Language, lateralization and the developing brain
Models for ASD

LR Ment, D Scheinost, RT Constable, W Ji, M Khokha, M Brueckner
B Vohr, S Kwon, M Thomason, V. Shabanova, C Lacadie, G Sze
Yale School of Medicine and Warren Alpert Medical School of Brown University

ACE Autism Summer Institute
Yale School of Medicine
11 July 2019
The authors have nothing to disclose.
Definition 1

Autism - Neurological phenotype

- Persistent difficulties in language and communication
- Restricted, repetitive patterns of behavior
- Symptoms present in early development
- Significant impairment in functioning
- Not explained by intellectual disability
Definition 2

• “Neural connectivity is the intermediate between molecules and language.”
 – O. Sporns, 2014

Adapted from Lussier, 2016
Definition 3

Lateralization

- Ipsilateral - Contralateral = Connectivity lateralization

- Defining characteristic of human brain
- Localization of a given task to a specific region of the brain
- Correlated with language measures at school age, adolescence and beyond
Models for ASD

- Preterm-birth neonates
 - Environmental perturbation
- Children with congenital heart disease
 - Genetic variation
Preterm neonates

- High risk for language difficulties
 - Over 50% of PT < 28 weeks GA have phonologic processing disorders
 - 20% experience executive function difficulties
 - 7% are diagnosed with ASD
Preterm neonates also have poor brain growth
Limperopoulos et al, 2016

75 PT neonates with no brain injury; 130 fetuses
Language regions are vulnerable in the prematurely-born

Peterson et al, JAMA 2000
Preterms have less lateralization for language at adolescence
R BA 40: Poorer scores with right lateralyzed connectivity

$r = -0.58$, $p = 0.007$

Preterms look less like terms

Scheinost et al, 2014
Preterms don’t lateralize for language at term equivalent age

26 PT neonates < 28 wks GA, 25 controls, p < 0.001

Lateralization is highly predictive of BSID III at 1 yr CA (p=0.007)
Fetuses lateralize at 30 weeks GA
ACE will tell us what this means

30-32 wks

34-36 wks

p=0.05

p<0.001
Are language systems altered prior to preterm birth?
Thomason et al, 2017

• 32 women with AGA fetuses
 – Fetal resting state functional MRI
 – Mean GA 29 weeks; range 22 – 36 weeks
• 14 pregnancies ended in preterm delivery
 – Mean GA 32 wks; range 24 – 35 weeks
• 18 uncomplicated term pregnancies
Alterations in language systems in the PT brain before birth
Conclusions

• Altered connectivity for language systems in developing preterm brain
 – Long-lasting and predictive

• Present during the late second and third trimesters of gestation in fetuses born preterm
Congenital heart disease

• High risk for developmental disorders
 – 50% have language disorders
 – 23% with executive function difficulties
 – 10% are diagnosed with ASD
Impaired brain growth in CHD
Ortinau et al, 2018
Aberrant connectivity in newborns with CHD before surgery
De Asis-Cruz et al, 2017

- CHD infants are at risk for hypoxemia
- Hypoxia alters neural connectivity
- 30 CHD before surgery + 32 controls
- Resting state fMRI
 - Intact global topology
 - Reduced regional connectivity
The perisylvian language nodes are there; they aren’t all connected.
Paradigm shift

• The NDD of CHD children had always been attributed to hypoxemia
 – Connectivity data do not support this hypothesis

• Emerging data suggested a subset of genes associated with both CHD and NDD
 – Jin et al, Nat Genet 2017, Contribution of rare inherited and de novo variants in 2871 CHD probands
CHD genes contribute to the connectome
Ji et al, 2018

- Hypothesis: Connectivity disorders in CHD subjects have a common genetic origin

- Meta-analysis of genomic data
 - 3684 unique, published subjects with CHD; no trisomies
 - 1789 controls

- Previously published NDD genes (N=229) were individually annotated for connectome status
 - Neurogenesis, axonogenesis, growth cone, dendritogenesis, synaptogenesis, myelination, gliogenesis, connectome
12 NDD genes* with higher de novo mutation burden in the CHD population

- All contribute to the connectome (p=0.02)
 - 11/12 contribute to neurogenesis
 - 5/12 are chromatin modifiers (p=0.04)
- 5 genes reached genome wide significance (p≤2.5e-06)
 - PTPN11, CHD7, CHD4, KMT2A, NOTCH1, ADNP
- Top 2 genes
 - PTPN11 – p≤1.54e-34
 - CHD7 – p≤7.56e-2

* after Bonferroni correction
Unpublished data
Conclusions

• Neurodevelopmental disorders in some CHD patients may be secondary to genes that alter both cardiac patterning and the connectome

• Fetal onset of the disorder
What about autism?
Disrupted neural connectivity in toddlers with autism
Dinstein et al, 2011

- Toddlers with ASD; controls
- RS-FC
- ASD had significantly weaker inter-hemispheric connectivity for language regions
 - Strength of connectivity correlated positively with language scores
 - Correlated negatively with autism severity
Functional neuroimaging of high risk 6 mo infants predicts autism at 24 months

Emerson et al, 2017

- 59 infants with high risk for ASD
- Rs-FC age 6 months
- Correctly predicted 9/11 with ASD at 24 months
 - PPV of 100% (95% CI 62.9 to 100)
- All 48 w/o ASD correctly classified
 - Neg PPV 96% (95% CI, 85.1 to 99.3)
Common themes: Work to be done

<table>
<thead>
<tr>
<th></th>
<th>PT birth</th>
<th>CHD</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language disorders</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Alterations in lateralization</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Prenatal onset</td>
<td>X</td>
<td>X</td>
<td>TBD</td>
</tr>
<tr>
<td>Correlation with outcome</td>
<td>X</td>
<td>X</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Early, early diagnosis - early, early intervention
Many thanks!

• We thank the patients and their families.
• This work is supported by NIH R01HD081379, NIH UM1 HL098162, NIH R01 HL125885, NIH P50 HD093078 and NIH CTSA UL1 TR000142.