

¹Department of Neuroscience, Tufts University School of Medicine, Boston, MA; ²Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK; ³Department of Psychiatry, Yale University School of Medicine, New Haven, CT, ⁴Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY

Introduction

Activation of metabotropic GABA type-B receptors (GABA_BRs) mediates slow, sustained neural inhibition and critically limits the damage caused by excess excitation, such as occurs during seizure or stroke.

GABA_BRs comprise heterodimers of R1 (GABA-binding) and R2 (G_{i/o}-binding) subunits. They act presynaptically to block neurotransmitter release via inhibition of voltage-gated Ca²⁺ channels and postsynaptically to hyperpolarize neuronal membrane potential via activation of inwardly rectifying K⁺ (GIRK) channels.

Our lab and others have previously identified a bi-phasic regulation of GABA_RRs by activation of NMDA-type glutamate receptors (NMDARs) and increases in intracellular Ca²⁺. Initially, 5'AMP-dependent protein kinase (AMPK)-mediated phosphorylation of Ser-783 of the R2 subunit increases, in turn stabilizing GABA_BRs at the plasma membrane, but during prolonged or excitotoxic stimulation, protein phosphatase 2A (PP2A)-dependent dephosphorylation of Ser-783 becomes predominant and GAB- $A_{\rm p}$ Rs are endocytosed and degraded.

This NMDAR-mediated impairment of GABA_PR signaling may exacerbate excitotoxic neuronal death, and has also been observed in response to chronic stress and psychostimulant administration. Therefore, preventing R2 Ser-783 dephosphorylation may represent a promising therapeutic intervention for multiple neurological and psychiatric disorders.

Here, we explore this hypothesis by examining whether **1**) models of excitotoxicity alter R2 levels and phosphorylation in hippocampal slices; 2) exposure to a kainate-induced seizure model alters hippocampal R2 levels and phosphorylation in vivo; and 3) knock-in mice bearing a putatively phospho-mimetic mutation of Ser-783 (Ser to Asp; S783D) exhibit augmented GABA_BR signaling. In a parallel series of experiments, we combined affinity purification and mass spectrometry approaches to 4) determine the specific region of the R1 C-terminus that interacts with PP2A and 5) identify specific R1-interacting phosphatase isoforms.

D

R1a

Tufts Dynamic regulation of GABA_BRs by neural activity and phosphatase signaling Shari L. Wiseman¹, Miho Terunuma^{1,2}, Angus C. Nairn³, Paul A. Slesinger⁴, Stephen Moss¹

slices were exposed to Mg2+-free ACSF (which induces seizure-like events) and R2, p-783 R2, and R1 levels were detected by immunoblot. Summary data are for 30 min exposures (n=5). D) Hippocampal slices from WT and S783A mice were exposed to OGD for 30 min, followed by 3 hr perfusion with normal ACSF. R2 levels in lysates were assessed by immunoblot (n= 4-6).

Figure 5: An unbiased proteomic appro phosphatase subunit proteins.				
Α				В
		29		150
		10 25g	SOL	100
		• •	X	2
ΡΡ2Α Βα				50
				3
PP2A C				37
· · <i>L</i>		-		
				²⁵ 4
				20
				15
C				
C				
Sample	Score	Expectation	Protein ID	
DN 2	17957	0	TBA1B_MOUSE	
pDN 2	16073	0	TBA1B_MOUSE	
pDN 1a	1068	2.50E-103	DYN1_MOUSE	-
pDN 2	837	3.30E-80	PP1R7_MOUSE	Pro
DN 2	634	6.00E-60	PP1R7_MOUSE	Pro
	502	1.10E-46		Serine/threonine-pro
	438	2.00E-40		
	424	0.50E-39		
	272	9.40E-30		
	251	1.00E-33		Protein farnocultrar
	331	2 20F-31	OCR1 MOUSE	Cytoch
nDN 2	333	1 30F-29	ARP3 MOUSE	Cytochi
DN 2	378	2 90F-29	CSN2 MOUSE	
pDN 2	323	8.00F-29	PLAK MOUSE	
DN 2	318	2.60F-28	ACOT9 MOUSE	Acvl-
5112	303	8.60F-27	ANXA2 MOUSE	Асун
pDN 2		0.001 27		Chu
pDN 2 pDN 2	300	1.80F-26	DHE3 MOUSE	(7)))
pDN 2 pDN 2 DN 2	300 298	1.80E-26 2.60E-26	DHE3_MOUSE	Protein farnesvltrar

-luted proteins were run on SDS-PAGE and gels were silver stained and submitted for mass spectrometry. C) Table of the top (sorted by expectation score) identified proteins that specifically interact with either peptide and not beads alone (summary of 2 independent experiments).

immobilized GST-tagged R1 fragments and bound material was immunoblotted with antibodies against PP2ACα and the PP2A B subunit PR55, or stained with Coomassie brilliant blue (CBB) (right panel). After correction for input and non-specific binding to GST the level of binding was characterized as strong (+++) weak (+) or non-detectable (-). B) Diagram of GST-CR1 construct and DN-R1-PP2A and p-DN-R1-PP2A synthetic peptides. C) Peptides were conjugated to pre-activated Cys-link agarose beads and incubated with hippocampal lysates. Eluates were blotted for PP2A Bα and C subunits. D) Hippocampal lysates were incubated with immobilized GST-CR1 in the presence of 100 μM (top panel) or 10 μM (bottom panel) peptides, with a similarly sized peptide fragment of neurogranin used as a control. The ability of the peptides to compete away PP2A Ba and C subunit binding to CR1 was then quantified

Conclusions

Exposure to NMDA or models of seizure or ischemic stroke decreases R2 levels in hippocampal slices.

Exposure to a kainate-induced seizure model in vivo resulted in a trend toward decreased hippocampal R2 levels.

Phosphomimetic mutation of Ser-783 to Asp in S783D mice does not significantly alter GABA_RR surface expression, but does increase steady-state levels of Arc in hippocampal slices.

We have identified a sub-region of the R1 C-terminus that is sufficient to bind to PP2A and to compete away binding to GST-CR1. We have also performed unbiased proteomic screens to identify proteins that bind to this sequence in the hippocampus.

Interfering with GABA_RR dephosphorylation and degradation represents a promising neuroprotective strategy for the treatment of seizure disorders and ischemic stroke.
