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Identification of PPT1 substrates to study the role of palmitoylation in synaptic function
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Isolation of the synaptic palmitome
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Scheme for identification of PPT1 substrates (A) WT and PPT1 KO synaptosomes
were assessed to determine baseline protein levels (proteome) and palmitoylated
protein levels (palmitome) following Acyl Resin-Assisted Capture (Acyl-RAC). (B)
Schematic of Acyl-RAC. Levels of isolated proteins can be quantified using LFQ to
assess palmitome changes in PPT1 KO vs. WT.

Palmitoylation changes occur independently of protein expression

Figure 2. Comparison of proteome to palmitome identifies substrates to be validated first. (A) Principal component analysis
of proteome and palmitome mass spectrometry data shows that principal componet 2 segregates protein levels by proteome
and palmitome. Percentage represents the variance in the data explained by each principal component. Data are not
clustered by genotype. (B) Venn diagram of proteins for proteome and palmitome experiments, which contain 1209 protein
present in all replicates (n=3 biological, n=3 technical replicates for each proteome and palmitome. (C) Direct comparison of
protein expression and palmitoylation level for common proteins (n=3 proteome, n=3 palmitome).
subset of proteins (n=109) with increased palmitoylation and decreased or unchanged expression in KO/WT, suggesting that

expression and palmitoylation in KO/WT, suggesting that these are PPT1 substrates whose degradation may be regulated
by palmitoylation status. The line in Red indicates a 1:1 expression to palmitoylation ratio.
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Future Directions

synaptosomes with purified PPT1 followed by Acyl-RAC to assess whether
PPT1 itself is able to depalmitoylate putative substrates. As palmitoylation is
an activity-dependent modification, we will also stimulate neurons prior to
Acyl RAC to identify substrates whose depalmitoylation by PPT1 is activity
We also plan to screen PPT1 substrates for consensus
sequences that may be recognized by PPT1.Finally, we would like to

studying NCL patient neurons and assessing substrate palmitoylation.

Abstract Palmitoyl Protein Thioesterase 1 (PPT1)
Background: The 3D structure and function of proteins is influenced by post-translational modifications. Palmitoylation, | Palmitoylation is a dynamic post-translational @)
one such modification, is the covalent attachment of a 16-carbon fatty acid chain to cysteine residues. Palmitoylation | modification that entails the covalent attachment of a COA)J\/\A/\/\N\/\ _
increases hydrophobicity, therefore facilitating protein association with membranes. Unlike other lipid modifications in | 16-carbon fatty acid chain typically to cysteine 'FFraa:rr?sI:‘g)r/alxse
which the protein is permanently modified, protein palmitoylation is dynamic, and palmitate groups are added and | residues. Palmitate groups are added by palmitoyl palmitoylation
removed as the cell requires. Palmitate groups are attached to proteins by protein acyl transferases, and removed by | transferrases such as the DHHC proteins and are C C
protein thioesterases, such as palmitoyl protein thioesterase 1 (PPT1), which breaks the thioester link between the | removed by thioesterases such as PPT1, which cleave N N 0
palmitate and the protein. In neurons, PPT1 is enriched at synapses, and its dysfunction leads to aberrant increases in | the thioester linkage. Palmitoylation allows proteins to ~SH \S)J\/vvvvvv\
palmitoylation of synaptic proteins such as SNAP-25, cysteine string protein a and synaptobrevin 2. Mutations in the | associate with membranes. Walmitoylation
PPT1 gene (CLN1) lead to autosomal recessive infantile neuronal ceroid lipofuscinosis (INCL), a progressive ﬁ Thioesterase
neurodegenerative disease. CLN1 mutations lead to a loss of the depalmitoylation activity of PPT1 and result in N - 1 1: : )J\/\/\NQMA
. L . . o . euronal ceroid lipofuscinoses
synaptic trafficking deficits. However, the repertoire of substrates of PPT1 are unknown. Aim: To identify synaptic PPT1 1P CoA
substrates. Method: We purified palmitoylated proteins from wild type and PPT1 knockout (KO) whole brains and | Neuronal ceroid lipofuscinoses are a family of hereditary lysosomal storage disorders characterized by the
synaptosomes and compared the palmitomes using Label Free Quantification-Mass Spectroscopy. Results: We | accumulation of the autofluorescent pigment lipofuscin in the lysosomes. These lysosomal accumulations also contain
identified putative PPT1 substrates and validated select substrates using orthologous methods. We also mapped and | highly lipidated peptides.
Characterlzgd the s.ynaptllc pathwgys most af;ecte.d by PPT1 KOf Conclusufm: Ou.r results rgveal t.he C”tf'_cél r9leS PP Loss-of function mutations in PPT1 cause infantile NCL, an autosomal recessive form with rapid progression. The
and dynamic palmitoylation play in synapse function, and identify targets of protein depalmitoylation deficits in CLN1. average lifespan of INCL patients is 9-11 years.
PPT1 KO results in changes to the synaptic palmitome
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