Central Nervous System Oxygen Toxicity and Hyperbaric Oxygen Seizures

Edward P. Manning

The use of hyperbaric oxygen (O₂) as a therapeutic agent carries with it the risk of central nervous system (CNS) O₂ toxicity. INTRODUCTION: To further the understanding of this risk and the nature of its molecular mechanism, a review was conducted on the **METHODS:** literature from various fields. Numerous physiological changes are produced by increased partial pressures of oxygen (Po₂), which may ultimately RESULTS: result in CNS O₂ toxicity. The human body has several equilibrated safeguards that minimize effects of reactive species on neural networks, believed to play a primary role in CNS O₂ toxicity. Increased partial pressure of oxygen (Po₂) appears to saturate protective enzymes and unfavorably shift protective reactions in the direction of neural network overstimulation. Certain regions of the CNS appear more susceptible than others to these effects. Failure to decrease the elevated Po2 can result in a tonic-clonic seizure and death. Randomized, controlled studies in human populations would require a multicenter trial over a long period of time with numerous endpoints used to identify O₂ toxicity. **CONCLUSIONS:** The mounting scientific evidence and apparent increase in the number of hyperbaric O₂ treatments demonstrate a need for further study in the near future.

KEYWORDS: hyperbaric oxygen seizures, hyperbaric oxygen therapy, CNS oxygen toxicity.

Manning EP. Central nervous system oxygen toxicity and hyperbaric oxygen seizures. Aerosp Med Hum Perform. 2016; 87(5):477–486.

Delivered by Ingenta to: Yale University

odern therapeutic use of hyperbaric oxygen (HBO₂) in clinical medicine began in the 1950s.^{64,83} Boerema, a Dutch surgeon, in conjunction with the Royal Dutch Navy, was the first physician to "drench" the tissue of a patient with increased partial pressure of oxygen (Po₂) with the use of a hyperbaric chamber.¹⁶ Through his work and subsequent experiments, HBO2 has been shown to have positive effects in treating wounds,^{67,104} and as a treatment for carbon monoxide (CO) toxicity.85,89 In 1977, Blue Cross/Blue Shield accepted a report from the Undersea Medical Society (now Undersea and Hyperbaric Medical Society) on hyperbaric oxygenation, which resulted in a list of disorders for which hyperbaric treatment should be considered. Many of today's indications for hyperbaric oxygen therapy (HBO₂T) stem from this list. Current indications for HBO2T covered by Medicare are shown in to Table I.79,84,94 More research is needed to conclude for which indications HBO₂T is most beneficial and to what extent.32

 HBO_2T is a therapeutic modality that exposes the body to 100% inspired oxygen (O₂) at ambient pressures greater than one atmosphere.^{79,107} Therapeutic administration of

supplemental O₂ generally refers to increasing the fractional inspired O₂ (F_1O_2). Without the use of a hyperbaric chamber, F_1O_2 equals the partial pressure of inspired O₂ (P_1O_2). This limits the range of P_1O_2 from 0.21 ATA [$F_1O_2 = 21\%$ at one atmosphere of absolute pressure (ATA)] to 1.0 ATA ($F_1O_2 = 100\%$ at 1 ATA); 1 ATA equals one atmosphere of pressure at sea level. Hyperbaric chambers increase ambient pressure, allowing the P_1O_2 to exceed 1 ATA. The majority of clinical uses for HBO₂T derive their benefit from the increased PO₂ that HBO₂T provides.¹⁷ The increased PO₂ delivered throughout the body causes reactive oxidative species (ROS) that promote wound healing and postischemic tissue survival.¹⁰⁵ Hydrostatic effects of HBO₂T that affect bubble size are beneficial for illnesses

From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.

This manuscript was received for review in August 2015. It was accepted for publication in January 2016.

Address correspondence to: Edward P. Manning, M.D., Ph.D., Department of Medicine, Hospital of the University of Pennsylvania, 100 Centrex, 3400 Spruce St., Philadelphia, PA 19104; edward.manning@uphs.upenn.edu.

Reprint & Copyright © by the Aerospace Medical Association, Alexandria, VA. DOI: 10.3357/AMHP.4463.2016

Table I.	Examples	of Therapeut	ic Uses of HBO ₂ .
Table I.	LAUTIPICS	or merapeut	IC 03C3 0I I IDO

ELECTIVE INDICATIONS	EMERGENT INDICATIONS
Radiation injury*	Carbon monoxide poisoning
Compromised skin grafts	Decompression illness
Chronic nonhealing wounds [#]	Gas gangrene
Refractory osteomyelitis	Arterial gas embolism
Inhibition of clostridium perfringens	lschemia-reperfusion injury
Suppression of autoimmune responses	Hemorrhagic anemia
Tissue salvage in burn victims	
Nerve cell regeneration	
Preparation and preservation of skin grafts	

*"Radiation injury" includes soft tissue radionecrosis, osteoradionecrosis, and hemorrhagic radiation cystitis.

Particularly diabetic ulcers

such as decompression sickness.⁸³ HBO₂T has been gaining increased attention in the popular press^{87,113} and among scientific researchers.⁷⁰

The toxic nature of O_2 is often underappreciated. There are side effects of the hydrostatic and oxidative changes that HBO₂T creates, including HBO₂ seizures.^{18,92} Determining mechanisms of HBO₂ toxicity and its ability to cause seizures has been an effort of researchers in the hopes of maximizing the potential benefits of HBO₂T while minimizing its risks.

Both patients and hyperbaric medical attendants are routinely exposed to the hyperbaric environment (although attendants do not routinely breathe HBO₂) and are therefore exposed to an increased risk of O_2 toxicity. There are special populations outside of medicine who are also routinely exposed to HBO₂, including military, commercial and recreational divers, and subterranean workers.^{37,49,118} The risk of O₂ toxicity is increased when the ratio of O₂ to inert gas is raised in the hopes of minimizing deleterious gas effects. Combat divers use pure O₂ via a rebreather apparatus for clandestine purposes (to avoid bubbles).^{37,82} High Po₂ greatly increases the risk of O₂ toxicity even at shallow depths but it also purges nitrogen from a diver's body. Following missions, divers can be extracted and flown well above sea level with little concern for decompression sickness, making it ideal for clandestine and lengthy underwater operations.^{43,82} Concerns over CNS O₂ toxicity remain a limiting factor in standard operating procedures for closed-circuit diving operations and HBO₂T alike.^{37,83} Some deleterious effects of gases under pressure and the populations at risk are listed in Table II.

 O_2 toxicity in humans can be categorized into two major types: low pressure or chronic O_2 toxicity, such as pulmonary

toxicity, nonspecific cellular toxicity, organ damage and erythrocyte hemolysis; and high pressure or acute O_2 toxicity, most commonly associated with CNS O_2 toxicity.^{29,106} Chronic toxicity tends to occur when the Po₂ exceeds 0.5 ATA for extended periods of time. People may be most familiar with retinal manifestations of O_2 toxicity resulting in blindness of premature neonates. Prolonged exposure to elevated Po₂, whether increased concentrations of oxygen inspired at atmospheric pressure or low concentrations of inspired oxygen at high ambient pressures, places humans at risk for pulmonary oxygen toxicity.^{44,45} It is characterized by decrease in pulmonary function, chest tightness, exertional dyspnea, and cough. Moderate to severe cases can involve pulmonary edema, hemorrhage, or death.^{42,44}

The risk of CNS O_2 toxicity is a function of both Po_2 and exposure time, directly proportional to both: the greater the Po_2 , the greater the risk of HBO₂ seizure.⁶¹ While the onset of seizures is usually in the vicinity of 2–3 ATA, the pressure at onset may be significantly lowered by coexisting conditions such as immersion, exercise, and respiratory acidosis due to moderate CO₂ retention.⁶⁹ 1.9 ATA is a noticeable threshold for increased risk.^{69,77} Even at lower PO₂ HBO₂ seizures can occur particularly when combined with inert gases or carbon monoxide (CO).^{9,52} The most dramatic manifestation of CNS O₂ toxicity is an HBO₂-induced seizure. Additional effects of CNS O₂ toxicity may also occur, including autonomic, motor, and cardiorespiratory signs and symptoms,⁴⁰ such as bradycardia, hyperventilation, dyspnea, and altered cardiorespiratory neural reflexes.⁴³

 $CNSO_2$ toxicity often presents acutely with little or no warning. Common signs and symptoms of $CNSO_2$ toxicity are easily remembered using the mnemonic VENTID- $C^{3,11,83}$:

Visual symptoms: tunnel vision, blurred vision, or decreased peripheral vision

Ear symptoms: tinnitus, roaring, pulsing sounds, or perceived sounds not from an external stimulus Nausea: often with vomiting and headache Twitching/Tingling: of extremities, facial muscles Irritability: or any change in mental status such as confusion, agitation, anxiety, or undue fatigue Dizziness: or clumsiness, loss of coordination Convulsions: and death

Unfortunately many of these symptoms are not exclusive to O_2 toxicity, and CNS O_2 toxicity does not usually proceed through any predictable sequence of the above signs. Convulsions,

DEPTH (PRESSURE) OF ONSET	POPULATION	ΤΟΧΙΟΙΤΥ	SOURCE
Sea level (1 ATA)	Everyone	CO	Incomplete hydrocarbon combustion
		O ₂ (pulmonary, retinal)	Long exposures to 100% O ₂
		CO ₂	Inadequate ventilation
12 fsw (1.3 ATA)	Closed-circuit diver	O ₂ (CNS)	Breathing 100% O ₂
45 fsw (2.4 ATA)	HBO ₂ T	O ₂ (CNS)	Breathing 100% O ₂
99 fsw (4 ATA)	Open-circuit diver	N ₂	Breathing compressed air
165 fsw (6 ATA)	Open-circuit diver	O_2 (CNS)	Breathing compressed air

fsw = feet of sea water.

*This list does not include decompression sickness (DCS), which may occur at virtually any depth given the proper circumstances.

the most serious effect of O₂ toxicity due to its fatal potential if left untreated, may occur without warning or other accompanying signs.^{43,64} O₂-induced seizures are characterized as generalized tonic-clonic seizures, though focal seizures may be the only neurological manifestation at times.^{64,99} During the seizure, the individual loses consciousness and convulses, usually progressing through both a tonic phase, in which all of the muscles are stimulated at once and lock the body into a state of rigidity, and a clonic phase, during which various muscles may cause violent thrashing motions.^{42,63} Brain activity is depressed during the postictal period, during which the individual is usually unconscious and subdued. This is usually followed by a period in which the individual is semiconscious and very restless, usually sleeping on and off for as little as 15 min or as long as an hour or more. Afterward he or she often becomes suddenly alert and complains of no more than fatigue, muscular soreness, and possibly a headache. After an O2 toxicity convulsion the individual usually remembers clearly the events up to the moment when consciousness was lost, but remembers nothing of the convulsion itself and little of the postictal phase.64

Convulsions unrelated to O2 toxicity may also occur in HBO₂ environments and would present identically to a HBO₂induced seizure. It is critical to differentiate seizures resulting from hyperbaric oxygen from other etiologies, such as hypoglycemia. A convulsion due to O₂ toxicity has little lasting effects, assuming the O_2 pressure is immediately decreased; however, a hypoglycemic seizure unrecognized and untreated can be fatal. Unlike other tonic-clonic seizures, such as those seen in epilepsy, the danger of hypoxia during breathholding in the tonic phase of a HBO₂-induced convulsion is minimized by the high Po_2 in the brain and tissues; the source of the toxicity helps minimize hypoxia in the tissue during the seizure. A greater danger is posed by decreasing pressure in a chamber too quickly, which could potentially lead to a gas embolism. Since it would be difficult to differentiate between a postictal individual and an unconscious victim suffering from a cerebral arterial gas embolism, those experiencing O₂-induced seizures in a hyperbaric chamber under pressure are generally kept at that same pressure until their convulsions cease. The Po₂ in such cases is diminished solely by altering the breathing gas mixture. Patients suffering from O₂-induced seizures generally have full recoveries within 24 h with no lasting effects, and it is unclear whether there is increased susceptibility to future incidents of O₂ toxicity.¹¹

The primary treatment for an O_2 -induced seizure is to lower the inspired PO_2 . This is accomplished by decreasing ambient pressure, switching to a breathing mixture with a lower percentage of O_2 , or both. Decreasing inspired PO_2 may not immediately reverse the effects of CNS O_2 toxicity and is not without risk. It is believed that the biochemical processes responsible for the toxicity remain in place for a period after the PO_2 has been decreased in the ambient or inspired atmosphere. The individual experiencing the toxicity is not considered clear from danger until several minutes have passed after the PO_2 has been decreased.^{34,83}

In practice, the risk of acute O_2 toxicity is often mitigated by interspersing short periods of air amid the pure O₂ therapy at increased pressure commonly referred to as "air breaks."¹¹ It is a logical measure and some species such as insects have evolved discontinuous breathing in order to minimize risks of O₂ toxicity even at 1 ATA.⁵⁶ However, there is limited clinical data to support this practice.²⁸ Some data supports the use of intermittent air breaks of 5-10 min to prolong HBO₂ exposure prior to the onset of seizures.²⁴ Yet, animal models demonstrate the possibility that the rapid decreases in Po2 may actually instigate seizure activity¹⁴ while appearing to be beneficial in preventing pulmonary oxygen toxicity.55 While intermittent exposures may decrease symptoms of CNS toxicity, measured molecular activities maintain prebreak levels, adding further confusion to the mechanism and success of air breaks during HBO₂T.⁶⁴ Therefore, understanding the mechanisms leading to HBO₂ CNS toxicity can help to mitigate toxicity.

A search of current work on this subject including PubMed searches using the words "hyperbaric seizure" and "hyperbaric convulsion" yielded hundreds of peer-reviewed publications pertaining to HBO₂ seizures. Several reviews and case series exist that emphasize the incidence of hyperbaric oxygen seizures. To the author's knowledge there are no peer-reviewed review articles focusing on HBO₂ seizures. A recent review on CNS oxygen toxicity was written in 2004.¹¹ This review emphasizes primary research into the underlying mechanism by which increased PO₂ causes HBO₂ seizures in humans. While this review is not exhaustive, its goal is to summarize the majority of the existing knowledge on this topic by adequately sampling current research.

Mechanisms

Methods and models used to investigate the mechanisms of HBO_2 toxicity on the nervous system must attempt to isolate two interdependent variables: 1) effects due to the increased ambient pressure on the CNS; and 2) effects due to the increased PO₂. Small mammals serve as a good animal model for studying the cellular mechanisms of oxidative stress in the mammalian central nervous system.² Therefore, many research studies have used mice, rats or other small rodents as models for research.^{68,117}

The normobaric hyperoxic brain slice model is a common research model. It is a less desirable model to study the effects of oxygen toxicity on neuronal activity since most in vitro preparations of CNS tissue and cells use a 95% O_2 control level during preparation. Humans inspiring normobaric air have relatively low Po_2 in their brain, 35 mmHg or less, depending on the region.¹⁹ Murine brains have even lower ranges of Po_2 in their brain, from 5 to 25 mmHg.¹²⁶ Direct investigation using hyperbaric oxygen is preferred.

The use of in vitro electrophysiological methods to investigate the cellular mechanisms of O_2 toxicity within a hyperbaric chamber has been limited by the challenges of working with or in a sealed pressure chamber and the mechanical disturbances experienced during tissue compression. Chamber design improvements have minimized these obstacles, allowing easier experimentation on animal models in ambient pressures around 5 ATA. Refinements in chamber design and using an ambient atmosphere of 100% helium have allowed intracellular experiments in rat brain slices. Electrophysiological studies on rat neurons have shown that increases in the Po₂ in cerebral tissue lead to increased ROS production, followed by increased cortical EEG activity, and finally resulting in the onset of an O₂-induced seizure activity.^{37,108}

Effects on the CNS attributed to increased hydrostatic pressure, such as high-pressure nervous syndrome,³⁷ tend to occur at very high pressures, ranging from 15 to 70 ATA. This results from compression of cerebral spinal fluid, circulation, and extracellular and intracellular fluid compartments of the CNS. Cellular mechanisms most likely involve synaptic and membrane dynamic responses to severe and fast changes in pressure.^{33,37} Therefore there is little evidence to suggest that hydrostatic pressure plays a significant role in HBO₂ seizures, particularly at pressures involved with HBO₂T less than 3 ATA.³³

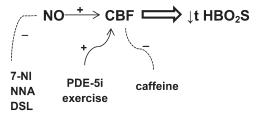
A relationship exists between high pressures and glycine receptors which indicates possible roles pressure plays on HBO₂ seizures. High pressures have no effect on the maximum response of the glycine receptor to glycine; however, the half maximal effective concentration of glycine to its receptor and pressure become directly proportional at pressures above 100 ATA.¹⁰¹ While this seems less likely to be correlated with seizures occurring at 2–3 ATA, typical of HBO₂T, it appears to be associated with high pressure neurological syndrome at much greater depths.^{37,101} The fact that glycine receptors are linked to myoclonic activity in mammals raises suspicion that conformational alterations at pressures less than 100 ATA may still participate in hyperbaric seizures to some degree at lower pressures.⁷⁶

 O_2 under hyperbaric conditions behaves like a drug whose effects on metabolism exceed O_2 's common role as a simple oxidizer.⁶⁴ The molecular effects of increased PO_2 during HBO₂T affects neural networks in the CNS, resulting in overall network excitability.³⁷ Much of the research into the molecular mechanisms of CNS O_2 toxicity has focused on the neuroexcitatory and neuroinhibitory effects of neuroactive agents that results from elevated PO_2 . In general, mechanisms responsible for hyperbaric oxygen seizures can be categorized to include: ROS, inhibitory neurotransmitters, excitatory neurotransmitters, extracellular effects resulting in neurotransmitter dysregulation, and the imbalance of neuroprotective mechanisms.

Oxidative stress plays a key role in the mechanism of O_2 toxicity. CNS O_2 toxicity is an acute exposure to an oxidative environment disrupting neurological function. HBO₂T greatly increases oxygen tension in the brain. Molecular O_2 is a natural oxidative reagent in cellular biochemical pathways producing various free radicals. The mammalian CNS response to hyperoxia ranges from moderate, reversible changes in neural activity to violent seizures that may lead to irreversible motor deficits and death. In vitro experiments on rat brains exposed to HBO₂ demonstrate that the PO₂ is directly proportional to ROS formation in the tissue.¹⁰⁸ The initial physiological response to hyperoxia is increased formation of superoxide and nitric oxide (NO) among other ROS.¹⁰⁵ Prolonged exposure of neural tissue to HBO₂ stresses antioxidant protective mechanisms. Oxidation of cellular components occurs due to the increased production of free radicals such as superoxide, hydrogen peroxide, hydroxyl radicals, and peroxynitrite. Oxidation of cellular metabolic reactants has therapeutic benefits,^{104,105} but also has negative effects. ROS can cause membrane weakening and metabolic dysregulation if normobaric O₂ is not restored. It directly affects the various ionic conductances that regulate cell excitability. ROS are also reported to target neurotransmitter systems, altering chemical synaptic transmission.^{34,37} The network of ROS and antioxidants remains unclear and requires further research.¹²³

The body scavenges oxidizing substances through enzymatic antioxidants such as superoxide dismutase for superoxide anions, catalase for hydrogen peroxide and nonenzymatic antioxidants such as reduced glutathione and vitamin E.¹⁰⁵ Glutathione is regenerated by reaction with nicotinamide adenine dinucleotide phosphate (NADPH). Therefore, sufficient levels of both glutathione and NADPH may be critical to defending against the increased level of oxidants.³⁴

Nonenzymatic antioxidants should logically protect against HBO₂ seizures. Vitamin E deficiency increases the risk of HBO₂ seizures¹⁵; however, vitamin E failed to prevent HBO₂ seizures.¹²³ Another example is superoxide dismutase. Superoxide catalyzes superoxide anions to O2. Therefore, increased levels or activity of superoxide dismutase should decrease levels of ROS; hence, in theory, HBO₂ seizures should be attentuated.^{57,93} However, in transgenic mice bred to overexpress human extracellular superoxide dismutase in the brain, inhibition of superoxide dismutase increased resistance to HBO₂ seizures contrary to expectations. By inhibiting superoxide dismutase, the catalysis of superoxide into O_2 (an in vivo antioxidant mechanism) is blocked, allowing superoxide levels to rise unopposed during HBO₂ exposure. A fourfold decrease in seizures was measured in these mice pretreated with diethyldithiocarbonate, an inhibitor of human extracellular superoxide dismutase.⁸⁸ The mechanism of this counterintuitive result appears to be the interaction between superoxide and other HBO₂-induced reactants.


Gamma-aminobutyric acid (GABA) has long been correlated with HBO₂ seizures.^{120,121} Though GABA has been found to be lowered in mammalian neuronal synapses during HBO₂ seizures when exposed to HBO₂ in short intervals,⁵⁸ there is evidence to suggest that the increased steady-state levels of GABA over longer intervals may be responsible for O₂-induced seizures.⁴⁶ In experiments involving transgenic mice with a HBO₂-sensitivity phenotype, data suggests that the excitatory amino acids, such as aspartate and glutamate, play as important or more important roles in HBO₂ seizures than GABA.⁸¹

Glutamate, an excitatory amino acid, is a potent, fast-acting neurotoxin in neuronal cultures. It has been shown to create morphological changes in mature cortical neurons within minutes of HBO_2 exposure with neuronal degeneration occurring over the course of hours. In vitro experiments demonstrated that one-hundredth the intracellular concentration of

glutamate during hyperbaric exposures critically damages cortical neurons.²⁷ Decreased glutamate metabolism during HBO₂ exposure sensitizes neural networks to HBO₂ seizures.⁷² Conflicting evidence exists as to the degree of change in excitatory amino acids prior to and during HBO₂ seizures. Recent evidence suggests that O₂-induced seizures may result from an imbalance of excitatory and inhibitory synaptic neurotransmitters, glutamate and GABA, respectively. The imbalance results in a greater relative decrease in presynaptic release of GABA than of glutamate,³⁸ which suggests that the relative increase of excitatory neurotransmitters with respect to inhibitory neurotransmitters may be a basic mechanism of HBO₂ seizures.

Extracellular mediators of physiological functions such as NO also play a role in HBO₂ seizures. NO has been implicated in neurotoxicities resulting from excess glutamate stimulation in cultures of rat cortex, striatum, and hippocampus.³⁶ NO activity appears to increase the ratio of excitatory to inhibitory neurotransmitters which increases the probability of O2 seizures.³⁸ Neurons containing nitric oxide synthase (NOS), widespread throughout the cortex, react to HBO₂ by increasing NO production.^{1,82} In HBO₂ environments, NO acutely decreases cerebral blood flow but then increases regional cerebral blood flow after prolonged HBO₂ exposure preceding neuronal excitation.^{39,51} NO has been associated with changes in cerebral blood flow and HBO2 seizures.98 Cerebral blood flow is indirectly proportional to the time of onset of HBO₂ seizures in animal models. Effects of NO with respect to HBO₂ seizures is diagrammed in Fig. 1.68,125 When interstitial NO, aspartate, glutamate, and GABA were measured in vivo in anesthetized rats under HBO₂ conditions with respect to blood flow and EEG activity of the striatum, increases in NO metabolites and blood preceded spikes in EEG activity and seizures. Thus, it was concluded that HBO2-stimulated neuronal NO production promoted an imbalance between excitatory (glutamate) and inhibitory (GABA) synaptic activity. This in turn contributes to O₂-induced seizures in rats.³⁸

The molecular mechanisms involved in HBO₂ seizures are complex. An imbalance of the redundant molecular protective mechanisms that humans have evolved to counter deleterious effects of increased PO₂, as depicted in **Fig. 2**, appears to lead to HBO₂ seizures. Elevated PO₂ causes concomitant saturation of

Fig. 1. Schematic of extracellular interactions produced by increased Po_2 that result in CNS HBO₂ seizures. Increased cerebral blood flow (CBF) results in decreased time to onset of HBO₂ seizures (tHBO₂S). Extracellular substances such as phosphodiesterase-5 inhibitors (PDE-5i), 7-NI, N-nitro-L-arginine (NNA, a NOS inhibitor), and daurisoline (DSL, a calcium channel blocker) affect CBF. Dotted line = lessened action (-). Bold line = increased action (+). Large arrow = correlation.

the redundant antioxidant systems evolved to protect humans. Though individual reactions are well-described, the network of interactions between the various reactions are not well-described.¹²³ Increased Po₂ saturates enzymes and maximizes rates of reactions designed to protect against reactive species. For example increased Po₂ saturates superoxide dismutase, increasing superoxide. Superoxide anions can react with NO to yield nitrate (NO₃), a neurologically inert substance; however, the rate of this reaction does not appear sufficient to eliminate risks of CNS O₂ toxicity at sufficiently high Po₂ over time.

A long-standing question regarding hyperbaric oxygen seizures is whether certain regions of the CNS are more susceptible to HBO₂.¹¹² Neuroanatomic studies have shown that centrally located regions of the brain are most affected by exposure to HBO₂, including: the globus pallidus, substantia nigra, superior olivary nucleus, ventral cochlear nucleus, limbic structures, amygdala, and the spinal cord gray matter, diagrammed in **Fig. 3**.^{109,111} It is worth noting that the globus pallidus and substantia nigra are brain regions also susceptible to CO toxicity. Single-cell electrophysiology experiments have shown that hippocampus and brain stem neurons are disproportionately sensitive to increased Po₂ in surrounding tissues when exposed to HBO₂.^{50,65} The anatomical localization of neuroactive agents and their effects may also explain anatomical distribution of increased O₂ sensitization.^{37,90}

For example, at HBO_2 levels of 3-5 ATA, regional cerebral blood flow in the substantia nigra decreased for 30 min but gradually returned to normal levels preceding EEG spikes.³³ Acute exposure to HBO_2 results in an increased firing rate of specific neurons, particularly carbon dioxide (CO_2)/proton-chemosensitive neurons, which are coupled via gap junctions and baroreceptors, in the cerebral and cerebella cortex that demonstrate a high sensitivity to HBO_2 , chemical oxidants, and neurotransmitters.^{33,40,80}

Certain conditions heighten one's risk to CNS toxicity and Copyright: Aerospace HBO2 seizures. Hypercapnia elevates the risk of O2 toxicity.^{100,119} Hypercapnic-induced intracellular acidosis makes cells more susceptible to ROS. CO₂ causes cerebral vasodilation, increases cerebral blood flow, and heightens CNS exposure to elevated Po₂. Neurons in the solitary complex are particularly susceptible to increased Pco₂ and Po₂, resulting in an increased rate of excitatory firing. Increased Pco₂ in HBO₂ environments may occur by: 1) a decrease in CO_2 -carrying capacity of venous hemoglobin since venous hemoglobin may be saturated with O₂; 2) alveolar hypoventilation and CO₂ retention; and 3) CO₂-contamination due to inadequate scrubbing of recirculated breathing gas.^{37,100} Exercise also increases the risk of CNS O2 toxicity, likely related to increased cerebral blood flow and metabolic rate.^{2,66} CO toxicity significantly increases the risk of HBO₂ seizures.^{52,97}

> Current preventative measures to counter O_2 toxicity include minimizing exposure times to increased PO_2 , decreasing the inspired PO_2 , or inserting periods of air breaks.¹¹ There is evidence in animal models to suggest that repeated HBO₂ exposures increases risk of seizures.^{6,48,75} Data support brain derived neurotrophic factor, 7-nitroindozol (7-NI), and NO as potential

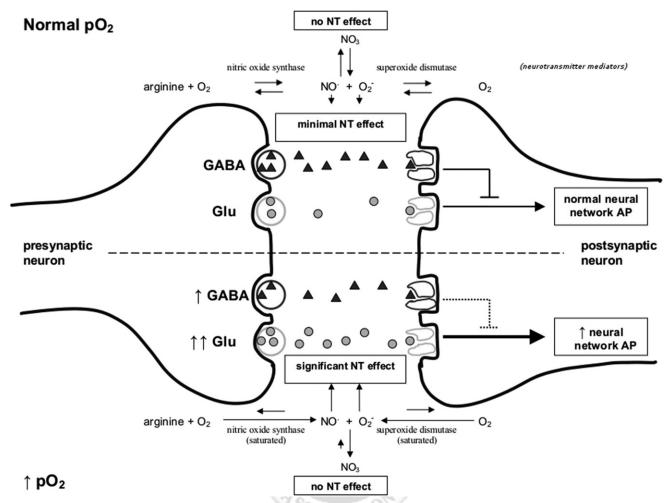


Fig. 2. Schematic of some synaptic changes produced by increased Po₂ and resulting in CNS HBO₂ seizures. The human body has several equilibrated safeguards that minimize effects of ROS on neural networks. Increased Po₂ appears to saturate protective enzymes and unfavorably shift protective reactions in the direction of neural network overstimulation, resulting in HBO₂ seizures. NT = neurotransmitter; AP = action potential. Dotted line = lessened action. Bold line = increased action. Delivered by Ingenta to: Yale University IP: 130.132.173.132 On: Thu, 29 Jun 2017 20:08:21

Copyright: Aerospace Medical Association

mechanisms for sensitization to repeated HBO₂ seizures.^{20,25,26,60} Yet there appears to be some randomization to susceptibility. An individual may repeat the same exposure conditions and suffer from CNS O₂ toxicity for no apparent reason.¹¹

Since the mechanism of CNS O_2 toxicity remains uncertain, there is a paucity of prophylactic measures to prevent it. Certain factors are known to mitigate an individual's susceptibility to CNS O_2 toxicity. Numerous prophylactic treatments for HBO₂induced seizures have been shown to be effective through in vivo experiments involving rats and mice.

NO is an important mediator of CNS O_2 toxicity.¹² Inhibition of NOS with nitroarginine showed similar prevention of CNS toxicity and O_2 -induced seizures in both transgenic and nontransgenic mice.^{23,88,115} The potency of NOS inhibitors in preventing CNS O_2 toxicity is indirectly proportional to the disassociation constant of the inhibitor and NOS.³⁶ Intraperitoneal administration of GABA proved effective in protecting rats from O_2 -induced seizures. Since GABA does not cross the blood brain barrier, the mechanism of its protection is speculated to be an osmotic effect drawing a metabolite of GABA out of the brain.⁴⁶ Pretreatment of rats exposed to HBO_2 conditions with 7-NI slowed the rate of decline in GABA levels, decreased the glutamate/GABA excitotoxicity index, and minimized EEG spikes associated with O_2 toxicity.³⁸

MK-801, an NMDA receptor antagonist, has been shown to prevent EEG spikes associated with O₂ toxicity and O₂-induced seizures.^{37,39} Other substances such as disulfiram (Antabuse)^{21,47,117} and antioxidants also appear to delay or diminish O₂ toxicity in the brain.^{34,37} Additional agents that hasten the onset or increase incidence of HBO₂ seizures include: adrenocortical hormones, epinephrine, hyperthermia, norepinephrine, thyroid hormones, vitamin E deficiency,¹⁵ brain derived neurotrophic factor,²⁵ misonidazole,⁵⁴ pseudoephedrine,⁹¹ hyperglycemia,⁴ and phosphodiesterase-5 inhibitors.⁴¹ Additional agents that delay the onset or attenuate HBO₂ seizures include: N-nitro-L-arginine (NNA),^{22,115} daurisoline (DSL),¹¹⁵ acclimitization to hypoxia, antioxidants,⁷⁴ chlorpromazine, reserpine, starvation,³¹ ganglionic blocking drugs and anti-epileptics,⁷¹ glutathione,⁶² hypothermia, hypothyroidism, insulin,⁴ CoQ10 and carnitine,⁷ acetazolamide,¹¹⁹ excitatory

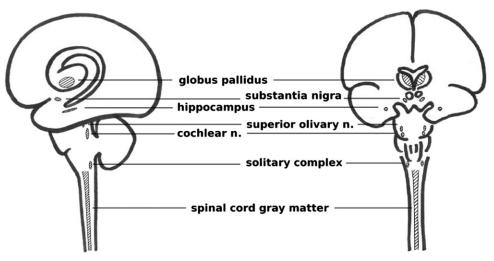


Fig. 3. Brain regions most likely involved in HBO₂-induced seizures. Certain regions of the CNS (including the solitary complex in the dorsal medulla, hippocampus, globus pallidus, substantia nigra, superior olivary nucleus, ventral cochlear nucleus, and spinal cord gray matter) appear more susceptible than others to these effects. Note the central nature of these regions, anatomically similar to CO susceptible regions.

amino acid antagonists,³⁰ aminooxyacetic acid (AAOA),^{5,35} delta-sleep-inducing peptide (DSIP),⁷⁸ beta-carotene,¹⁰ vigabatrin,^{53,110} propionyl-L-carnitine,⁸ leukotriene and PAF inhibitors,⁷³ carbamazepine,⁹⁵ propranolol,¹¹⁷ caffeine,¹³ Dilantin,¹¹⁶ and lithium.¹⁰³ Some agents that one would expect to affect HBO₂ seizures, such as allopurinol and pyridoxine, did not.^{57,103,114}

Potential Areas of Research

A significant amount of research has been conducted on the mechanisms of CNS O₂ toxicity, but few clinical studies or trials exist as to how to prevent it. There are few attempts in applying existing results to testing prophylactic treatments for humans. This is likely due to the potential difficulties of such studies. A search (using keywords "hyperbaric oxygen," "hyperbaric oxygen therapy," and "oxygen toxicity") shows over 50 active NIH-funded clinical trials pertaining to HBO₂ and only one pertaining to CNS O2 toxicity.86 Potentially beneficial, "off-theshelf" medications (FDA approved medication or nonregulated supplement) could be trialed for their efficacy in preventing or reducing the incidence of HBO2-induced CNS toxicity, including: disulfiram (an inhibitor of alcohol dehydrogenase with some evidence of success in preventing HBO₂ seizures in animal models, approved for use in the treatment of alcohol abuse),³⁴ acamprosate (a glutamate receptor modulator approved for use in the treatment of alcohol abuse), and vitamin E (a nonenzymatic antioxidant sold as a supplement).

In a clinical setting, an HBO_2T center would have no less than 1000 treatments per year. If we assume that treatments can be taken as independent events, i.e., there is no correlation between two treatments on the same person or different individuals with the same preexisting conditions, then we can use all 1000 treatments as individual events upon which we can base our design. This is purely an assumption in order to minimize a sample size calculation. An O₂-induced seizure is the most easily quantifiable endpoint for measuring CNS oxygen toxicity, although any signs, symptoms, or composite of the two could be used.

The frequency of an oxygeninduced seizure may be approximated at 1 in 10,000 treatments, with the literature citing a wide range from 2 in 100,000 to 1 in 1000.^{97,118,124} One study estimates the probability of a CNS toxicity event as low as 1.7% over the period of a 4-h dive with $Po_2 =$ 1.4 ATA.¹⁰²

A prospective study would seek to decrease the frequency of oxygen-induced seizures by a given factor as a result of implementing a prophylactic treatment, such as disulfiram or antioxidants.

Using STATA version 9.0 for Windows (Stata Corporation, College Station, TX) the sample size needed to conduct a definitive randomized trial demonstrating a tenfold reduction in the frequency of hyperbaric oxygen-induced seizures, from 0.0001 to 0.00001, using a two-sided 0.05 level test with 80% power is 85,218, assuming equal allocation to the experimental and control arms. It could take a single hyperbaric facility over a decade to accrue enough data to execute a definitive study of this nature. This information necessitates that randomized clinical studies investigating CNS oxygen toxicity be multicenter studies with endpoints more than just seizures used to identify oxygen-toxicity.

Further, agents that mitigate O_2 -induced seizures may also negatively affect the therapeutic benefits of HBO₂T, thus adding to the complexity of the study. For example, any antioxidant that can effectively eliminate ROS during HBO₂T may eliminate their role in causing HBO₂ seizures, but it would also eliminate the benefits ROS play in promoting wound healing and postischemic tissue survival.¹⁰⁵ This would require a long time, a great deal of resources, and/or multiple institutions to accomplish. It is unlikely for a research study of this magnitude to occur. Therefore, continued basic science research may be the best alternative to investigate CNS toxicity.

The advent of nanoscale devices allows for more precise delivery and investigation of mediators of O_2 -induced seizures such as NO.⁹⁶ The excitatory firing rate of dorsal medullary neurons due to HBO₂ can be mimicked by the presence of prooxidants at normobaric conditions,³⁷ demonstrating that normobaric experimentation might be feasible to shed light on O_2 's toxic effects under pressure. Precise delivery of ROS or neurotransmitter mediators of CNS toxicity would allow for detailed experimental designs at the molecular, neuronal level in normal models at normobaric conditions. This may shed light on unanswered questions such as whether the effects of hyperoxia and the resulting ROS are presynaptic or postsynaptic

in origin, currently an unanswered question. Normobaric models of the effects of HBO2 would also open the door to the wide array of experimental tools that otherwise would not be feasible to perform in hyperbaric chambers. Finally, as data and proposed theories of O₂ toxicity increase, this area of research becomes primed for computational simulations. Current prediction models have shown that it is very difficult to build a prediction model for mild hyperoxia given the current data.¹⁰² However, computational analysis and simulations of molecular signaling interactions might enable existing and otherwise conflicting theories to coexist within a new model for CNS O₂ toxicity. This would provide a physiologically based model with greater precision and accuracy. Models of complex biological systems such as T lymphocyte activation demonstrate the feasibility of this approach.⁵⁹

Summary

The benefits of HBO₂ come with the risk of CNS O₂ toxicity. The exact mechanism of O₂ toxicity remains a mystery. Prophylactic measures and treatment for CNS O2 toxicity remain centered on limiting exposure to high Po₂. Better understanding of molecular mechanisms causing O2 toxicity can lead to prophylactic therapies for consideration in clinical trials. There is increasing need for research on the systemic interactions of the multiple players involved in HBO₂ seizures in order to better understand how they occur and how to prevent them.

REFERENCES

- 1. Allen BW, Demchenko IT, Piantadosi CA. Two faces of nitric oxide: implications for cellular mechanisms of oxygen toxicity. J Appl Physiol. 2009 Feb 106(2):662-667.
- 2. Arieli R. Oxygen toxicity is not related to mammalian body size. Comp Biochem Physiol A Comp Physiol. 1988; 91(2):221-223.
- 3. Arieli R, Arieli Y, Daskalovic Y, Eynan M, Abramovich A. CNS oxygen toxicity in closed-circuit diving: signs and symptoms before loss of Ce Me consciousness. Aviat Space Environ Med. 2006; 77(11):1153-1157.
- 4. Beckman DL, Crittenden DJ, Overton 3rd DH, Blumenthal SJ. Influence of blood glucose on convulsive seizures from hyperbaric oxygen. Life Sci. 1982; 31(1):45-49.
- 5. Beckman DL, Iams SG. Protection against high-pressure oxygen seizures by amino-oxyacetic acid. Undersea Biomed Res. 1978 Sep 5(3):253-257.
- 6. Benjamini Y, Bitterman N. Statistical approach to the analysis of sensitivity to CNS oxygen toxicity in rats. Undersea Biomed Res. 1990 May 17(3):213-221.
- 7. Bertelli A, Giovannini L, Mian M, Spaggiari PG. Protective action of propionyl-L-carnitine on toxicity induced by hyperbaric oxygen. Drugs Exp Clin Res. 1990; 16(10):527-530.
- 8. Bertelli A, Bertelli AA, Giovannini L, Spaggiari P. Protective synergic effect of coenzyme Q10 and carnitine on hyperbaric oxygen toxicity. Int J Tissue React. 1990; 12(3):193–196.
- 9. Bitterman N, Laor A, Melamed Y. CNS oxygen toxicity in oxygen-inert gas mixtures. Undersea Biomed Res. 1987 Nov 14(6):477-483.
- 10. Bitterman N, Melamed Y, Ben-Amotz A. Beta-carotene and CNS oxygen toxicity in rats. J Appl Physiol (1985). 1994 Mar 76(3):1073-1076.
- 11. Bitterman N. CNS oxygen toxicity. Undersea Hyperb Med. 2004; 31(1):63-72.
- 12. Bitterman N, Bitterman H. L-arginine-NO pathway and CNS oxygen toxicity. J Appl Physiol (1985). 1998; 84(5):1633-1638.

- 13. Bitterman N, Schaal S. Caffeine attenuates CNS oxygen toxicity in rats. Brain Res. 1995; 696(1-2):250-3.
- 14. Bleiberg B, Kerem D. Central nervous system oxygen toxicity in the resting rat: postponement by intermittent oxygen exposure. Undersea Biomed Res. 1988 Sep 15(5):337-52.
- 15. Block ER. Effect of superoxide dismutase and succinate on the development of hyperbaric oxygen toxicity. Aviat Space Environ Med. 1977 Jul 48(7):645-8.
- 16. Boerema I, Kroll JA, Meijne NG, Lobin E, Kroom B, Huskies JW. High atmospheric pressure as an aid to cardiac surgery. Arch Chir Neerl. 1956; 8:193-211.
- 17. Camporesi EM, Bosco G. Mechanisms of action of hyperbaric oxygen therapy. Undersea Hyperb Med. 2014; 41(3):247-252.
- 18. Camporesi EM. Side effects of hyperbaric oxygen therapy. Undersea Hyperb Med. 2014; 41(3):253-257.
- 19. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med. 2011; 15(6):1239-1253.
- 20. Chavko M, Auker CR, McCarron RM. Relationship between protein nitration and oxidation and development of hyperoxic seizures. Nitric Oxide. 2003 Aug 9(1):18-23.
- 21. Chavko M, Braisted JC, Harabin AL. Attenuation of brain hyperbaric oxygen toxicity by fasting is not related to ketosis. Undersea Hyperb Med. 1999; 26(2):99-103.
- 22. Chavko M, Braisted JC, Harabin AL. Effect of MK-801 on seizures induced by exposure to hyperbaric oxygen: comparison with AP-7. Toxicol Appl Pharmacol. 1998; 151(2):222-228.
- 23. Chavko M, Braisted JC, Outsa NJ, Harabin AL. Role of cerebral blood flow in seizures from hyperbaric oxygen exposure. Brain Res. 1998; 791(1-2):75-82.
- 24. Chavko M, McCarron RM. Extension of brain tolerance to hyperbaric O2 by intermittent air breaks is related to the time of CBF increase. Brain Res. 2006; 1084(1):196-201.
- 25. Chavko M, Nadi NS, Keyser DO. Activation of BDNF mRNA and protein after seizures in hyperbaric oxygen: implications for sensitization to seizures in re-exposures. Neurochem Res. 2002; 27(12):1649-1653.
- 26. Chavko M, Xing G, Keyser DO. Increased sensitivity to seizures in repeated exposures to hyperbaric oxygen: role of NOS activation. Brain Res. 2001; 900(2):227-233.
- 27. Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity nta to:
 - in cortical cell culture. J Neurosci. 1987 Feb 7(2):357-368.
 - 28. Clark JM. Extension of oxygen tolerance by interrupted exposure. Undersea Hyperb Med. 2004; 31(2):195-198.
 - 29. Clark JM. The toxicity of oxygen. Am Rev Respir Dis. 1974;110(6, Pt 2): 40 - 50
 - 30. Colton CA, Colton JS. Blockade of hyperbaric oxygen induced seizures by excitatory amino acid antagonists. Can J Physiol Pharmacol. 1985; 63(5):519-521.
 - 31. D'Agostino DP, Pilla R, Held HE, Landon CS, Puchowicz M, et al. Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am J Physiol Regul Integr Comp Physiol. 2013; 304(10):R829-R836.
 - 32. D'Agostino Dias M, Fontes B, Poggetti RS, Birolini D. Hyperbaric oxygen therapy: types of injury and number of sessions-a review of 1506 cases. Undersea Hyperb Med. 2008; 35(1):53-60.
 - 33. Daniels S. Cellular and neurophysiological effects of high ambient pressure. Undersea Hyperb Med. 2008; 35(1):11-19.
 - 34. Davis JC, Hunt TK, editors. Hyperbaric oxygen therapy. Bethesda (MD): Undersea Medical Society, Inc.; 1977.
 - 35. Davison AJ. Aminooxyacetic acid provides transient protection against seizures induced by hyperbaric oxygen. Brain Res. 1983; 276(2):384-387.
 - 36. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci. 1993; 13(6):2651–2661.
 - 37. Dean JB, Mulkey DK, Garcia AJ, Putnam RW, Henderson RA. Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J Appl Physiol (1985). 2003; 95:883-909.

- 38. Demchenko IT, Piantadosi CA. Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures. Undersea Hyperb Med. 2006; 33(3):169-174.
- 39. Demchenko IT, Boso AE, O'Neill TJ, Bennett PB, Piantadosi CA. Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J Appl Physiol (1985). 2000; 88(4):1381-1389.
- 40. Demchenko IT, Gasier HG, Zhilyaev SY, Moskvin AN, Krivchenko AI, et al. Baroreceptor afferents modulate brain excitation and influence susceptibility to toxic effects of hyperbaric oxygen. J Appl Physiol (1985). 2014; 117(5):525-534.
- 41. Demchenko IT, Ruehle A, Allen BW, Vann RD, Piantadosi CA. Phosphodiesterase-5 inhibitors oppose hyperoxic vasoconstriction and accelerate seizure development in rats exposed to hyperbaric oxygen. J Appl Physiol (1985). 2009 Apr 106(4):1234-1242.
- 42. Domachevsky L, Rachmany L, Barak Y, Rubovitch V, Abramovich A, Pick CG. Hyperbaric oxygen-induced seizures cause a transient decrement in cognitive function. Neuroscience. 2013; 247:328-334.
- 43. Donald K. Oxygen and the diver. West Palm Beach (FL): Best Publishing Co.; 1995.
- 44. Eckenhoff RG, Dougherty JH, Jr., Messier AA, Osborne SF, Parker JW. Progression of and recovery from pulmonary oxygen toxicity in humans exposed to 5 ATA air. Aviat Space Environ Med. 1987 Jul 58(7):658-667.
- 45. Eynan M, Krinsky N, Biram A, Arieli Y, Arieli R. A comparison of factors involved in the development of central nervous system and pulmonary oxygen toxicity in the rat. Brain Res. 2014; 1574:77-83.
- 46. Faiman MD, Nolan RJ, Baxter CF, Dodd DE. Brain gamma-aminobutyric acid, glutamic acid decarboxylase, glutamate, and ammonia in mice during hyperbaric oxygenation. J Neurochem. 1977 Apr 28(4):861-865.
- 47. Faiman MD, Nolan RJ, Oehme FW. Effect of disulfiram on oxygen toxicity in beagle dogs. Aerosp Med. 1974 Jan 45(1):29-32.
- 48. Fenton LH, Robinson MB. Repeated exposure to hyperbaric oxygen sensitizes rats to oxygen-induced seizures. Brain Res. 1993; 632(1-2): 143-9.
- 49. Fock AW. Analysis of recreational closed-circuit rebreather deaths 1998-2010. Diving Hyperb Med. 2013; 43:78-85.
- 50. Garcia AJ 3rd, Putnam RW, Dean JB. Hyperbaric hyperoxia and normobaric reoxygenation increase excitability and activate oxygeninduced potentiation in CA1 hippocampal neurons. J Appl Physiol (1985). 2010;109(3):804-819.
- 51. Gutsaeva DR, Moskvin AN, Zhiliaev SIu, Kostkin VB, Demchenko IT. Nitric oxide and carbon dioxide in neurotoxicity induced by oxygen under pressure]. [Article in Russian]. Ross Fiziol Zh Im I M Sechenova. 2004; 90(4):428-436.
- 52. Hampson NB, Simonson SG, Kramer CC, Piantadosi CA. Central nervous system oxygen toxicity during hyperbaric treatment of patients with carbon monoxide poisoning. Undersea Hyperb Med. 1996 Dec 23(4):215-219.
- 53. Hall AA, Young C, Bodo M, Mahon RT. Vigabatrin prevents seizure in swine subjected to hyperbaric hyperoxia. J Appl Physiol (1985). 2013; 115(6):861-867.
- 54. Harris JW, Shrieve DC. Misonidazole (Ro-07-0582) sensitizes mice to convulsions induced by hyperbaric oxygen or pentylenetetrazol. Br J Radiol. 1978; 51(612):1024-1025.
- 55. Hendricks PL, Hall DA, Hunter WL, Jr., Haley PJ. Extension of pulmonary O2 tolerance in man at 2 ATA by intermittent O2 exposure. J Appl Physiol Respir Environ Exerc Physiol. 1977; 42(4):593-599.
- 56. Hetz SK, Bradley TJ. Insects breathe discontinuously to avoid oxygen toxicity. Nature. 2005; 433(7025):516-519.
- 57. Hoppe SA, Terrell DJ, Gottlieb SF. The effect of allopurinol on oxygeninduced seizures in mice. Aviat Space Environ Med. 1984; 55(10): 927-930.
- 58. Hori S. Study on hyperbaric oxygen-induced convulsion with particular reference to gamma-aminobutyric acid in synaptosomes. J Biochem. 1982; 91(2):443-448.
- 59. Jacobi Medical Center Hyperbaric Treatments [Internet]. Jacobi Medical Center, Bronx, NY; c2015 [cited 2015 Dec 15]. Available from: http:// www.jacobi-hyperbaric.com/html/hyperbaric-treatments.html.

- 60. Jellestad FK, Gundersen H. Behavioral effects of 7-nitroindazole on hyperbaric oxygen toxicity. Physiol Behav. 2002; 76(4-5):611-616.
- Jenkinson SG. Oxygen toxicity. New Horiz. 1993; 1(4):504-511.
- 62. Jenkinson SG, Jordan JM, Duncan CA. Effects of selenium deficiency on glutathione-induced protection from hyperbaric hyperoxia in rat. Am J Physiol. 1989; 257(6, Pt 1):L393-L398.
- 63. Kandel ER, Schwartz JH, Jessell TM. Principles of neuroscience, 4th ed. Columbus (OH): McGraw-Hill; 2000.
- Kindwall EP, Whalen HT. Hyperbaric medicine practice, 2nd ed. 64. Flagstaff (AZ): Best Publishing Company; 2004.
- King GL, Parmentier JL. Oxygen toxicity of hippocampal tissue in vitro. 65. Brain Res. 1983; 260(1):139-142.
- 66. Koch AE, Koch I, Kowalski J, Schipke JD, Winkler BE, et al. Physical exercise might influence the risk of oxygen-induced acute neurotoxicity. Undersea Hyperb Med. 2013; 40(2):155-163.
- 67. Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE, Weibel S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev. 2015; 6:CD004123.
- 68. Kurasako T, Takeda Y, Hirakawa M. Increase in cerebral blood flow as a predictor of hyperbaric oxygen-induced convulsion in artificially ventilated rats. Acta Med Okayama. 2000; 54(1):15-20.
- Lambertsen CJ. Definition of Oxygen Tolerance in Man [Internet]. Institute For Environmental Medicine, University of Pennsylvania Medical Center Philadelphia, PA 19104-6068; Naval Medical Research and Development Command and Office of Naval Research 31 December 1987. C2015 [cited 2015 Dec 12] Available from: http://www.dtic.mil/ dtic/tr/fulltext/u2/a239247.pdf.
- 70. Lee CH, Lee L, Yang KJ, Lin TF. Top-cited articles on hyperbaric oxygen therapy published from 2000 to 2010. Undersea Hyperb Med. 2012; 39(6):1089-1098.
- 71. Lembeck F, Beubler E. Convulsions induced by hyperbaric oxygen: inhibition by phenobarbital, diazepam and baclofen. Naunyn Schmiedebergs Arch Pharmacol. 1977; 297(1):47-51.
- 72. Li Q, Guo M, Xu X, Xiao X, Xu W, et al. Rapid decrease of GAD 67 content before the convulsion induced by hyperbaric oxygen exposure. Neurochem Res. 2008; 33(1):185-193.
- 73. Lin Y, Jamieson D. Are leukotrienes or PAF involved in hyperbaric oxygen toxicity? Agents Actions. 1993; 38(1-2):66-75.
- 74. Lin Y, Jamieson D. Effects of antioxidants on oxygen toxicity in vivo and lipid peroxidation in vitro. Pharmacol Toxicol. 1992; 70(4):271-277.
- 75. Liu W, Li J, Sun X, Liu K, Zhang JH, et al. Repetitive hyperbaric oxygen exposures enhance sensitivity to convulsion by upregulation of eNOS and nNOS. Brain Res. 2008; 1201:128-134.
 - 76. Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004; 84(4):1051-1095.
 - 77. Mayevsky A, Shaya B. Factors affecting the development of hyperbaric oxygen toxicity in the awake rat brain. J Appl Physiol. 1980; 49(4): 700-707.
 - 78. Mendzheritskii AM, Lysenko AV, Uskova NI, Sametskii EA. [The mechanism of the anticonvulsive effect of the delta sleep-inducing peptide under conditions of elevated oxygen pressure]. [Article in Russian, Abstract in English]. Fiziol Zh Im I M Sechenova. 1996; 82(1):59-64.
 - 79. Medicare definition and indications for hyperbaric oxygen therapy [Internet]. c2015 [cited 2015 Nov 11]. Available from: https://www. medicare.gov/coverage/hyperbaric-oxygen-therapy.html.
 - 80. Mialon P, Gibey R, Bigot JC, Barthelemy L. Changes in striatal and cortical amino acid and ammonia levels of rat brain after one hyperbaric oxygen-induced seizure. Aviat Space Environ Med. 1992; 63(4): 287-291.
 - 81. Mialon P, Joanny P, Gibey R, Cann-Moisan C, Caroff J, et al. Amino acids and ammonia in the cerebral cortex, the corpus striatum and the brain stem of the mouse prior to the onset and after a seizure induced by hyperbaric oxygen. Brain Res. 1995; 676(2):352-357.
 - 82. Moskvin AN, Zhilyaev SY, Sharapov OI, Platonova TF, Gutsaeva DR, et al. Brain blood flow modulates the neurotoxic action of hyperbaric oxygen via neuronal and endothelial nitric oxide. Neurosci Behav Physiol. 2003; 33(9):883-888.

- Naval Sea Systems Command, United States Department of the Navy. Navy diving manual, 5th ed. Washington (DC): U.S. Government Printing Office; 2005.
- National Coverage Determination (NCD) for Hyperbaric Oxygen Therapy. (20.29), Centers for Medicare and Medicaid Services [Internet]. c2015 [cited 2015 Dec 12]. Available from: www.cms.gov.
- Nelson LS, Lewin NA, Howland MA, Hoffman RS, Goldfrank LR, Flomenbaum NE. Goldfrank's toxicologic emergencies, 9th ed. New York (NY): McGraw Hill; 2011.
- National Institutes of Health, National Library of Medicine [Internet]. C2015 [cited 2015 Dec 1]. Available from: clinicaltrials.gov.
- Olivero M. Hospitals Tout Benefits of Hyperbaric Oxygen Therapy [Internet]. 6 Oct 2014 [cited 2015 Nov 11]. Available from: http:// www.usnews.com/news/articles/2014/10/06/hospitals-tout-benefits-ofhyperbaric-oxygen-therapy.
- Oury TD, Ho YS, Piantadosi CA, Crapo JD. Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci USA. 1992; 89(20):9715–9719.
- Pace N, Strajman E, Walker EL. Acceleration of carbon monoxide elimination in man by high pressure oxygen. Science. 1950; 111(2894): 652–654.
- Piantadosi CA, Tatro LG. Regional H2O2 concentration in rat brain after hyperoxic convulsions. J Appl Physiol. 1990 Nov 69(5):1761–1766.
- Pilla R, Held HE, Landon CS, Dean JB. High doses of pseudoephedrine hydrochloride accelerate onset of CNS oxygen toxicity seizures in unanesthetized rats. Neuroscience. 2013; 246:391–396.
- Plafki C, Peters P, Almeling M, Welslau W, Busch R. Complications and side effects of hyperbaric oxygen therapy. Aviat Space Environ Med. 2000; 71(2):119–124.
- Puglia CD, Loeb GA. Influence of rat brain superoxide dismutase inhibition by diethyldithiocarbamate upon the rate of development of central nervous system oxygen toxicity. Toxicol Appl Pharmacol. 1984; 75(2):258–264.
- Raman G, Kupelnick B, Chew P, Lau J. A Horizon Scan: Uses of Hyperbaric Oxygen Therapy [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2006 Oct 05. Available from http://www.ncbi. nlm.nih.gov/books/NBK299143/.
- Reshef A, Bitterman N, Kerem D. The effect of carbamazepine and ethosuximide on hyperoxic seizures. Epilepsy Res. 1991; 8(2):117–121.
- Roche CJ, Dantsker D, Samuni U, Friedman JM. Nitrite reductase activity of sol-gel-encapsulated deoxyhemoglobin. Influence of quaternary and tertiary structure. J Biol Chem. 2006; 281(48):36874–36882 Epub 2006 Sep 19.
- Sanders RW, Katz KD, Suyama J, Akhtar J, O'Toole KS, et al. Seizure during hyperbaric oxygen therapy for carbon monoxide toxicity: a case series and five-year experience. J Emerg Med. 2012; 42(4):e69–72.
- Sato T, Takeda Y, Hagioka S, Zhang S, Hirakawa M. Changes in nitric oxide production and cerebral blood flow before development of hyperbaric oxygen-induced seizures in rats. Brain Res. 2001; 918(1-2):131–140.
- Seckin M, Gurgor N, Beckmann YY, Ulukok MD, Suzen A, Basoglu M. Focal status epilepticus induced by hyperbaric oxygen therapy. Neurologist. 2011; 17(1):31–33.
- Seidel R, Carroll C, Thompson D, Diem RG, Yeboah K, et al. Risk factors for oxygen toxicity seizures in hyperbaric oxygen therapy: case reports from multiple institutions. Undersea Hyperb Med. 2013; 40(6):515–519.
- 101. Shelton CJ, Doyle MG, Price DJ, Daniels S, Smith EB. The effect of high pressure on glycine- and kainate-sensitive receptor channels expressed in Xenopus oocytes. Proc Biol Sci. 1993; 254(1340):131–137.
- 102. Shykoff B. Incidence of CNS oxygen toxicity with mild hyperoxia: a literature and data review. Panama City (FL): Navy Experimental Dive Unit; 2013; TA 12-03 NEDU TR 13-03.
- 103. Singh AK, Banister EW. Relative effects of hyperbaric oxygen on cations and catecholamine metabolism in rats: protection by lithium against seizures. Toxicology. 1981; 22(2):133–147.
- Thom SR. Hyperbaric oxygen its mechanisms and efficacy. Plast Reconstr Surg. 2011; 127(Suppl 1):131S–141S.

- Thom SR. Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol (1985). 2009; 106(3):988–995.
- Thomson L, Paton J. Oxygen toxicity. Paediatr Respir Rev. 2014; 15(2): 120–123.
- Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334(25):1642–1648.
- Torbati D, Church DF, Keller JM, Pryor WA. Free radical generation in the brain precedes hyperbaric oxygen-induced convulsions. Free Radic Biol Med. 1992; 13(2):101–106.
- Torbati D, Lambertsen CJ. Regional cerebral metabolic rate for glucose during hyperbaric oxygen-induced convulsion. Brain Res. 1983; 279(1-2): 382–386.
- Tzuk-Shina T, Bitterman N, Harel D. The effect of vigabatrin on central nervous system oxygen toxicity in rats. Eur J Pharmacol. 1991; 202(2):171–175.
- Vion-Dury J, LeGal La Salle G, Rougier I, Papy JJ. Effects of hyperbaric and hyperoxic conditions on amygdala-kindled seizures in rat. Exp Neurol. 1986; 92(3):513–521.
- 112. Voronov IB. Brain structures and origin of convulsions caused by high oxygen pressure (HOP). Int J Neuropharmacol. 1964; 3:279–282.
- 113. Walker J. Hyperbaric oxygen therapy gets more popular as unapproved treatment: use of HBOT to treat autism, brain injury is growing despite a lack of conclusive evidence [Internet]. Wall Street Journal; 5 Jan 2015 [cited 2015 Nov 11]. Available from: http://www.wsj.com/articles/ hyperbaric-oxygen-therapy-gets-more-popular-as-unapproved-autismtreatment-1420496506.
- Walter FG, Chase PB, Fernandez MC, Cameron D, Roe DJ, Wolfson M. Pyridoxine does not prevent hyperbaric oxygen-induced seizures in rats. J Emerg Med. 2006; 31(2):135–138.
- 115. Wang WJ, Ho XP, Yan YL, Yan TH, Li CL. Intrasynaptosomal free calcium and nitric oxide metabolism in central nervous system oxygen toxicity. Aviat Space Environ Med. 1998; 69(6):551–555.
- Weaver LK. Phenytoin sodium in oxygen-toxicity-induced seizures. Ann Emerg Med. 1983; 12(1):38–41.
- 117. Whelan HT, Bajic DM, Karlovits SM, Houle JM, Kindwall EP. Use of cytochrome-P450 mono-oxygenase 2 E1 isozyme inhibitors to delay seizures caused by central nervous system oxygen toxicity. Aviat Space Environ Med. 1998; 69(5):480–485.
- 118. Witucki P, Duchnick J, Neuman T, Grover I. Incidence of DCS and oxygen toxicity in chamber attendants: a 28-year experience. Undersea Hyperb Med. 2013; 40:345–350.
- 119. Wood CD. Acetazolamide and CO2 in hyperbaric oxygen toxicity.
 - Undersea Biomed Res. 1982; 9(1):15–20.
- Wood JD. The role of gamma-aminobutyric acid in the mechanism of seizures. Prog Neurobiol. 1975; 5(1):77–95.
- 121. Wood JD, Watson WJ, Murray GW. Correlation between decreases in brain gamma-aminobutyric acid levels and susceptibility to convulsions induced by hyperbaric oxygen. J Neurochem. 1969; 16(3):281–287.
- 122. Wylie DC, Das J, Chakraborty AK. Sensitivity of T cells to antigen and antagonism emerges from differential regulation of the same molecular signaling module. Proc Natl Acad Sci USA. 2007; 104(13): 5533–5538.
- 123. Xiao X, Wang ZZ, Xu WG, Xiao K, Cai ZY, et al. Cerebral blood flow increase during prolonged hyperbaric oxygen exposure may not be necessary for subsequent convulsion. CNS Neurosci Ther. 2012; 18(11):947–949.
- Yildiz S, Aktas S, Cimsit M, Ay H, Toğrol E. Seizure incidence in 80,000 patient treatments with hyperbaric oxygen. Aviat Space Environ Med. 2004; 75:992–994.
- Yoles E, Zurovsky Y, Zarchin N, Mayevsky A. The effect of hyperbaric hyperoxia on brain function in the newborn dog in vivo. Neurol Res. 2000; 22(4):404–408.
- 126. Zhang C, Bélanger S, Pouliot P, Lesage F. Measurement of local partial pressure of oxygen in the brain tissue under normoxia and epilepsy with phosphorescence lifetime microscopy. PLoS ONE. 2015;10(8): e0135536.