1− 2α)k1(ω) + 2
√

α(1− α)[k2(ω)− k1(ω)2].

Since k1(ω̂M) = Op(n
−1/2) and k2(ω̂M) = Op(n

−1/2), we know that α̂M∆µ̂2M − (1− α̂M)∆µ̂1M

at least has the same convergence rate as Op(
√

α̂Mk2(ω̂M)) =
√

α̂MOp(n
−1/4). Therefore, the

convergence rate of
∫

µ
|ĜM(µ)−G(µ)|dµ is at least as small as

√
α̂MOp(n

−1/4). By using Chen’s

(1995) Theorem 1, we know that
∫

µ
|ĜM(µ)−G(µ)|dµ is exactly Op(n

−1/4).

3 Maximum Modified Likelihood Estimate and Modified

Log-likelihood Ratio Statistic

As in Chen et al (2001), we consider an alternative approach by using a modified likelihood

function

MLn(ω) = Ln(ω) + log(M) log{4α(1− α)}, (11)
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where M is as defined before. Let ω̂P be the resulting estimate as ω̂P = argmaxω∈ΩMLn(ω).

Knowing Ln(ω̂M) = Op(1) from Theorem 1, we have

0 ≤ MLn(ω̂P ) ≤ Ln(ω̂M) = Op(1)

and

0 ≤ − log(M) log[4α̂P (1− α̂P )] ≤ Ln(ω̂P ) ≤ Ln(ω̂M) = Op(1).

Thus, α̂P (1 − α̂P ) = Op(1). In addition, using a similar proof of Theorem 1, we can prove

K(ω̂P ) = Op(n
−1/2).

Theorem 2. Under the assumptions of Theorem 1, we have the following results:

(i) α̂P = Op(1), ∆β̂P = Op(n
−1/2), ∆µ̂1P = Op(n

−1/4), ∆µ̂2P = Op(n
−1/4).

(ii) The modified log-likelihood 2MLn(ω̂P ) is asymptotically equivalent to

Wn(µ∗)
T Jn(µ∗)

−1Wn(µ∗)− inf
ω∈Ω

{
Qn(

√
nK(ω), µ∗)− 2 log(M) log[4α(1− α)]

}
,

which converges to infλ∈Λβ∗×Λ0 Q(λ, µ∗) in distribution, where Λ0 and Q(λ, µ∗) will be defined

in the proof of Theorem 2.

(iii) Furthermore, if q2 = 1,
∫

µ
|ĜP (µ)−G(µ)|dµ = Op(n

−1/4), where ĜP (µ) = (1−α̂P )I{µ ≥

µ̂1P}+ α̂P I{µ ≥ µ̂2P}.

Theorem 2 (i) gives the exact convergence rate of ω̂P . Theorem 2 (ii) determines the

asymptotic distribution of 2MLn(ω̂P ). While the explicit form of this distribution is still com-

plicated in general, this corollary leads to a neat asymptotic distribution, 0.5χ2
q1+2 + 0.5χ2

q1+1,

for 2MLn(ω̂P ) when q2 = 1 and β∗ is an interior point of B. This coincides with Theorem 1

of Chen et al (2001) when there are no covariates, that is, q1 = 0. Theorem 2 (iii) shows that

the n−1/4-consistent rate for estimating the mixing distribution G(µ) is reachable by using ω̂P .

Furthermore, to test the hypothesis (4), the modified log-likelihood ratio statistic is defined as

MLRn = 2MLn(ω̂P )− sup
ω∈Ω0

2MLn(ω). (12)
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Similar to the log-likelihood ratio statistic, we find that when β∗ is an interior point of B,

MLRn = inf
λ∈Rq1×Λ0

Qn(λ, µ∗)−Wn(µ∗)
T H(HT Jn(µ∗)H)−1HT Wn(µ∗) + op(1). (13)

Proof of Theorem 2. Similar to Theorem 1,

2MLn(ω) ≤
√

nK(ω)Wn(µ2)−
n

2
K(ω)T Jn(µ2)K(ω) + op(n||K(ω)||2 + 1)

holds uniformly for all ω ∈ NK
ω [op(1)]. Thus, K(ω̂P ) = Op(n

−1/2). Furthermore, we can show

that

MLn(ω) =
√

nK(ω)Wn(µ∗)−
n

2
K(ω)T Jn(µ∗)K(ω) + log(M) log[4α(1− α)] + op(1)

holds uniformly over ω ∈ Ω∗,C0/
√

n and

2MLn(ω̂P ) = Wn(µ∗)
T Jn(µ∗)

−1Wn(µ∗)− inf
ω∈Ω

{
Qn(

√
nK(ω), µ∗)− 2 log(M) log[4α(1− α)]

}
= Wn(µ∗)

T Jn(µ∗)
−1Wn(µ∗)− inf

α∈[0,0.5]

{
inf

ω∈Ωα

Qn(
√

nK(ω), µ∗)− 2 log(M) log[4α(1− α)]

}
.

Let Ωα = {ω ∈ Ω : α is fixed}. It follows from the definition of K(ω) that Kα = {K(ω) :

ω ∈ Ωα} can be locally approximated by Λβ∗ × Λα, where Λα is a closed cone defined by

Λα = {η : η = (xT , Vecs(y⊗2))T , both x and y ∈ Rq2}.

Using the same arguments in Lemma 1 of Andrews (1999), we can show that

inf
ω∈Ωα

Qn(
√

nK̃(ω), µ∗) = inf
λ∈Λβ∗×Λα

Qn(λ, µ∗) + op(1),

holds uniformly for all α ∈ [α0, 0.5], where α0 is any positive scalar. Moreover, because α̂P =

Op(1), Λα is independent of α and 4α(1− α) is maximized at α = 0.5, we can deduce that

2ML(ω̂P ) = inf
λ∈Λβ∗×Λα

Qn(λ, µ∗)− 2 log(M) sup
α∈[0,0.5]

log[4α(1− α)] + op(1)

= inf
λ∈Λβ∗×Λα

Qn(λ, µ∗) + op(1).

Therefore, 2ML(ω̂P ) converges to infλ∈Λβ∗×Λα Q(λ, µ∗) in distribution.
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4 Asymptotic Local Power

Theoretically, many authors are interested in the asymptotic local power of the testing statistics,

because power considerations may guide the choice of sample size and compare alternative

tests of significance (Cox and Hinkley, 1975, p.103). It becomes apparent from the quadratic

approximations that the distribution of J−1
n (µ2)Wn(µ2) plays a critical role in determining the

asymptotic local power of LRn and MLRn. Therefore, it is worthwhile to explore its property

under a sequence of local alternatives. Consider a sequence of local alternatives ωn consisting

of

αn = α0, βn = β∗ + n−1/2h1,

µn
1 = µ∗ − n−1/4{α0/(1− α0)}0.5h2,

µn
2 = µ∗ + n−1/4{(1− α0)/α0}0.5h2,

where α0 is a constant between 0 and 1, and h1 and h2 are q1×1 and q2×1 vectors, respectively.

At ωn, K(ωn) = n−1/2h, where hT = (hT
1 ,0T , Vecs(h⊗2

2 )T ).

Theorem 3. Under assumptions (1.1)-(1.4) and the alternatives ωn, Jn(µ2)
−1Wn(µ2) →d

N(J(µ2)
−1J(µ2, µ∗)h, J(µ2)

−1).

Proof of Theorem 3. Under the local alternative ωn, we find that ∆βn = n−1/2h1, k1(ω
n) =

0 and k2(ω
n) = n−1/2Vecs(h⊗2

2 ). Similar to Theorem 1, we have

Ln(ωn) = hT Wn(µ∗)−
1

2
hT Jn(µ∗)h + op(1).

Therefore, under H0, we can show that (J−1
n (µ2)Wn(µ2), Ln(ωn)) converges to normal distribu-

tion with mean (0T ,−0.5σ22)
T and covariance matrix J−1(µ2) J(µ2)

−1J(µ2, µ∗)h

hT J(µ∗, µ2)J(µ2)
−1 σ22
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where σ22 = hT J(µ∗)h. The completed proof follows from LeCam’s third lemma (van der Vaart,

1998, p.90).

5 Two Theoretical Examples

To demonstrate the usefulness of our general theory, we examine two examples and apply our

theory.

Example 1. For the purpose of illustration, let us consider a simplified logistic mixture

regression model as follow

logit(P{Yij = 1|Ui}) = xT
ijβ + [Uiµ1 + (1− Ui)µ2], (14)

where µ1 and µ2 are scalars.

Furthermore, Theorem 1 is also applicable to another interesting case in which xij = zij.

Namely,

logit(P{Yij = 1|Ui}) = zT
ij[β + Uiµ1 + (1− Ui)µ2].

Specifically, ωi(µ) is given by

ωi(µ) =

 ∑ni

j=1 eij(µ∗)zij

Vecs{(
∑ni

j=1 eij(µ)zij)
⊗2 −

∑ni

j=1(zij)
⊗2pij(µ)[1− pij(µ)]}

 ,

in which eij(µ) = yij − pij(µ) and pij(µ) = exp(zT
ijµ)/[1 + exp(zT

ijµ)].

Let’s show that Theorem 1 holds for this important case by using the following assumptions.

(2.1) The same as (1.1).

(2.2) For all i = 1, · · · , n and j = 1, · · · , ni, |ni| ≤ N0 < ∞ and ||xi
j|| ≤ N0, where N0 is a

large scalar.

(2.3) For every δ > 0, supω∈Ω/Ω∗,δ
n−1E[Ln(ω)] < 0, where

E[Ln(ω)] =
n∑

i=1

∫
log[pi(yi,xi, ω)/f∗i ]f ∗i (yi,xi)gi(xi)dyidxi,
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which means that E[Ln(ω)] is the average of the Kullback-Leibler distance to the true model

from all families. (2.3) implies that we only need a proportion of families based on which the

model is identifiable around the true model. Sometimes, the techniques used by Cheng and Liu

(2001) can be used here to justify this assumption.

(2.4) There exists a J(µ) such that sup|µ|≤M ||EJn(µ) − J(µ)|| → 0 in probability and

∞ > sup|µ|≤M λmax[J(µ)] ≥ inf |µ|≤M λmin[J(µ)] > 0 holds almost surely. To prove the positivity

of J(µ), the characteristic function technique used in Section 4 of Chen (1995) can be used to

validate this assumption under the independent and identical framework.

Check Assumptions (1.1)-(1.4): We need to check all assumptions (1.1)-(1.4). Starting from

(1.2), we need to show that supω∈Ω n−1||Ln(ω)−ELn(ω)|| converges to zero in probability. First,

we can show that for each ω ∈ Ω, Var{n−1[Ln(ω) − ELn(ω)]} converges to zero as n → ∞;

that is, n−1|Ln(ω) − ELn(ω)| = op(1) for each ω ∈ Ω. Secondly, n−1{Ln(ω) − ELn(ω)} is

stochastically equicontinuous on Ω, since n−1|Ln(ω)−ELn(ω)−Ln(ω′) + ELn(ω′)| ≤ Const×

||ω − ω′||. Combining above arguments, we can deduce that supω∈Ω n−1||Ln(ω) − ELn(ω)||

converges to zero in probability; see Theorem 1 of Andrews (1992). By using Jensen inequality,

we know that for all ω corresponding to P∗, ELn(ω) reaches the maxima zero. Thus (1.2)

follows from (2.2) and (2.3).

All functions in Assumptions (1.3) are bounded; therefore,

sup
(β,µ)∈Bδ0

1

n

n∑
i=1

{||Fi,1(β, µ)||3 + ||Fi,3(β, µ)||3 + ||Fi,2(µ)||3 +
7∑

k=4

||Fi,k(µ)||3} ≤ constant = Op(1).

By using Theorem 1 of Andrews (1992), we know

sup
(β,µ)∈Bδ0

{|| 1
n

n∑
i=1

Fi,1(β, µ)||+|| 1
n

n∑
i=1

Fi,3(β, µ)||+||1
n

n∑
i=1

Fi,2(µ)||+
6∑

k=4

|| 1
n

n∑
i=1

Fi,k(µ)||} = op(1).

Let Qn(µ) =
∑n

i=1 Fi,7(µ)/
√

n. Since Var[Qn(µ)] =
∑n

i=1 Var[Fi,7(µ)]/n < ∞ and E[Qn(µ) −

Qn(µ′)]2 ≤ Const× (µ−µ′)2, sup(β,µ)∈Bδ0
||
∑n

i=1 Fi,7(µ)/
√

n|| = Op(1). Similarly, we can check

all conditions in (1.3).
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To check (1.4), we first prove that sup|µ|≤M ||Jn(µ)−EJn(µ)|| converges to zero in probability

by using Theorem 1 of Andrews (1992). Second, using (2.4), we can show that for each µ ∈

[−M, M ], Wn(µ) =
∑n

i=1 wi(µ)/
√

n converges to N [0, J(µ)] in distribution. Moreover, since

E[Wn(µ)−Wn(µ′)]2 ≤ const× (µ−µ′)2, we invoke the weak convergence theorem on the space

C[−M, M ] with uniform metric to prove that Wn(µ) converges to a Gaussian process indexed

by µ ∈ [−M, M ]; see Pollard (1990).

In this example, we put several simple conditions to validate the high-level assumptions

(1.1)-(1.4). The soundness of these new conditions is another important issue. Let’s focus on

the most difficult assumption (2.4) under the model (14). We are going to demonstrate that

assumption (2.4) is quite reasonable in this case. First, we can show that

ωi(µ) =

(
ni∑

j=1

eijxij,

ni∑
j=1

eij, [

ni∑
j=1

eij(µ)]⊗2 −
ni∑

j=1

pij(µ)[1− pij(µ)]

)
.

Second, since Jn(µ) =
∑n

i=1 E[ωi(µ)⊗2], we need to focus on all E[ωi(µ)⊗2]s. If we can show that

E[ωi(µ)⊗2] is positive for each i, the positivity of Jn(µ) will be reasonable. Especially, under

the i.i.d framework, Jn(µ) = E[ω1(µ)⊗2]; therefore, assumption (2.4) is obvious. In general

situation, if Jn(µ) is positive, the assumption that Jn(µ) converges to J(µ) is quite natural in

the literature.

A sufficient condition for the positivity of E[ωi(µ)⊗2] is that Var[ωi(µ)⊗2] is positive definite.

Further, for simplicity, we set ni = 1 and get rid of subscript j. By using direct arithmatic, we

know that

Var[ωi(µ)⊗2] = Exi

{
Ai(µ)E[bi(xi)

⊗2|xi]Ai(µ)T
}

(15)

where Ai(µ) and bi(xi) are given by

Ai(µ) =


Iq1 0 0

0 1 0

0 2[pi(µ∗)− pi(µ)] 1

 , bi(xi) =


eixi

ei

e2
i − pi(µ∗)[1− pi(µ∗)]

 .
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If Var[(xT
i , 1)] is positive definite, then both E[bi(xi)

⊗2] and Var[ωi(µ)⊗2] are positive definite

by noting the fact (15).

Example 2. Let’s consider a simple case as follows:

yij = zT
ij[β + Uiµ1 + (1− Ui)µ2] + εij.

In this case,

ωi(µ) = 0.5σ−4


2σ2

∑ni

j=1 eij(µ∗)zij∑ni

j=1 [eij(µ∗)]
2 − niσ

2
∗

2Vecs{(
∑ni

j=1 eij(µ)zij)
⊗2 − σ2

∗
∑ni

j=1(zij)
⊗2]}

 ,

where eij(µ) = yij−µ. When ni = n0, µ∗ = 0, σ∗ = 1, and zij = 1, we find that Jn(ξ) converges

to

0.25σ−8


4σ4n0 4σ2n0∆µ 8σ2n2

0∆µ

2n0 + 4n0(∆µ)2 4n0 + 8n2
0(∆µ)2

8n2
0 + 16n3

0(∆µ)2


almost surely. It can be seen that above matrix is positive definite if and only if n0 > 1, which

actually checks Assumption (1.4). Similar to assumptions (2.1)-(2.4), we can develop some

assumptions of this linear mixture regression model for n0 > 1 such that Theorems 1-3 hold.

However, Theorem 1 is not applicable when n0 = 1, although this special case can be accom-

modated by modifying the recent results in Chen and Chen (2003). Surprisingly, an interesting

observation is that the asymptotic distribution depends on the number of observations in each

cluster.
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