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Abstract— The Hepatitis C virus (HCV) epidemic often
occurs through the persistence of injection drug use. Math-
ematical models have been useful in understanding various
aspects of the HCV epidemic, and especially, the importance of
new treatment measures. Until now, however, few models have
attempted to understand HCV in terms an interaction between
the various actors in an HCV outbreak—hosts, viruses and the
needle injection equipment. In this study, we apply perspectives
from the ecology of infectious diseases to model the transmission
of HCV among a population of injection drug users. The prod-
ucts of our model suggest that modeling HCV as an indirectly-
transmitted infection—where the injection equipment serves
as an environmental reservoir for infection—facilitates a more
nuanced understanding of disease dynamics, by animating the
underappreciated actors and interactions that frame disease.
This lens may allow us to understand how certain public health
interventions (e.g. needle exchange programs) influence HCV
epidemics. Lastly, we argue that this model is of particular
importance in light of the modern opioid epidemic, which has
already been associated with outbreaks of viral diseases.

I. INTRODUCTION
While the ecology of infectious disease is a rich field with

decades worth of empirical evidence and theory, there are
aspects that remain relatively under-explored. One example
is the importance of the free-living survival stage of certain
pathogens, where diseases are transmitted indirectly between
hosts through an environmental reservoir intermediate. These
include infections transmitted indirectly between hosts via
a surface or reservoir intermediate—often abiotic—where
the pathogen lives freely and independently of a host [1]–
[18], sometimes described as “sit and wait” infections [19].
Other studies have focused on systems where pathogens are
growing in the environment [9], or have explored indirectly-
transmitted infections in theoretical terms [12], [15]. While
frameworks already exist for studying indirect environmen-
tal transmission, most are engineered with constraints that
render their application necessarily narrow [6], limiting their
relevance for a wider number of indirectly-transmitted infec-
tions.

One class of diseases where the indirect transmission
paradigm has been scarcely applied are those spread through
injection drug use in urban settings, such as the Human
Immunodeficiency Virus (HIV) and Hepatitis C virus (HCV).
HIV has been the object of many important mathematical
models [20], [21], some of which have implemented injection
drug use effectively, even focusing on the specific dynamics
of injection equipment [22]–[25]. HCV has also been studied
using modeling methods, many focusing on treatment [26]–
[28], and others on the particulars of transmission in injection
drug user communities [29]–[35]. Importantly, none of these
existing dynamical models consider the peculiar ecology of
HCV transmission, where transmission events occur through
an environmental reservoir (injection equipment) that resem-
bles a disease vector [36]. Unlike an insect vector, however,
injection equipment is not an organism and is more realisti-
cally considered an abiotic reservoir for infection, similar to
the role that the water supply serves in an outbreak of cholera
or other waterborne diseases” [37]. As HCV continues to
be a public health burden in many settings, there is a need
to understand how the dynamics of injection equipment
influence HCV transmission. This is especially important for
informing the utility of harm reduction programs, such as
needle exchange, which have been effective in decreasing
transmission of HIV and HCV [38], [39]. Lastly, but per-
haps most importantly, the urgency for understanding these
dynamics has increased dramatically in recent years with the
growth of the modern opioid epidemic, much of it involving
injection drug use [40], [41]. The lack of models of HCV
that specifically consider injection equipment, and increased
social urgency related to the modern opioid epidemic implore
more adaptable mathematical models of injection-drug use
that could facilitate a better understanding of and predictions
for the trajectory of modern HCV infections.

In this study, we model Hepatitis C virus as an indi-
rectly (or environmentally) transmitted infection, where the
drug paraphernalia serves as the environmental reservoir. As



HCV epidemics are partly defined by injection drug users
and injection drug equipment, we argue that this indirectly
transmitted lens captures aspects that prior models haven’t.
As an introduction, we first introduce a theoretical iteration
of an indirectly-transmitted infection using a standard epi-
demiological model imbued with an environmental reservoir
compartment. We describe analytical equations of such a
system, and derive the reproductive number (R0) using
analytical methods. We then introduce the HCV mathemat-
ical model, demonstrating how it allows one to examine
several otherwise-overlooked features of disease dynamics.
We pontificate on these results in light of the ecology of
infectious diseases, and in terms of public health policies,
especially as they relate to the modern opioid epidemic.

II. AN ELEMENTARY ADAPTED S-I-R
INDIRECTLY-TRANSMITTED ITERATION

A. Description

While the emphasis of our examination will reside in how
we analyze a Hepatitis C virus epidemic, for explanatory
purposes we will begin by describing how it modifies very
basic concepts in a classic, purposefully prosaic susceptible-
infected-recovered (S-I-R or SIR) mathematical model. We
will explain the basic structure of a model of indirect-
transmission, after which the HCV-specific iteration will be
discussed.

While there are several existing frameworks that can be
used to describe infections spreading through an environmen-
tal reservoir, we have conveniently labeled ours the water-
borne, abiotic and indirectly transmitted (W.A.I.T.) infection
model. Many diseases can be modeled using this kind of
approach, but this study applies it to HCV in a community of
injection drug users, which has not been previously modeled
in this manner.

We utilize a standard S-I-R framework, where dynamics
are defined by changes in a population of susceptible (“S”),
infected (“I”) and recovered (“R”) hosts. Classically, flow of
infection through the system is defined by contact between
susceptible and infected individuals, often driven by a β
factor, or transmission coefficient. Figure 1 is a compart-
mental model that depicts this interaction, and adds two
additional compartments, labeled with a W (for W.A.I.T.),
which influence the flow of hosts from the susceptible to
infected compartments—indicated by the dashed lines in the
figure.

B. The adapted SIR compartmental diagram

The S, I and R compartments represent the usual sus-
ceptible, infected and recovered populations of hosts. Wu

and Wi represent uninfected and infected populations of
environmental agents, respectively.

In traditional SIR models, the rate of new infection (arrow
from the S compartment to the I) is generally proportional to
the product of the susceptible and the infected populations,
i.e. proportional to SI . In the W.A.I.T. framework, the
environmental compartment plays a role analogous to the

infected host compartment in driving the rate of infection.
In this specific example, the Wi compartment contributes to
the rate of infection as a fraction, Wi/(Wi + Wu), which
appears as a factor in the rate terms.

Fig. 1: Adapted SIR compartmental diagram. This depicts
a standard SIR style compartmental model with the added
compartments (shaded) corresponding to the W.A.I.T. envi-
ronment. Note the dynamical properties of the Wi and Wu

compartments. It is these dynamics that set the W.A.I.T. per-
spective apart from others: environments are often dynamical
systems, with an ecology of their own.

Fig. 2: HCV compartmental diagram. Red arrows highlight
flow of disease through the system, and where there is a
color/transparency gradient there is a flow of infection away
from an infected compartment towards an uninfected one.

The epidemic is then driven by a series of interactions:
between uninfected (susceptible) hosts S and the infected
(transmitting) environmental compartment Wi, and inter-
actions between infected individuals I and the uninfected
environmental compartment Wu. The epidemic is sustained
through infected hosts I depositing pathogen into the envi-
ronmental reservoir, creating new infections, which can then
infect more susceptible hosts S (in a process resembling a
feedback loop). These dynamics can be captured by the set
of dynamical equations and visualized with the diagram in
Figure 1.
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dS

dt
= πS − βS

Wi

Wu +Wi
− µS (1)

dI

dt
= βS

Wi

Wu +Wi
− νI − µI (2)

dR

dt
= νI − µR (3)

dWu

dt
= πW − αI

Wu

Wu +Wi
− kWu (4)

dWi

dt
= αI

Wu

Wu +Wi
− kWi (5)

Equations 1–5 define an extension of the prosaic SIR
model. πS is the birthrate of new susceptible hosts and µ is
the fractional death rate of hosts. In this context, β represents
the strength of the interaction between the susceptible hosts
S and the environmental reservoir. This will generally be
proportional to the rate of contact between the two. Similarly,
α characterizes the strength of interaction between infected
hosts I and the environmental reservoir, and is also generally
proportional to the contact rate between the two. α and
β will generally have incorporated in them a factor that
characterizes the transmissibility of the infection, either from
host to reservoir or from reservoir to host. ν represents the
fractional recovery rate, πW is the birthrate of new uninfected
environmental agents and k is the fractional death rate of
environmental agents.

C. W.A.I.T. framework influences the basic reproductive
number in a standard SIR model

Next, we briefly consider how the value of the basic
reproductive ratio R0 in this model compares to its SIR
counterpart. While R0 can have different theoretical formu-
lations, we rely on definitions as provided by Jones (2007)
[42] and Diekmann and colleagues (2009) [43]. In a density-
dependent SIR model with constant birth of susceptible hosts
πS and death rate proportional to the host population −µS,
the R0 value is given by:

RSIR
0 =

βπS
νµ

(6)

or sometimes, more simply, RSIR
0 = β/ν, depending

on the form of the SIR equations used, e.g. frequency-
dependent, constant population, etc. β in this equation is
the traditional transmission coefficient. It represents the
coupling strength between infected and uninfected hosts, two
non-environmental agents. Whereas, in the W.A.I.T. model,
what is analogous to β is a pair of parameters α and β,
which govern the interaction strengths between hosts and
the environment. πS , µ and ν have the same interpretation
as in the W.A.I.T. model.

In the case of the W.A.I.T. iteration, the value of R0 takes
the form:

RWAIT
0 =

√
αβπS

µ(µ+ ν)πW
. (7)

There are some notable differences in the R0 formulae of
the SIR and W.A.I.T. models: the square root in the W.A.I.T.
version arises as a consequence of implementing two infected
agents (I and Wi) into the model, as opposed to just one
in the SIR case. Next, one notices that the β factor in the
SIR formula is augmented by the additional factor α in the
W.A.I.T. formula, representing a kind of shared dependence
between the couplings controlling the I-interaction (α) and
the S-interaction (β), with the environment. Analogously,
what was the responsibility of πS in the SIR formula, now
presents itself as a shared dependence, πS/πW , the ratio
of the birthrate of susceptible hosts to that of uninfected
environmental agents. In this case, the two appear as a ratio
under the square root, as opposed to a product in the αβ
case, indicating that whereas α and β contribute to R0 in
the same way, πS and πW contribute in opposite ways: when
πS is increased, R0 increases, but when πW is increased, R0

decreases.
It is possible to view RWAIT

0 as a geometric mean
of two R0 values. Namely, there is the reproductive ratio
associated with the number of secondary host infections
caused by a single infected environmental agent, and there
is the reproductive ratio associated with the number of
secondary environmental agent infections caused by a single
infected host. We denote the former by RH

0 and the latter
by RW

0 (H for hosts and W for the W.A.I.T. compartment).
From equations 1–5, one can see that the rate of new host
infection due to infected environmental agents Wi is given
by βSWi/(Wi + Wu). Near the disease-free equilibrium
(DFE), S ≈ πS/µ and Wi/(Wi +Wu) ≈ kWi/πW (near
the DFE, Wi << Wu), which implies that near the DFE,
the rate of new host infection per infected environmental
agent is ≈ βπSk/(µπW ). The average amount of time
an infected environmental agent remains infected is 1/k,
i.e. the reciprocal of the exit rate of the infected state.
Thus, the number of new host infections caused by an
infected environmental agent in the time that the agent is
infected, and while the system is near the DFE, is given by
βπSk/(µπW )× 1/k = βπS/(µπW ). That is,

RH
0 =

βπS
µπW

(8)

Similarly, the rate of new infection of environmental agents,
caused by infected hosts, is given by αIWu/(Wi + Wu).
Near the DFE, this rate, per infected host, is ≈ α (since
Wu/(Wi +Wu) ≈ 1), and the average time that an infected
host remains infected is given by 1/(µ+ν), the reciprocal of
the exit rate of the infected state. Thus, the number of new
environmental agent infections caused by an infected host in
the time that the host is infected (near the DFE) is given by,

RW
0 =

α

µ+ ν
(9)
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One can see that the the value of R0 given in equation (7) is
the geometric mean of the two R0 values calculated above,

RWAIT
0 =

√
βπS
µπW

×
√

α

µ+ ν
=

√
RH

0 R
W
0 (10)

From this perspective, one can observe how a characteris-
tic feature of the epidemic is modified by indirect transmis-
sion. By stressing the role of environmental reservoirs, this
modelling perspective has the capacity to dissect properties
of dynamics that other models may omit.

III. THE HEPATITIS C VIRUS MODEL

A. Description

Our HCV model represents an adaptation of the adapted
SIR W.A.I.T. model outlined in section II, but engineered
around the particulars of HCV. Our model simulates a
population of approximately 170,000 individuals—based on
estimates of the size of the injection-drug user (IDU) com-
munity in New York City [44]—where infected injection
drug users may migrate into the population. In this model,
injection paraphernalia serve as the environmental reservoir
for HCV and the sharing of this equipment will constitute
the means of transmitting new infections. While the entirety
of injection paraphernalia might contain other components,
many parameters in this model are based on the use of
needle and syringe as the instrument of injection and sharing.
Consequently, we use the term “needle” in this manuscript as
a synecdoche for the entire injection apparatus. It is also im-
portant to note that HCV can be transmitted sexually [45], but
in this study we restrict our attention to transmission through
infected needles. This main text focuses on the main structure
and dynamical properties of the model. Further model details
and discussion can be found in the Supplemental Appendix.

B. HCV W.A.I.T. model: Compartmental diagram

We model the dynamics of needle populations and injec-
tion drug users through a series of five ordinary differential
equations. The compartments, labeled S, IE , IL, Nu and Ni

represent the populations of susceptible individuals, early-
stage infected individuals (acute HCV infection), late-stage
infected individuals (chronic HCV infection), uninfected
needles and infected needles, respectively. Here, we refer to
all needles in circulation within the entire IDU community.
This model is defined by several features:

• The susceptible compartment refers to individuals who
are injecting drugs and who are sharing needles with
other members in the IDU community.

• The needle population is divided into two compart-
ments: infected and uninfected, and we model the
dynamics of each compartment separately. This is anal-
ogous to the Wi and Wu terms discussed in the prelim-
inary model.

• New infections (of both hosts and needles) will depend
on the fraction of infected or uninfected needles in
circulation.

• Newly infected individuals enter the early-stage com-
partment IE first before either spontaneously clearing
the infection or moving into the late-stage compartment
IL, from which we assume no spontaneous clearance
occurs—individuals may leave IL either by treatment
or death only, since cases of spontaneously clearing
chronic HCV are rare.

• There are various estimates for the ability of HCV to
survive in needles [46] [47]. We incorporate HCV free-
living survival via the parameter ε, which quantifies the
rate at which the virus decays on infected needles.

C. HCV W.A.I.T. model: Analytic equations and parameters

The dynamics of the HCV transmission process are gov-
erned by equations 11–15. The population of individuals
that are being treated and those who have recovered are
not explicitly modeled in this iteration, as the dynamics
of treatment and recovery are not central to the questions
explored in this study. There are, however, several modeling
studies of HCV that focus on treatment [26]–[28], [48],
and their effects are not ignored in the HCV W.A.I.T.
model. Entering treatment (and re-entering the susceptible
population, as in case of drug relapse in the IDU population)
are incorporated via removal terms −τIL and −τIE and the
susceptible “birth” term πS .

dS

dt
= πS + φ(IE + IL)− βS

Ni

Ni +Nu
− µS (11)

dIE
dt

= βS
Ni

Ni +Nu
− (ω + τ + µ+ φ)IE (12)

dIL
dt

= ωIE − (µ+ τ)IL (13)

dNu

dt
= πN − α(IE + IL)

Nu

Ni +Nu
− kuNu + εNi (14)

dNi

dt
= α(IE + IL)

Nu

Ni +Nu
− kiNi − εNi (15)

πS is the birthrate of new members into the community
of IDUs either via migration, first-time use, or recovery
from treatment—not from spontaneous self-clearance. φ rep-
resents the daily fractional rate that individuals infected with
HCV spontaneously clear the infection. α represents the
per capita injection rate, scaled by the fraction of injection
events by infected users that render a needle infectious.
β represents the per capita injection rate, scaled by the
fraction of injection events with an infected needle that leave
a susceptible host infectious. µ is the combined fractional
death and IDU-cessation rate (individuals who leave the IDU
community). ω is the daily fractional rate that early-stage
infected individuals progress to the late-stage of infection.
τ is the daily fractional rate that infected individuals go
into treatment. πN is the rate of introduction of uninfected
needles into the IDU population. ku is the daily fractional
discard rate of uninfected needles. ki is the daily fractional
discard rate of infected needles. Lastly, ε is the daily frac-
tional rate that infected needles clear the infection due to
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de-activation (or “death”) of virus populations on the needle.
Parameter values and sources can be seen in Table I.

D. HCV W.A.I.T. model parameters influence the R0

Having constructed and elaborated on the details of the
HCV W.A.I.T. model, we now explore how parameters
related to the environmental reservoir (in this case, those
framing the population of infected needles) influence the
R0. We directly measured the influence of parameters on the
R0 by considering the Partial Rank Correlation Coefficient
(PRCC), discussed below. The value of R0 was calculated
using established methods [42], [43] and is outlined in the
Supplemental Appendix.

R0 =

√
αβkuπS(µ+ τ + ω)

πNµ(ε+ ki)(µ+ τ)(µ+ τ + φ+ ω)
(16)

We emphasize that in a manner analogous to our example
discussed in earlier (Section II), we can regard our R0 value
as a geometric mean of two other R0 values:

R0 =

√
α(µ+ τ + ω)

(µ+ τ)(µ+ τ + φ+ ω)
×

√
βkuπS

µ(ε+ ki)πN
(17)

The left-most factor (under the square root) can be inter-
preted as the number of secondary infections of needles in the
average time that a host is infected (near the DFE), and the
right-most factor can be regarded as the number of secondary
infections of hosts in the average time that a needle remains
infected. Further discussion of this result can be found in the
Supplemental Appendix. As with traditional values of R0,
we find that our value is consistent with the statement that
sign(R0−1) = sign(λ), where λ is the maximal eigenvalue
of the Jacobian of the infected subsystem—composed of
the infected compartments of the ODE system: IE , IL, and
Ni—calculated at the DFE (all eigenvalues of the Jacobian
were real-valued). This shows that the DFE is unstable when
R0 > 1.

We determine the sensitivities of our parameters on the
value of R0 by calculating the partial rank correlation
coefficient (PRCC) with respect to equation 16—we base
our calculation of PRCC on methods used in prior studies
[49]. We find that parameters related to an interaction with
the environmental reservoir (the population of needles) such
as α and β, the couplings between hosts and needles, are at
least as central to HCV dynamics as parameters traditionally
associated with an epidemic, such as πS , the birthrate of
susceptibles, µ, the combined death and cessation rate of
IDUs and τ , the rate of progressing to treatment (Figure
3). This fortifies the notion that W.A.I.T.-specific properties
dictate the spread of HCV, providing opportunities to explore
more precise targeting by public health interventions.

Fig. 3: R0 sensitivity in HCV: the Partial Rank Corre-
lation Coefficient (PRCC). A PRCC calculation was per-
formed for R0 using Latin Hypercube Sampling. Parameters
were sampled from uniform distributions with widths spec-
ified by the ranges given in Table I. The PRCC calculation
was repeated for 50 independent iterations. The averages of
these iterations are shown here, with the standard deviations
for each parameter shown as the error bars.

E. HCV W.A.I.T. model and simulated interventions: needle-
exchange programs

Having demonstrated the relevance of injection drug
equipment in terms of how it influences the basic reproduc-
tive number, we can consider the utility of the model with
respect to other properties, including how it offers insight
into potential interventions.

One such intervention may be the implementation of
needle-exchange programs. Needle-exchange programs are
an example of “harm reduction” public health strategies
that aim to reduce harm stemming from behaviors that put
the affected individuals or communities at risk [50]. These
policies can be contentious, but have been demonstrated to be
effective interventions for HIV and HCV in certain settings
[39]. With respect to the HCV W.A.I.T. model, some of these
programs (especially ones targeting injection equipment, like
safe injection sites) can increase the discard rate of infected
needles by providing a safe location to use and discard
needles, while also providing uninfected needles to IDUs.
In our model, parameters like the needle discard rate, ki and
ku, the transfer rate of needles from the infected state to
the uninfected one ε and the dispersal rate of clean needles
πN are affected by needle exchange programs. Figure 4
demonstrates how R0 is affected by these parameters. In the
left figure, one can see that R0 can be reduced by increasing
ki—the infected needle discard rate—along a fixed value of
πN—the birthrate of uninfected needles—and that increasing
πN along a fixed value of ki has the same effect. It is also
evident that R0 can be reduced more rapidly by increasing
ki and πN simultaneously, as expected. In this way, the
proportion of infected needles is reduced because of an
increase in clean needles and a reduction of infected ones,
lowering R0.

In the right panel in Figure 4, we demonstrate how
changing ku and ki modifies the value of R0. Notice that R0
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Fig. 4: HCV R0 as a function of various model features. Left: The relationship between the rate of acquisition of clean
needles πN and the discard rate of infected needles ki with respect to various values of R0. The curves are contours of R0

and are labelled as such. The vertical and horizontal dashed lines indicate the chosen values for their respective parameters.
Right: The relationship between the infected and uninfected needle discard rate, with respect to R0. The diagonal line
represents where ku = ki. The “x” indicates the value chosen for ku and ki in the model (we set ku = ki in the model).
Notice that moving upwards along this diagonal increases R0.

is reduced by increasing ki across fixed values of ku, and
the opposite effect—increasing the R0—is observed when
increasing ku along fixed values of ki. That is, removing
infected needles at an increased rate may decrease infection
risk in a population of IDUs, while removing uninfected
needles can increase the risk. One can also see that increasing
ku and ki simultaneously, along the dashed line—where
ku = ki—will increase R0. Evidently, for the parameters
chosen in this model, removing needles from a population,
without taking care to distinguish between infected and
uninfected types, can potentially exacerbate an epidemic.

Next, we considered how certain interventions can modify
the transfer rate of needles from infected to uninfected states,
through modifying the ε parameter in our study (Figure 5). A
high ε value would indicate a scenario where needles move
quickly from an infected state to an uninfected state. This
would apply to settings where viral decay on a needle is
high, or when infected needles are directly exchanged for
uninfected ones (as in certain needle exchange programs).
The model is run with all uninfected populations initialized
at their disease free equilibrium values (S = 170, 000 and
Nu = 220, 000), and we initialize IE = Nu = 1, and
IL = 0. In the high ε scenario, we observe generally slower
dynamics and higher overall susceptible population sizes,
along with lower infected populations (on long time scales).

Fig. 5: The dynamics of susceptible (blue), early-infected (or-
ange), and late-infected (green) populations in two parameter
regimes: high and low ε, the conversion rate of needles from
infected to uninfected. The solid lines represent the dynamics
for ε = 2 day−1 (high ε), and dashed lines are the dynamics
for ε = 0.33 day−1 (low ε). In the high-ε regime, we find
that the susceptible population at equilibrium is ≈ 4 times
that of the low-ε regime, and the infected populations are
each ≈ 89% of the their low-ε counterparts at equilibrium
(note the log scale on the y-axis).
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Label Value Units Description Sources

πS 47± 10 person / day
Birthrate of susceptibles

(chosen to keep
πN/µ ≈ 170, 000)

Estimate

φ (4.7± 0.5) · 10−3 % / day Daily fractional
self-clearance rate [26] [51]

α 4± 3 injections/(person · day) Injection rate times
infection of needle probability [52]

β 0.072± 0.05 injections/(person · day) Injection rate times
infection of host rate [53]

µ (2.7± 0.5) · 10−4 % / day

Fractional rate of
removal from IDU
community due to
cessation & death

[54]

ω 0.006± 0.005 % / day Fractional transfer rate
into late-stage infection [55] [56]

τ 0.011± 0.005 % / day Fractional rate
of entering treatment [57] [58]

πN (3.14± 0.01) · 104 needles / day
Birthrate of uninfected

needles (chosen to keep
πN/ku ≈ 220, 000)

[59] [60]

ku 0.143± 0.005 % / day Fractional discard rate
of uninfected needles Estimate

ki 0.143± 0.005 % / day Fractional discard rate
of infected needles Estimate

ε 1.17± 0.05 % / day
Fractional decay rate
of HCV infection in

needles
[47]

TABLE I: HCV model parameters

IV. DISCUSSION

While diseases transmitted through injection drug use
have been the object of prior modeling efforts, none have
specifically investigated how injection equipment plays a
role in the dynamics of HCV. Prior models of injection
equipment have focused on HIV [24], [25], and/or been
so complicated that their structure is not easily translated
to any other settings [23]. In this study, we model HCV
as an indirectly transmitted infection, where the injection
equipment is modeled as the environmental reservoir, just as
a water source might be modeled in a waterborne infection
[8], [19]. We label our approach as the “Waterborne, abiotic
and other indirectly transmitted” (W.A.I.T.) model, one that
incorporates features of other approaches to studying envi-
ronmentally transmitted pathogens [6], [11], but grounding
them in a fungible model that can be neatly applied to HCV.
Our approach offers several specific insights. For example,
we demonstrate that the composite R0 that defines the entire
dynamical system is the product of the geometric mean
of the R0 used to describe each of two sub-components:
disease flow through the hosts and flow through the injection
equipment (equation 10). This observation offers a practical
suggestion for studying diseases like HCV: epidemiologists
and modelers must understand, through empirical studies,
properties of all major actors in the system (hosts and
environmental injection drug equipment in the case of HCV).

The mathematical model of HCV presented in this
manuscript (described as a W.A.I.T. model; see sections II
and III) also offers nuanced findings about the dynamics
of disease. Firstly, our model highlights the differing roles
of uninfected and infected injection on disease dynamics.
Specifically, the model speaks to the potential utility of
harm reduction policies: indiscriminately removing injection
equipment from a system—without an overall shift in needle

populations from infected to uninfected—might increase the
rate of infection. In order to attenuate an epidemic, inter-
vention strategies should focus on steering the population
of needles towards being more uninfected. Therefore, ideal
intervention efforts should aim to decrease sharing events on
an infected needle. This helps to explain why programs like
safe injection might be effective [61]: they don’t change the
number of infected needles in the system directly, but can
alter the sharing rate, and consequently, the probability of
sharing an infected needle.

Finally, understanding the dynamical properties of disease
transmitted through injection drug use is now especially
relevant as a result of the modern opioid epidemic. This
epidemic is typified by use of prescription and illicit opioids
recreationally, with injection drug use being a major route
through which drugs are consumed [41]. The relevance of
viral diseases among opioid users gained national attention
during a 2015 outbreak of HIV in rural Indiana that was
driven by an injected opioid called oxymorphone [62], [63].
This outbreak raised alarms in the public health community,
and officials are increasingly aware of the potential for future
outbreaks. However, it wasn’t until relatively recently that the
role of the opioid crisis in Hepatitis C virus transmission
has been examined [64], [65]. We propose, in closing,
that modeling approaches (in general, and not necessarily
similar to the proposed methods proposed) are crucial for
understanding, attenuating or preventing explosive outbreaks
of HCV in an age when a new opioid epidemic has emerged.
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