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Competition along trajectories governs adaptation 
rates towards antimicrobial resistance
C. Brandon Ogbunugafor1, 2 † and Margaret J. Eppstein2, 3* †

The increasing availability of genotype–phenotype maps for different combinations of mutations has empowered evolution-
ary biologists with the tools to interrogate the predictability of adaptive evolution, especially in the context of the evolution of 
antimicrobial resistance. Large microbial populations are known to generate competing beneficial mutations, but determining 
how these mutations contribute to the adaptive trajectories that are most likely to be followed remains a challenge. Despite 
a recognition that there may also be competition between successive alleles on the same trajectory, prior studies have not 
fully considered how this impacts adaptation rates along, or likelihood of following, individual trajectories. Here, we develop a 
metric that quantifies the competition between successive alleles along adaptive trajectories and show how this competition 
largely governs the rate of evolution in simulations on empirical fitness landscapes for proteins involved in drug resistance in 
two species of malaria (Plasmodium falciparum and P. vivax). Our findings reveal that a trajectory with a larger-than-average 
initial fitness increase may have smaller fitness increases in later steps, which slows adaptation. In some circumstances, these 
trajectories may be outcompeted by alleles on faster alternative trajectories that are being explored simultaneously. The abil-
ity to predict adaptation rates along accessible trajectories has implications for efforts to manage antimicrobial resistance in 
real-world settings and for the broader intellectual pursuit of predictive evolution in complex adaptive fitness landscapes for a 
variety of application domains.

Since Sewall Wright first introduced the landscape analogy 
to conceptualize the relationship between genotypes and 
reproductive fitness1 it has proved to be a useful theoreti-

cal framework not only in biological systems but also in complex  
technological2, computational3, and social systems4. This analogy 
is widely used in evolutionary biology, with a growing number of 
genotype–phenotype maps generated from empirical data contrib-
uting to foundational studies of drug resistance in several microbial 
systems5,6. The increasing availability of these empirical fitness land-
scapes enables us to probe to what degree evolution is predictable7,8 
and could potentially improve treatment regimens9. It is becoming 
clear that sign epistasis is ubiquitous in many of these systems10,11 
and that the resulting landscape ‘ruggedness’ may constrain evolu-
tion to a relatively small set of accessible trajectories of increasing 
fitness5,6,8,12–14. Yet recent experimental studies of rugged empirical 
fitness landscapes15,16 underscore that we have yet to fully resolve 
all of the essential properties that dictate why certain trajectories 
are traversed. If one invokes the assumptions of the strong selection 
and weak mutation regime (SSWM), then fixation of a new benefi-
cial mutation is assumed to occur essentially instantaneously7, and 
it has been assumed that the like lihood of fixation of an allele is cor-
related with its selective advantage5,6. However, given the observed 
population sizes and mutation rates for many microbial systems17–20, 
it is likely that multiple alleles may coexist in competition with 
each other for some time, thus violating the assumptions of the 
SSWM regime15,21,22. Previous work on such clonal interference has  
shown that the likelihood that evolution will favour the so-called 
‘greedy’ trajectory (the one that selects the available allele with  
the largest fitness increase at each step) actually decreases at these 
large population sizes23,24.

We distinguish between two types of clonal interference. 
‘Between-path’ clonal interference refers to competition between 
alleles on different trajectories (Fig. 1), and has previously received 

considerable attention16,23,24. In contrast, ‘within-path’ clonal inter-
ference refers to competition between successive alleles on the same 
adaptive trajectory (Fig. 1). While it is recognized that the time to 
fixation of a new beneficial allele is a function of the amount of 
within-path competition with its predecessor22, we have found no 
prior work that quantifies the effect of within-path clonal inter-
ference on the adaptation time along a multi-allele trajectory or 
examines the impact that this may have on the likelihood that the 
trajectory will be followed.

Results
We explored adaptation rates and the trajectories taken using a 
discrete population model to simulate evolution in asexually repro-
ducing populations of microorganisms such as malaria in the host 
(see Methods). We represent bi-allelic haploid genotypes as binary 
strings, where 0 or 1 mean wild-type or mutant loci, respectively. 
Binary strings that differ at exactly one locus are referred to as ‘muta-
tional neighbours’. We examined 29 different adaptive landscapes for 
two sets of four bi-allelic loci in the dihydrofolate reductase (DHFR) 
gene that are known to be associated with antimicrobial resistance 
in malaria. We studied 19 adaptive landscapes for P. falciparum,  
corresponding to one drug-free landscape, nine concentrations of 
pyrimethamine (Supplementary Table 1), and nine concentrations 
of cycloguanil (Supplementary Table 2). Ten landscapes were stud-
ied for P. vivax, corresponding to one drug-free landscape and nine 
concentrations of pyrimethamine (Supplementary Table 3). We ran  
simulations starting from each of the 16 genotypes in each landscape 
(referred to as ‘seed’ genotypes), using realistically large population 
sizes and low mutation rates (see Methods). Of the 464 unique land-
scape–seed combinations, 20 were seeded with inviable genotypes 
and 29 were seeded with the global optimum, and so did not require 
simulation. Of the remaining 415 cases, 60 always became indefi-
nitely trapped on a local optimum, 3 sometimes became trapped 
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and sometimes evolved to the global optimum and 352 consistently 
evolved to became dominated by the global optimum. (As with any 
study of empirical fitness landscapes, these conclusions are neces-
sarily limited by the extent of the mapped landscapes.)

We observed large disparities in the time it takes for the optimal 
genotype to become dominant (Td) along different evolutionary 
trajectories, even for trajectories of the same length. Interestingly, 
for a given combination of the species of malaria, drug, seed gen-
otype and global optimum, the time it takes to evolve maximum 
resistance varies non-monotonically with dosage (Fig.  2). Closer 
examination revealed that the time it takes for a new beneficial 
mutation to outcompete its immediate predecessor is governed by 
the reciprocal of the difference between their growth rates (that is, 
the fitness gradient). The steeper the gradient, the more rapidly  
a beneficial mutation will become fixed. Thus for an accessible  
evolutionary trajectory with strictly increasing fitnesses, we quan-
tify the total within-path competition (Cw) along the trajectory  
as the sum of the reciprocal differences in the growth rates between 
all pairs of adjacent genotypes along the path, as illustrated in 
Fig. 3a (see Methods for a derivation of this metric). The recipro-
cal of the smallest growth rate differences (the flattest gradients) 
on a trajectory therefore dominate the value of Cw. One can think  
of the sum of reciprocal growth rate gradients as a measure of 
resistance to movement along the trajectory, much as the total  
resistance in a serial electrical circuit is the sum of all of the resis-
tors along the circuit. The occurrence of a larger-than-average 
initial fitness increase (as often occurs on the greediest path) neces-
sitates smaller fitness increases further down the path towards a 
given optimum, thus increasing Cw and Td (Fig. 3b,c; blue lines) rel-
ative to a trajectory with equal step sizes (the latter being the fastest  
possible trajectory) (Fig.  3b,c; green lines). The surprisingly  
simple and intuitive metric Cw allows the comparison of within-
path competition along different adaptive trajectories (on the same 
or different landscapes), providing insight into the reason for wide 
disparities in adaptation rates along different trajectories, and 
revealing why greedy trajectories are not always the most likely  
to be followed.

If the initial fitness increase in the greediest trajectory is suf-
ficiently higher than the fitness of competing alleles, the greedi-
est trajectory will outcompete faster alternative trajectories on 
the same landscape. For example, if the two trajectories shown in 
Fig. 3b,c are explored simultaneously, the greedy (blue) trajectory 
always wins, because the second node on the greedy trajectory out-
competes the second node on the faster (green) trajectory before 
the latter has a chance to mutate further. However, if the faster  

trajectory is only slightly less greedy, it may win the competition.  
The hypothetical paths shown in Fig.  3d illustrate how this can 
happen. Although the path shown in blue is initially slightly 
greedier than the green path, the subtle differences in the growth 
rates translate into large differences in Cw. Simulations along each  
of these trajectories independently (Fig.  3e) confirm that the  
greedier trajectory is much slower. In simulations where they 
are allowed to compete, the faster trajectory consistently beats  
the greedier trajectory.

For example, consider the competition between the two trajecto-
ries that are simultaneously being explored on the empirical fitness 
landscape illustrated in Fig. 4a,b. Genotype 0110 on the slightly less 
greedy but faster trajectory (dashed lines, Cw =  62.1) outcompeted 
genotype 1001 on the greediest trajectory (solid lines, Cw =  84.3) in 
1,000 out of 1,000 simulations. The fact that, in this case, the greedy 
trajectory leads to a different peak (which is slightly lower, although 
only by an amount that is probably less than experimental error) 
is irrelevant, since the greedy path was consistently outcompeted 
before it ever even reached the peak 1101 (Fig. 4b). Once we had 
determined which trajectory first reached the global optimum 
(the ‘winning’ trajectory) in such simulations, we subsequently ran 
‘path-only’ simulations, in which all between-path competition (Cb) 
was temporarily suppressed by setting all of the growth rates outside 
the winning trajectory to zero (for example, Fig. 4c,d). This enabled 
us to separately quantify the effects of Cw and Cb on adaptation rates. 
Although the fitness differences between the greedy and less-greedy 
paths shown in Fig.  4a,b are relatively small, the same thing can 

Figure 1 | Types of clonal interference. Consider a hypothetical 
evolutionary trajectory (000 →  001 →  011 →  … , where 0 or 1 represent 
wild-type or mutant loci, respectively) with monotonically increasing 
fitness. The competition between each allele and its ancestor on the 
same trajectory (filled double-arrows) is what we term within-path clonal 
interference. Competition with co-existing alleles on alternate trajectories 
(for example, 100) is what we term between-path clonal interference 
(open double-arrows).
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Figure 2 | Speed of acquisition of drug resistance varies non-
monotonically with dosage. The time it takes for the global optimum 
to become dominant (Td) varies non-monotonically with dosage on the 
29 empirical fitness landscapes tested. Each line represents simulations 
starting from a different seed genotype, with the red line corresponding 
to simulations that start from the wild-type and reach the dosage-specific 
global optima indicated by the coloured symbols. Dosage levels correspond 
to the columns in Supplementary Tables 1–3.
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occur (albeit less frequently) with relatively large fitness differences 
(Supplementary Table 4, Supplementary Fig. 1).

The results of our simulations confirm that adaptation times in 
all 29 empirical fitness landscapes studied are largely governed by 
within-path competition along the winning trajectories (coefficient 
of determination R2 >  0.996, Supplementary Fig. 2). When we subse-
quently ran the path-only simulations on these same trajectories, the 
strength of the relationship improved to R2 >  0.998 (Fig. 5). Note that 
this relationship is equally strong if one only considers the 21 simula-
tions from the non-overlapping trajectories where the seed is exactly 
4 steps from the optimum (Supplementary Fig. 3). The path-only  
simulations reveal that much of the residual error in the regressions 
on the data from the full landscapes (Supplementary Fig. 2) can  
be explained by the existence of Cb due to clonal interference from 
genotypes on competing trajectories. The effects of such between-
path clonal interference that occur at the final step become more 
pronounced when simulations are run until Tf, the time-step when 
the optimal genotype becomes fixed (exceeds 99% of the population, 
Supplementary Fig. 4). See Supplementary Fig. 5 for an illustration 
and discussion of additional sources of error that account for the 
remaining small residuals. The difference between the observed Td or  

Tf on the empirical fitness landscapes and the path-only Td or Tf 
observations, as indicated by the lengths of the red vertical lines in 
Fig. 5 and Supplementary Fig. 4, can be used to quantify Cb. Unlike 
Cw, this quantification of Cb requires simulations and is thus sensi-
tive to the necessarily arbitrary nature of these stopping criteria.

The strength of the dependence of ln(Td) on ln(Cw) in path-only 
simulations is insensitive to specific assumptions on the simulation 
parameters in realistic ranges, such as the maximum population size, 
mutation rate or absolute growth rates (Supplementary Table 5),  
although the specific coefficients are obviously affected by these 
parameters. For example, as the number of mutations increases 
(due to increases in any of these parameters), the relationship 
becomes increasingly sublinear (Supplementary Table 5) because 
ongoing mutational events increase the speed along the trajectory. 
Increasing stochasticity by using Poisson-distributed mutation 
rates (see Methods) causes the distributions to become increasingly  
negatively skewed below the best fit line shown in Fig. 5 because 
of the increasing occurrence of rare ‘lucky’ mutations that decrease 
convergence times (Supplementary Fig. 6).

We further examined the 242 non-trivial landscape–seed combi-
nations that always or sometimes converged to the global optimum, 
and in which the seed differed from the global optimum in at least 
two loci. As expected, most of them (220) were found to follow the 
greediest trajectory from the seed to the optimum in 100 out of 100 
trials. However, as found elsewhere16,21,22, our simulations confirmed 
that multiple accessible pathways may be explored simultaneously 
and thus compete with each other. Indeed, in the empirical fitness 
landscapes we explored, we found 22 landscape–seed combinations 
where faster trajectories outcompeted the greedy trajectory some or 
all of the time. In 12 of these cases, the greedy trajectory happened to 
lead to a different peak, but the faster trajectory was able to win the 
competition and reach the global optimum (Supplementary Table 4;  
see Fig.  4a,b and Supplementary Fig. 1 for representative simula-
tions). In the other 10 cases, greedy and slightly less-greedy trajec-
tories of the same length were simultaneously followed towards the 
same global optimum (see Supplementary Fig. 7 for a representative 
illustration), with the less-greedy but faster trajectories generating 
the first optimal mutant in 2.4–46.5% of the trials (Supplementary 
Table 6). In 1,000 repetitions of each of these we found that: (1) Td 
was significantly lower on the less greedy path in 9 of the 10 cases 
(2-sided Wilcoxon rank sum, P ≪  104, Supplementary Table 6); and 
(2) the proportion of the 1,000 repetitions in which the first indi-
vidual of the optimal genotype came from the less greedy path was 
positively correlated with the amount by which it was faster than the 
greedy path (Pearson correlation r =  0.69, P <  0.02).

Discussion
It has previously been shown that small populations, or spatially 
structured populations with limited mixing, can explore alterna-
tive trajectories more effectively on rugged landscapes than large 
well-mixed populations. This occurs because the effects of genetic 
drift are amplified when selection pressure is reduced, thus enabling 
these populations to sometimes avoid becoming trapped on sub-
optimal peaks23,25–27. Here we have shown that even when the greedi-
est path leads to a suboptimal peak, very large populations can also 
sometimes reach a higher peak along a faster competing trajectory. 
Similarly, when competing paths lead to the same fitness peak, the 
faster but less-greedy path can sometimes get there first. In either 
case, it is not the fitness of the peak that is the determining factor as 
to which trajectory wins the competition. Rather, it is the amount of 
within-path competition that governs the evolutionary speed along 
these different trajectories, potentially enabling a less greedy trajec-
tory to reach a higher fitness more quickly and therefore ultimately 
outcompete the slower but greedier trajectory.

On the P. falciparum DHFR landscapes that we studied for 
pyrimethamine dosages between 0.1 μ M and 100 μ M, the greedy 
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Figure 3 | Quantifying within-path competition. a, Cw along a hypothetical  
evolutionary trajectory with four steps (0000 →  0010 →  0110 →   
1110 →  1111) is quantified as the sum of the reciprocal differences in growth 
rates (ri+1 – ri) between adjacent genotypes i and i +  1 on the trajectory 
(see equation (16)). b, Two different hypothetical trajectories leading to 
the global optimum. Cw is minimized along the lower (green asterisks) 
trajectory where the changes in adjacent growth rates are equal. The larger 
initial fitness increase on the greedy path (blue open circles) means that 
one or more subsequent steps are  necessarily smaller, thus increasing Cw, 
which is dominated by the smallest step size. c, Independent simulations 
along each of the two trajectories shown in b (not in competition with 
each other) reveal that the blue trajectory is much slower than the green 
trajectory (two-sided Wilcoxon rank sum, P <  3.5 ×  10−8). d,e, Minor 
differences in ri+1 – ri  along two hypothetical trajectories translate into large 
differences in Cw and resulting adaptation rates. The blue trajectory is  
only slightly greedier, but the green trajectory has much less within-path 
clonal interference and is thus much faster (two-sided Wilcoxon rank sum,  
P <  3.5 ×  10−8). In c and e the x coordinate of each symbol represents 
the median number of time-steps (from n =  21 simulations) at which the 
maximum frequency of each of the intermediate alleles was achieved or 
the final allele became dominant, with the median ±  the standard deviation 
shown in the legend. The lines show the average growth rate over the  
entire population for one representative simulation on each trajectory.
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trajectory is 0000 →  0010 →  0110 →  1110. It is thus not surprising 
that all of these alleles have been observed in real-world settings6. 
However, a recent study of changes in pyrimethamine-resistant 
DHFR mutants in P. falciparum in the Gambia28 found increases 
in mutants along a less-greedy trajectory with lower within-path 
competition (0000 →  0010 →  1010 →  1110). This provides intrigu-
ing (albeit indirect) evidence that evolution may have preferred the 
faster but less-greedy path in this region.

Recognizing that different trajectories can have dramatically 
different adaptation rates and why also has important implications  
for understanding the evolution of antimicrobial resistance and 
designing treatment strategies for malaria and other microbial 
pathogens. For example, maximizing the predicted time along 
adaptive trajectories towards antimicrobial resistance could become 
another objective in determining which drug and/or which dosage 

to use (for example, note the large differences in Td between dif-
ferent drugs and different dosages in Fig. 2). Alternatively, one can 
imagine a scenario where compounds that target certain key alleles 
on known trajectories toward resistance are screened29. These strat-
egies, while promising at face value, should be engaged with caution, 
as our results suggest that blocking specific trajectories may inad-
vertently open up other, potentially much faster trajectories towards 
resistance. To demonstrate how this might happen, we ran a simula-
tion using the empirical fitness landscape of P. falciparum exposed 
to 10 μ M pyrimethamine, but with the growth rate of genotype 0010  
set to zero (thus simulating a hypothetical second drug that inhib-
its the growth of the 0010 genotype, a key intermediate on the 
greedy path towards higher resistance). Starting from the wild-type 
0000, we find that this results in a 26% reduction in the number 
of time-steps until the optimal genotype 1110 becomes dominant 

Figure 4 | Illustrative example of the influence of clonal interference on trajectories taken and adaptation rates. a, Hypercube depiction of the empirical 
fitness landscape for P. vivax treated with of 1.7 μ M pyrimethamine, showing two competing trajectories starting from the wild-type genotype 0000. 
Genotypes and normalized growth rates are shown inside each node, with edges representing mutational neighbours in the landscape. b, Representative 
simulation illustrating competition between the two paths shown in a, showing that the slightly less-greedy but faster path (dashed lines, Cw =  62.1) 
outcompetes the greediest path (solid lines, Cw =  84.3). For visual clarity, only those genotypes on these two paths are shown. The y axis is shown on a 
log scale so that lower frequency genotypes can be observed; T1, Td and Tf refer to the generation in which the optimal genotype first appeared, became 
dominant and became fixed (>99%), respectively. c, A landscape in which we have set all growth rates to 0, except those on the path that reached the 
global optimum in the full landscape simulation shown in b. d, A representative path-only simulation on the landscape shown in c. Convergence times in 
such path-only simulations are governed by Cw. The difference in the convergence times between the full landscape simulations (for example, b) and the 
path-only simulations (for example, d) can be attributed to non-zero Cb in the full landscape simulations.
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(Supplementary Fig. 8). Setting the growth rate of genotype 0010 to 
zero in a simulation of P. vivax starting from the wild-type 0000 and 
exposed to 53.6 μ M pyrimethamine has even more dramatic results, 
causing a 68% reduction in the number of time-steps until the opti-
mal genotype 1110 becomes dominant (Fig. 6).

It is not clear how the timescale of our simulations relates to the 
evolutionary timescale of natural populations. In real malarial evo-
lution, it is likely that the evolution along a trajectory occurs over 
the course of several infections under different treatment regimes 
(thus on different fitness landscapes), with population bottlenecks 
occurring at the transmission stage. Thus, the extent to which 
within-path and between-path competition govern adaptation 
rates in natural malarial populations is uncertain. Nonetheless, the  
dramatic differences in the speed of evolution along different  
trajectories, as illustrated in Fig.  6, are such that they could have 
a real impact on the speed of resistance evolution and should be  
considered when developing treatment regimes.

In this work, all of our seed populations were monomorphic. 
In a separate study, we recently showed how metrics of ‘deception’ 
(which quantify the degree to which sign epistasis leads a given  
distribution of replicators away from the global optimum) are 
somewhat predictive of adaptation rates in P. falciparum when start-
ing from polymorphic seed populations30. In future work, we will 
investigate whether our metric for within-path competition can be 
combined with such measures of deceptiveness to improve conver-
gence predictions from polymorphic populations.

The ability to predict and compare the amount of clonal interfer-
ence, both within and between paths, and the insights gained by 
understanding the impact of such clonal interference on the result-
ing adaptation rates and the trajectories followed, represent new 
perspectives for the study of empirical fitness landscapes. However, 
the basic principle established here—that the speed of evolution 
along a given trajectory is largely governed by competition between 
adjacent nodes in the trajectory—has potential ramifications well 
beyond evolutionary biology. For example, we conjecture that the 
rate of adoption of evolving technologies is likely to be influenced 
by the amount of improvement in each new release, at least for 
technologies where there is fairly rapid turnover in goods, such as 
in software or small electronics. We believe that the study of any 
complex system where the fitness landscape analogy is invoked may 

benefit from a greater appreciation of how the greed/speed dichot-
omy influences innovation dynamics.

Methods
Empirical fitness landscapes. This study utilized published data from  
a well-characterized system of transgenic Saccharomyces cerevesiae carrying  
a combinatorially complete set of mutations (N51I, C59R, S108N and I164L) 
at four distinct sites in the P. falciparum gene for the enzyme DHFR, and the 
orthologous mutations in P. vivax (N50I, S58R, S117N, I173R). These mutations 
have been identified in various combinations in field isolates of malaria 
and are associated with drug resistance to pyrimethamine and cycloguanil. 
By combinatorially complete, we mean the system contains all 16 possible 
combinations of the absence (0) or presence (1) of each of these 4 mutations:  
0000 corresponds to the wild-type ancestor. In P. falciparum/P. vivax, 1*** refers  
to any individual with the N51I/N50I mutation, *1** to any individual with the 
C59R/S58R mutation, **1* to any individual with the S108N/S117N mutation,  
and ***1 to any individual with the I164L/I173R mutation (‘*’ is a wildcard  
symbol that matches any value).

Using published values for drug-free growth rates and IC50 (the half-maximum 
inhibitory concentration) values for P. falciparum and P. vivax exposed to 
pyrimethamine31 and for P. falciparum exposed to cycloguanil32, growth rates  
at nine dosage levels were inferred by fitting logistic equations to these data14, 29.  
The final growth rates for both species at all drug concentrations were  
normalized relative to the growth rate of 1011, which is the slowest-growing  
viable genotype of P. falciparum in the absence of drugs; note that the 0011 
genotype has undetectable growth in the P. falciparum system, and is thus  
assigned a growth rate of zero.

This set of 464 growth rates can be considered as 29 unique four-dimensional 
binary empirical fitness landscapes: 19 landscapes for P. falciparum (one drug  
free and 9 levels of each of pyrimethamine and cycloguanil, as shown in the 
columns of Supplementary Tables 1,2) and 10 landscapes for P. vivax (one drug 
free and 9 levels of pyrimethamine, as shown in the columns of Supplementary 
Table 3). Each of the 16 possible genotypes for the 4 bi-allelic loci is interpreted 
as a location in each landscape, and their normalized growth rates as the fitness 
at that location. As drug levels are increased, not only do the average growth rates 
decrease but the landscape topography also changes14. For example, there are 
changes in the location of the globally optimal genotype (the most drug resistant  
in that environment, shown in bold red italic text in Supplementary Tables 1–3)  
as well as in the number and locations of local optima, if any (shown in blue  
italic text in Supplementary Tables 1–3).

Simulation model. We implemented a stochastic discrete population model that 
we refer to as DARPS (discrete asexually reproducing population simulator). 
DARPS was specifically designed to flexibly and efficiently simulate the asexual 
reproduction and evolution of large populations of microorganisms on complex 
landscapes. During each discrete time-step, the number of individuals of each 
genotype grows exponentially according to its particular growth rate under the 
current drug environment (inferred from empirical data as described above) with 
stochastic single-locus mutation, and then the entire population is reduced to the 
carrying capacity by frequency proportionate selection. The classic Wright–Fisher 
model33,34 is a constant population size abstraction of the process implemented 
directly in DARPS, so in this sense the models are functionally equivalent. DARPS 
is described in more detail below.

Growth. At the start of each time-step t, the discrete number N i
t of each  

genotype i in the population grows exponentially, according to its growth  
rate ri under the current drug treatment regime as follows:

← ⌊ ⌋ + < − ⌊ ⌋+N N N Ne int(rand ( e e )) (1)i
t

i
t r

i
t r

i
t r1 i i i

where  ←  denotes variable assignment and ⌊ …⌋  is the floor function. Note that the 
second term adds one individual of genotype i with probability − ⌊ ⌋N Ne ei

t r
i
t ri i , to 

maintain the discrete nature of the population while still allowing genotypes with 
very low growth rates a small chance of increasing in number.

Mutation. For a specified probability of mutation Pm, we assume that the  
expected number of mutants from each genotype i is =+ +M N Pi

t
i
t1 1

m. Unless stated 
otherwise, the simulations reported here generated +Mround( )i

t 1  mutants from 
each i, at each t. For the comparative results shown in Supplementary Fig. 6, we 
also implemented this by sampling from a Poisson distribution with a mean of 

+Mi
t 1 to determine the number of mutants from each i. In either case, each of 

the selected mutants for a given genotype is stochastically assigned to mutate 
into one of its L neighbouring genotypes (that is, differing at exactly one locus) 
with equal probability, where L is the number of loci; this is the primary source 
of stochasticity in most of the results shown. Genotype counts +N i

t 1 are updated 
accordingly after mutation.

Death by competition. Following mutation, the population size is returned  
to approximately K individuals using frequency proportionate selection.  

Figure 5 | Clonal interference within winning trajectories largely governs 
adaptation rates. Black dots represent path-only simulation times, 
where growth rates for all genotypes outside the path followed on the full 
landscape simulations have been set to zero, with the blue dashed best-fit 
line (R2 >  0.998). Red vertical bars quantify the additional time required 
along the same paths on the empirical fitness landscapes, relative to on the 
path-only landscapes, due to Cb. Cw largely governs Td (n =  352 simulations) 
in P. falciparum and P. vivax exposed to varying levels of pyrimethamine or 
cycloguanil. Only one repetition of each landscape–seed combination is 
shown and used to compute R2.
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For the results reported here we implement this using discrete stochastic 
renormalization for each i as follows:

← ⌊ ⌋ + < − ⌊ ⌋+ + + +N K K Kfreq int(rand (freq freq )) (2)i
t

i
t

i
t

i
t1 1 1 1

where

=
∑

+
+

+

N

N
freq (3)i

t i
t

i i
t

1
1

2 1L

is the new frequency of i. The second term of equation (2) probabilistically adds 
one individual to maintain the discrete nature of the population while still allowing 
very-low-frequency genotypes a small probability of surviving. This is a very fast 
but relatively deterministic form of frequency proportionate selection. Alternatively, 
we implemented this by sampling from the current population according to a 
Poisson distribution with means +Kfreqi

t 1, for each i, to better account for drift. 
However, for large populations such as used in this study, we confirmed that the 
results from these two implementations are indistinguishable (R2 >  0.999, P ≈  0).

Termination. The population is allowed to evolve until the optimal genotype in 
that environment becomes dominant (more frequent than any other genotype), 
plus 1,000 additional time-steps to try to achieve stochastic equilibrium. If the 
optimal genotype does not become dominant within some prespecified number of 
maximum time-steps, the evolution is halted.

Computational simulations performed. For each of the 29 unique fitness  
landscapes, we ran simulations starting from K individuals of each of  
the 16 genotypes, referred to as the seed genotypes. This assumes that drug 
treatment begins after the population has grown to size K. We note that although 
malarial infections may start with a relatively small number of individuals, their 
populations grow exponentially in a drug-free environment until they become 
large enough to elicit symptoms in the host, sometimes reaching population  
sizes on the order of 1011 or 1012 in very ill hosts20. Mutation rates in the  
P. falciparum DHFR gene have been estimated to be approximately 2.5 ×  10−9 
per locus per replication or less19. As in our model Pm refers to one mutation 
in any of four loci per replication, except where otherwise stated, we used 
Pm =  4 ×  2.5 ×  10−9  =  1 ×  10−8. Unless otherwise stated, the carrying capacity  
was set to K =  109.

All simulations were run until either the optimal genotype (the one with 
the highest growth rate on that landscape) became dominant or until 100,000 
generations had elapsed. For each simulation we recorded: (1) at what time-step 
the first individual of the optimal genotype appeared (T1); (2) at what time-step 
the optimal genotype became dominant (Td); (3) at what time-step the optimal 
genotype became fixed (Tf, defined as >99% of the population); and (4) which 
trajectory (path) led to the creation of the first individual of the optimal genotype. 
For each identified path that was followed from the seed genotype to the optimal 
genotype on an empirical fitness landscape we then ran new simulations where  
the growth rates of all of the genotypes in the landscape that are not on the  
identified path were set to zero, and again recorded T1, Td and Tf. We refer to  
these as path-only simulations, where Cb has been forced to zero.
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Figure 6 | Blocking the greedy path can speed up the evolution of resistance. a, Hypercube depiction of the empirical fitness landscape for P. vivax 
exposed to 53.6 μ M pyrimethamine; the greedy path is followed from the wild-type 0000 to the global optimum 1110. b, Representative simulation on the 
landscape shown in a. c, The same landscape, except with the growth rate of 0010 set to 0, opens up a much faster path towards the global optimum.  
d, A representative simulation on the landscape shown in c converges to the global optimum much more quickly. For visual clarity, only those  
genotypes on the paths followed are shown.
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We define the greedy path as the path resulting from a ‘best-first’ search 
strategy, starting from the seed genotype. That is, if the current genotype on  
the path is on a fitness peak then the greedy path is terminated; otherwise the 
adjacent genotype with the highest fitness is added to the greedy path and becomes 
the current genotype, and the process is repeated. If, during 100 repetitions of 
a given landscape–seed experiment, the greedy path was not always the one to 
generate the first individual of the optimal genotype, we then ran 1,000 additional 
repetitions of that experiment to generate comparative statistics.

Derivation of Cw. Consider a population that comprises two genotypes that  
differ at exactly one locus. According to replicator dynamics35, the rate of change  
of the subpopulation for genotype 2 due to competition is given by

= − +N
t

N r r p r pd
d

( ( )) (4)2
2 2 1 1 2 2

where ri denotes growth rate and pi denotes the population frequency of i. Thus for 
a population of size K =  N1 +  N2 we can write equation (4) as

= − − +N
t

N r r K N
K

r N
K

d
d

(5)2
2 2 1

2
2

2














If we let y =  N2/K, then we can write the above as

= − −y
t

r r y y
d
d

( ) (1 ) (6)2 1

This is an ordinary differential equation for the logistic function, having  
general solution

=
− +− −y t

y
y y

( )
(1 )e (7)r r t

0

0
( )

0
2 1

If we consider a population that is initially dominated by genotype 1 and then  
the first mutation to genotype 2 occurs at time t =  0, then y(0) =  1/K. Thus

=
− +− −y t K

K e K
( ) 1/

(1 1 / ) 1 /
(8)r r t( )2 1

Assuming r2 >  r1, we find the fixation time T from first introduction of genotype 2 
until it reaches some prespecified fraction of the carrying capacity ρK, where ρ is 
arbitrarily close to 1, as

ρ =
− +− −

K
K e K

1 /
(1 1 / ) 1 /

(9)r r T( )2 1

ρ− + =− −K e K K(1 1 / ) 1 / 1 / ( ) (10)r r T( )2 1

ρ= −
−

− −e K K
K

1 / ( ) 1 /
1 1 /

(11)r r T( )2 1

ρ− − = −
−

r r T K K
K

( ) ln 1 / ( ) 1 /
1 1 /

(12)2 1








=
−

ρ
−

−( )
T

r r

ln

( )
(13)

K
K K

1 1 /
1 / ( ) 1 /

2 1

Thus, we see that

∝
−

T
r r

1
(14)

2 1

To generalize the effects of competition over an accessible evolutionary trajectory 
(1 →  2 →  …  →  m) of m adjacent genotypes of increasing fitness, we start with the 
assumption that exactly one mutant individual of genotype i +  1 is created, and  
that this occurs immediately after the predecessor genotype i has reached 
population size ρK. Under this assumption, the time Tm to move from a population 
dominated by genotype 1 to one dominated by genotype m would be proportional 
to the summation

∑∝
−=

−

+
T

r r
1

(15)m
i

m

i i1

1

1

We define this summation as the within-path clonal competition Cw along  
the trajectory

∑=
−=

−

+
C

r r
1

(16)
i

m

i i
w

1

1

1

The linear dependence of adaptation time Tm on Cw that is shown in equation (15) 
was based on the assumption that there is exactly one mutational event from 
genotype i to i +  1, which occurs directly after genotype i has reached ρK 
individuals. Allowing for more realistic mutational events, we expect that there  
will be a nonlinear dependence of Tm on Cw given by

α= βT C( ) (17)m w

where α and β are positive constants that are functions of specific parameters  
of the system, including K, Pm and possibly some absolute growth rate  
multiplier, if the ri values are normalized growth rates, as they are in this study 
(see Supplementary Table 5 for a sensitivity study). For realistic mutation rates19 
and parasite loads20 for malaria, ongoing mutational events will speed up the 
evolutionary process for two reasons. First, a mutant of genotype i +  1 may appear 
before i reaches ρK individuals. Second, additional ongoing mutational events  
will continue to increase the number of representatives of genotype i +  1 for 
selection to act upon. Under these conditions, Tm will have a sublinear dependence 
on Cw (that is β <  1), and as the number of mutations increases, β will decrease 
(as shown in Supplementary Table 5). Conversely, if the number of mutations 
is so small that there is a delay between fixation of genotype i and the expected 
appearance of a mutant of genotype i +  1, adaptation will be slowed and the 
relationship between Tm and Cw will be superlinear (β >  1). In practice, for 
observations based on path-only simulations in a given system, one can  
determine α and β by linear regression of ln(Tm) versus ln(Cw), where Tm is 
approximated by the time it takes to reach some arbitrary stopping criterion,  
as we have done to get the best-fit lines in Fig. 5, Supplementary Fig. 4, and  
Supplementary Table 5, which exhibit remarkably high coefficients of determination.  
However, even without knowing the specific coefficients α and β for a given  
system, Cw provides an easily computed and convenient metric for predicting  
how within-path clonal interference will affect the relative speeds of adaption  
along alternative accessible evolutionary trajectories, on the same or different 
landscapes, without the need for simulation.

Statistical analyses. Simulation times for repetitions of the same landscape–seed 
experiment were not always normally distributed due to lucky stochastic events 
that tended to create a slight negative skew. Thus, when comparing simulation 
times between two different experiments, we used a two-sided Wilcoxon rank  
sum test to compare the medians. All coefficients of determination were computed 
from simulation times of only one repetition of each landscape–seed experiment, 
to preclude inflating the R2 values due to non-independence of repetitions  
of the same experiment.

Code availability. Open-source Matlab code for DARPS is available online at 
http://www.cs.uvm.edu/~meppstei/DARPS.

Data availability. No primary data were generated in this study. All of the 
published data used for the empirical fitness landscapes are available in 
Supplementary Tables 1–3.
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