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The Problem

Multiple Change-points Problem: Y1,...,Yn are a sequence of
independent random variables with Yj ∼ Fj . There are J
change-points 0 = τ0 < τ1 < · · · < τJ < τJ+1 = n such that

� Fτk+1 = Fτk+2 = · · · = Fτk+1
for all k = 0,...,J ;

� Fτk 6= Fτk+1 for all k = 0,...,J .
It is usually assumed that Fi belongs to a specified parametric
family.

!2 !4!1+1 !3+1

1""""2""""3""""4"""5"""6""""7"""8""""9"""10""11"12"13"14"15""16""17"18""19"20

!0+1 !1 !3!2+1

!0+1 !1
!2

!3
!4!1+1

!2+1
!3+1

#6 #17

1""""2""""3""""4"""5"""6""""7"""8""""9"""10""11"12"13"14"15""16""17"18""19"20

!0+1 !1 !3!2+1#6
#1 #9Heping Zhang Multiple Change-Point Detection and CNV Analysis 4/46



Highlights

Goal: Estimate the number and locations of the change-points.

Setting: n is large and J � n.

Feature: High dimensionality; Sparsity; Sequential Structure.

Tool: The Screening and Ranking Algorithm (SaRa).
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Copy Number Variation

� DNA copy number: The number of copies of the DNA;

� Copy number variants (CNVs), i.e., gains or losses of
segments of chromosomes, comprise an important class of
genetic variation;

� CNVs: Inherited (present in parents) or de novo (absent in
parents) mutation;

� CNVs: Associated with complex diseases.
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Copy Number Variations and Diseases

Autism: MZ twins share the same deletion/duplication
event, explaining why the concordance rate in MZ twins is
high.
Schizophrenia: Deletion in the 22q11.2 region from
17-21Mb to 3Mb was identified.
Crohn’s disease: The causal mutations were reported.
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Platforms and data

� Popular genome analysis platforms include array
comparative genomic hybridization (aCGH) and SNP
genotyping platforms.

� aCGH: data = log2 ratios of test and reference fluorescent
intensities. Sample size ≈ a few thousands.

� SNP genotyping: data = “Log R Ratio”
Total fluorescent intensity signals (alleles A and B) at each
SNP. Sample size ≈ tens of thousands per chromosome,
tens of thousands or millions along whole genome.

� Goal: identify segments of concentrated high or low
log-ratios.
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aCGH(Pinkel & Albertson 2001)Structural aberration (4): from microscopic to 

submicroscopic, from chromosome CGH to 

array CGH (Pinkel/Albertson 2001) 

1.! Array can be spotted by any DNA sources: BAC clone, oligonucleotide… 

2.! “Swap” in a second hybridization to remove artifact 
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SNP genotyping data: a first look

Data: SNP genotyping data from illumina 500K platform.
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Model formulation: normal mean model
Normal mean model:

yi = θi + εi, εi
iid∼ N (0, σ2), i = 1, ..., n. (1)

Moreover, we assume the mean vector θ = (θ1, ..., θn)T is
piecewise constant. In other words, we assume that

θ1 = · · · = θτ1 6= θτ1+1 = · · · = θτ2 6= θτ2+1 = · · ·

· · · = θτJ 6= θτJ+1 = · · · = θn,

where τ = (τ1, ..., τJ)T is the location vector of change-points.

!2 !4!1+1 !3+1

1""""2""""3""""4"""5"""6""""7"""8""""9"""10""11"12"13"14"15""16""17"18""19"20

!0+1 !1 !3!2+1

!0+1 !1
!2

!3
!4!1+1

!2+1
!3+1

#6 #17

1""""2""""3""""4"""5"""6""""7"""8""""9"""10""11"12"13"14"15""16""17"18""19"20

!0+1 !1 !3!2+1#6
#1 #9

Heping Zhang Multiple Change-Point Detection and CNV Analysis 13/46



Model formulation: existing work

Model (1) or more restrictive ones have been considered in
Olshen et al.(2004); Huang et al.(2005); Zhang & Siegmund (2007);
Tibshirani & Wang (2008); Jeng et al. (2010), among others.
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Model formulation: regression model

Note that in model (1), the sparsity is encoded in the piecewise
constant structure of θ. De-trend the θ’s,

β0 = θ1, βi = θi+1 − θi; i = 1, . . . , n− 1.

Model (1) is transformed to a sparse linear regression model,

yi =
i−1∑
j=0

βj + εi, i = 1, . . . , n.
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Model formulation: regression model

The model above can be rewritten as

y = Xβ + ε, (2)

where β = (β0, . . . , βn−1)
T is a sparse vector and the design

matrix

X =


1 0 0 · · · 0 0
1 1 0 · · · 0 0
1 1 1 · · · 0 0
...

...
...

...
...

...
1 1 1 · · · 1 1

 .
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Single change-point case

If we know in advance that there is at most one change-point in
model (1), the problem becomes the following hypothesis testing
problem

H0 : θ1 = · · · = θn, against
H1 : θ1 = · · · = θj 6= θj+1 = · · · = θn for some 1 ≤ j < n.(3)

For simplicity, we assume σ2 = 1. If j is fixed in H1, we can
calculate

− 2 log Λj = (Ȳj+ − Ȳj−)2/[1/j + 1/(n− j)], (4)

where Λj is the likelihood ratio, Ȳj− =
∑j

k=1 Yk/j and
Ȳj+ =

∑n
k=j+1 Yk/(n− j).
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Single change-point case

When j is unknown, it is natural to use

T1 = max
1≤j≤n−1

(−2 log Λj)

as test statistic for problem (3).
Moreover, when the alternative is supported,

ĵ = argmax
1≤j≤n−1

(−2 log Λj)

is the location estimator.
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Single change-point case

Accuracy of ĵ

If H1 is true, j(n)/n→ 0, δ(n) = θj+1(n)− θj(n)→ 0, with
limn→∞

j(n)δ2

log logn =∞, then

δ2|ĵ − j| = OP (1) i.e. δ2

∣∣∣∣∣ ĵn − j

n

∣∣∣∣∣ = OP

(
1

n

)
.

If the change point is not too close to the end and the jump is
not too small, we can detect the change point within a
reasonable precision. The precision depends on the location and
jump size.
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Multiple change-point case: exhaustive search

Ignoring its computational complexity, an exhaustive search
among all possibilities 0 ≤ J ≤ n− 1 and 0 < τ1 < · · · < τJ < n
can be applied. For any J and τ = (τ1, . . . , τJ)T , denote by σ̂2J,τ
the MLE of the variance. Define σ̂2J = minτ σ̂

2
J,τ .

Yao (1988) showed that

Ĵ = argmin
J

(
n

2
log σ̂2J + J log n). (5)

is consistent estimator for J∗–the true number of change points.
Yao & Au (1989) showed τ̂ = argmin σ̂2J∗,τ is a consistent
estimator for τ ∗–the vector of the true change points.
Assumption: J is fixed and τ/n→ t as n→∞.
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Multiple change-point case: binary segmentation

Binary Segmentation (BS) algorithm (Vostrikova 1981) is a
method which applies the single change-point test recursively.
The BS procedure can be summarized in the following steps.

1 Test for no change-point versus one change point (3). If H0

is not rejected, stop. Otherwise, there is a change-point ĵ.
2 Test the two segments before and after the change-point

detected in step 1.
3 Step 3: Repeat the process until no further segments have

change-points.

We see that this procedure is very similar to forward stepwise
selection solving regression problem (2).
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Multiple change-point case: binary segmentation

To make this algorithm more powerful in detecting short
segments, Olshen et al. (2004) proposed Circular Binary
Segmentation (CBS). The only difference is that CBS tests the
epidemic alternative recursively over each segment.

H0 : θ1 = · · · = θn, against
H1 : θ1 = · · · = θl = θr+1 = · · · = θn 6= θl+1 = · · · = θr (6)

for some pair l < r.
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Multiple change-point case: binary segmentation

Test statistic T2 = max1≤l<r≤n(−2 log Λl,r),

−2 log Λl,r = (ȲI − ȲO)2/[1/(r − l) + 1/(n− r + l)],

where

ȲI =

r∑
k=l+1

Yk/(r − l)

and
ȲO =

∑
k≤l or k>r

Yk/(n− r + l).
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Multiple change-point case: `1 penalization
Huang et al. (2005) studied the following optimization problem

minimize ||y − θ||2 subject to
∑
j

|θj − θj+1| ≤ s. (7)

After reparametrization βi = θi+1 − θi, the above optimization
problem is equivalent to

minimize ||y −Xβ||2 subject to
n−1∑
j=1

|βj | ≤ s. (8)

This is a special case of the fused lasso (Tibshirani & Wang 2008),
which

minimizes ||y−θ||2 subject to ||θ||`1 ≤ s1,
∑
j

|θj−θj+1| ≤ s2.
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Better Methods?

� Computational Complexity O(n) or close to O(n).
� Consistency: P (Ĵ = J∗)→ 1; δ2(τ̂i − τ∗i ) = OP (1).
� Generalizability: Readily extendable to other settings.
� Nonasymptotic result, FDR control, etc.
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The SaRa: the rationale

To determine whether a position is a change-point, it is enough
to check observations in a neighborhood.
Suppose that the minimal distance between two change points is
at least h. Consider the local hypothesis testing problem at
position x:

H0(x) : Fx+1−h = · · · = Fx+h vs (9)
H1(x) : Fx+1−h = · · · = Fx 6= Fx+1 = · · · = Fx+h.
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The SaRa: the algorithm

Let D(x) be a test statistic for (9), and p(x) be the
corresponding P-value. We may assume that a larger value of D
is in favor of the alternative. The SaRa proceeds as follows.

1 Screening: calculate D(x) (or p(x)) for each x.
2 Select all the local maximizers of D(x) ( or local minimizers

of p(x)).
3 Ranking and thresholding: D(x) > λ (or p(x) < p∗).

Here, we call x∗ a local maximizer of D(x) if
D(x∗) ≥ D(x) for all x ∈ (x∗ − h, x∗ + h).

The SaRa estimator
Ĵh,λ = {x|D(x) > λ & x is a local max of D(·)}.

τ̂ is obtained by ordering elements in Ĵh,λ.
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The SaRa for normal mean model

For the normal mean model, consider the local hypothesis
testing problem at position x:

H0(x) : θx+1−h = · · · = θx+h vs (10)
H1(x) : θx+1−h = · · · = θx 6= θx+1 = · · · = θx+h.

A reasonable test statistic is (Niu & Zhang 2010)

Dh(x) =

∣∣∣∣∣
(

x∑
k=x−h+1

Yk −
x+h∑
k=x+1

Yk

)
/h

∣∣∣∣∣ .
Computational complexity of the SaRa is O(n), thanks to the
recursion formula

Dh(x+ 1) = Dh(x) + (2Yx+1 − Yx−h+1 − Yx+h+1)/h.
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The SaRa as “local correlation learning”

Let us revisit the high dimensional regression model

y = Xβ + ε. (2)

The correlation learning, e.g., Sure Independence Screening (Fan
and Lv 2008), provides an approach to solving this regression
problem. However, from the example below, we see that SIS
may not work directly for (2). The SaRa is a localized version of
the correlation learning and works well here.

Example: Assume n = 300, the true θ = (−1T100,0T100, 2 · 1T100)T ,
and σ2 = 0. There are 2 change-points, 100 and 200.
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The SaRa as “local correlation learning”
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Figure: (a) Correlation between y and each Xi; (b) Local statistic
D10(·).

D10(100) = C · corr(y[91 : 110],X100[91 : 110]).
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The SaRa: consistency

Asymptotic setting: Define

L = min
1≤j≤J+1

(τj − τj−1), δ = min
1≤j≤J

|θτj+1 − θτj |,

where both J and 0 = τ0 < τ1 < · · · < τJ < τJ+1 = n depends
on n.
We assume that

S2 = δ2L/σ2 > 32 log n. (∗)
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The SaRa: consistency

Theorem 1
Under Assumption (∗), there exist h = h(n) and λ = λ(n) such
that Ĵ = Ĵh,λ = {τ̂1, · · · , τ̂Ĵ} satisfies

lim
n→∞

P
({
Ĵ = J

})
= 1;

conditional on Ĵ = J, δ2(τ̂i − τi) = OP (1).

In particular, taking h = L/2 and λ = δ/2, we have

P

({
Ĵ = J

}⋂⋂
i

{
|τ̂i − τi| < h

})
> 1−8S−1 exp{log n−S2/32}.
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The SaRa: FDR control

Multiple change-points problem can be considered as multiple
testing problem. The tricky part is how to deal with “H0(x) vs
H1(x)” for those x’s which are not change-points but close to
change-points.

Define “H1(x) is discovered successfully” if a decision rule
rejects x̂ which is close to a true change-point x, say
x̂ ∈ [x+ 1− h, x+ h].

Consider local minimal pi1 , ..., piN , which are nearly independent
conditional on i1, ..., iN are local mins of the P-value sequence.
The conditional distribution pik , depending only on h, can be
approximated accurately and denoted by Fh. Any FDR control
procedure can be applied to F−1h (pi1), ..., F−1h (piN ).
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The SaRa: generalizability

The SaRa can be generalized to
� Heteroscedastic normal mean model.
� Mean shift model with non-Gaussian noise.
� Exponential family.
� Multivariate case.
� . . . . . .
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Numerical Study I: Sure Coverage Property

Model: Yi = θi + εi, where θi = δ · I{n/2<i≤n/2+L}.
Fix jump size δ = 1;
Set (n,L) = (400, 12), (3000, 16), (20000, 20) and
(160000, 24). L ≈ 2 log n.

εi
i.i.d.∼ N(0, σ2) with σ = 0.5, 0.25. Correspondingly

S2 ≈ 8 log n and 32 log n.
Applying thresholding rule, h = 3

4L, λ = 3
4δ.
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Numerical Study I: Sure Coverage Property

Table: The estimated model sizes Ĵ and Sure Coverage Probabilities
(SCP) of SaRa. Column 3 lists the distribution and mean value of the
estimated number of change-points. Column 4 and 5 list SCPs of two
change-points as well as mean distance between estimated
change-point locations and true locations. The results are based on
1000 replications.

number of change-points change-point 1 change-point 2
(n,L) σ Ĵ = 2 < 2 > 2 Mean SCP (Mean) SCP (Mean)

(400,12) 0.5 63.5% 11.7% 24.8% 2.175 91.3% (0.756) 91.3% (0.716)
0.25 98.2% 1.8% 0.0% 1.980 98.9% (0.129) 99.1% (0.119)

(3000,16) 0.5 60.3% 8.3% 31.4% 2.306 92.8% (0.814) 93.4% (0.776)
0.25 98.1% 1.9% 0.0% 1.980 99.3% (0.118) 98.7% (0.129)

(20000,20) 0.5 60.2% 6.3% 33.5% 2.343 94.3% (0.862) 94.8% (0.841)
0.25 99.3% 0.7% 0.0% 1.993 99.5% (0.139) 99.8% (0.108)

(160000,24) 0.5 49.5% 5.0% 45.5% 2.599 95.8% (0.877) 95.0% (1.013)
0.25 99.5% 0.5% 0.0% 1.995 99.8% (0.096) 99.7% (0.148)
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Numerical Study II: FDR control

Still consider model (1).
We set n = 30000, σ = 1, J = 50.
We drew 50 change-points uniformly among
{x ∈ N : x < 20000}, producing τ = (430, 570, · · · , 19750)T .
L = min(τj+1 − τj) = 15.
θi = 0 when τ2j−1 ≤ i ≤ τ2j ; θi = 1.5 or 3 otherwise.

We tried the SaRa with h = 10, 20, 30 and the threshold chosen
by Benjamini Hochberg procedure with target FDR
q = 0.05, 0.10, 0.15.
τ̂k is “falsely discovered” if there is no τj such that
|τ̂k − τj | < 10. Otherwise, τ̂k is a “true positive”.
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Numerical Study II: FDR control

Table: The average estimated number of change-points Ĵ , true
positives (TP) and false discovery proportion (FDP). The results are
based on 100 replications.

q=0.05 q=0.10 q=0.15
(δ, h) Ĵ TP FDP Ĵ TP FDP Ĵ TP FDP
(1.5, 10) 3.70 3.52 0.4% 20.86 19.13 7.6% 27.69 23.64 13.6%
(1.5, 20) 45.73 43.60 4.5% 50.71 45.60 9.9% 54.62 46.56 14.5%
(1.5, 30) 50.58 47.13 6.7% 53.80 47.38 11.7% 56.74 47.46 16.1%
(3, 10) 51.50 49.92 3.0% 53.68 49.97 6.7% 57.04 49.98 12.1%
(3, 20) 50.38 49.07 2.5% 52.82 49.07 7.0% 55.00 49.07 10.6%
(3, 30) 50.77 48.65 4.1% 53.00 48.65 8.0% 55.49 48.65 12.1%
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Numerical Study III: CNV detection
Data: SNP genotyping data from illumina 550K platform.
(father.txt included in PennCNV package)
Y = Log R Ratios of Chr 11, n = 27272.

Figure: Log R Ratio of Chromosome 11.
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Numerical Study III: CNV detection
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Better Methods? Answer= The SaRa.

� Computational Complexity O(n) or close to O(n).
� Consistency: P (Ĵ = J∗)→ 1; δ2(τ̂i − τ∗i ) = OP (1).
� Extensibility: Extensible to more general setting.
� nonasymptotic result, FDR control, etc.
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The End

Thank you!
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