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Abstract. Mass drug administration (MDA) targeting school-age children is recommended by the World Health Orga-
nization for the global control of soil-transmitted helminth (STH) infections. Although considered safe and cost-effective
to deliver, benzimidazole anthelminthics are variably effective against the three most common STHs, and widespread
use has raised concern about the potential for emerging resistance. To identify factors mediating response to
albendazole, we conducted a cross-sectional study of hookworm infection in the Kintampo North Municipality of Ghana
in 2011. Among 140 school-age children residing in five contiguous communities, the hookworm prevalence was 59%
(82/140). The overall cure rate following administration of single-dose albendazole (400 mg) was 35% (27/76), with a
community-wide fecal egg reduction rate (ERR) of 61% (95% confidence interval: 51.8–71.1). Significant disparities
were observed in albendazole effectiveness by community, with a cure rate as low as 0% (N = 24) in Jato Akuraa
and ERRs ranging from 53% to 95% across the five study sites. Individual host factors associated with response to
deworming treatment included time since last meal, pretreatment blood hemoglobin level, and mid-upper arm cir-
cumference. These data demonstrate significant community-level variation in the effectiveness of albendazole, even
among populations living in close proximity. Identification of host factors that influence response to albendazole,
most notably the timing of drug administration and nutritional factors, creates an opportunity to enhance the effec-
tiveness of deworming through targeted interventions. These findings also demonstrate the importance of measuring
anthelminthic response as part of the monitoring and evaluation of community-based deworming programs.

INTRODUCTION

Soil-transmitted helminth (STH) infections, which include
hookworms (Necator americanus and Ancylostoma spp.),
Ascaris lumbricoides, and Trichuris trichiura, represent a lead-
ing global cause of anemia, malnutrition, and growth delay,
especially among children and women of childbearing age.1–4

Together, these three intestinal nematodes infect more than
1 billion people worldwide, with twice that number currently
living in endemic areas. Among the STHs, hookworms are
associated with a significant burden of disease, which is pri-
marily attributable to gastrointestinal blood loss caused by
adult worms that attach to the intestinal mucosa and feed on
blood from lacerated capillaries. Recent estimates suggest
that there are more than 400 million people infected with
hookworm, nearly all of whom live in rural poverty.5

The World Health Organization (WHO) currently recom-
mends periodic (annual or semiannual) mass drug adminis-
tration (MDA) of anthelminthics to school-age children
(SAC) to reduce morbidity associated with moderate-to-
high intensity infection.6,7 The costs associated with the
distribution of single-dose treatment with benzimidazole
anthelminthics (albendazole or mebendazole) have been
significantly reduced by large-scale donations from phar-
maceutical manufacturers.8–10 With rare exceptions, the
long-standing experience with benzimidazoles suggests that
they are safe, even in young children and pregnant women,
making them the preferred agents for MDA programs in
most endemic areas.11,12 Modeling studies suggest that MDA
has a favorable cost-benefit ratio and that scaling up of drug

distribution could reduce costs further through economies
of scale.13–15 However, despite the favorable financial profile
of MDA, evidence in support of sustainable health and educa-
tional benefits from deworming is lacking, as results from
carefully controlled trials vary widely.16–20

Beyond the individual health impact, questions have also
been raised about the degree to which current deworming
strategies are likely to achieve widespread disease control or
elimination in endemic areas. For example, MDA programs
that only treat children enrolled in formal education will not
reach those who do not regularly attend, nor will it address
the potentially significant adult reservoirs of infection within
targeted communities.21–24 Second, the widespread distribu-
tion of benzimidazole agents may lead to resistance among
human STHs, the impact of which on global control efforts
has not been carefully assessed.25–27 In fact, reduced efficacy
in communities subjected to long-standing MDA suggests
that resistance may already have emerged, a phenomenon
that is well described in veterinary nematodes.27–33

Previous studies in Kintampo North Municipality (KNM),
Ghana, have shown that malnutrition (as measured by body
mass index [BMI]) is a risk factor for hookworm infection in
adults,34 whereas infection in SAC was associated with
reduced dietary intake of animal-based food.35 To further
characterize the association between host nutritional factors
on hookworm infection status and deworming response in
SAC, we conducted a follow-up cross-sectional study of SAC
in KNM. The data show that albendazole response varies by
community and baseline nutritional status, and that poten-
tially modifiable factors like timing of drug administration
significantly improve deworming effectiveness. These results
confirm the previously identified link between malnutrition
and hookworm infection, while also suggesting a potentially
important role for nutritional status in mediating anthelminthic
activity in humans.
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METHODS

Ethical review and enrollment. Prior to recruitment, eth-
ical approval was obtained from the Yale University Human
Investigation Committee (HIC no. 07050022669) and the
Institutional Review Boards of the Ghana Health Service
(GHS), the Noguchi Memorial Institute for Medical Research,
and the Kintampo Health Research Center (KHRC). Infor-
mation meetings were organized at local schools and
parents of eligible children were invited to attend. School
children were selected from five communities previously
identified as having a high prevalence of hookworm infec-
tion.34,35 Children between the ages of 6 and 13 were
eligible if they were enrolled in primary school, resided
within the study area, and were willing and able to give
informed consent. Only one child per household was
enrolled in the study. Sample size was calculated to pro-
vide power to test differences between dietary recall data
and child dietary diversity, as the primary objective of the
study was to identify nutritional factors associated with
hookworm infection and response to treatment. Fecal sam-
ples and household surveys were collected from 140 study
subjects who were randomly selected from the pool of 254
eligible children (Figure 1).
Household survey. Two teams of researchers and trans-

lators conducted in home interviews during June and July
2011. A pretested standardized questionnaire was used to
gather socioeconomic data, including types of household
construction, sources of water and sanitation, level of parental
education and occupation, and ownership of select house-
hold assets (e.g., consumer goods, land, and livestock).35

Standard measures of food security,36 dietary diversity,37

and details of recent medical history were collected as part
of the individual survey. All survey questions were conducted
in the local language, Twi.
Anthropometry. Weight was measured to the nearest

0.1 kg using an electronic balance and height was measured
to the nearest 0.1 cm using a portable fixed stadiometer.
BMI for age Z scores were calculated for all participants.38

Mid-upper arm circumference (MUAC) was measured for all
participants to the nearest 0.1 cm at the midpoint of the left
arm using a standardized tape ribbon.39,40

Hookworm diagnosis and treatment. Children were
asked to provide a fresh, morning fecal sample in a previ-
ously provided clean plastic cup. Individual samples were
analyzed using the Kato–Katz fecal thick smear technique
for estimation of eggs per gram (EPG) of feces.34,35,41 All
samples were processed according to WHO-recommended
laboratory methods,42 and microscopy readings were taken
within 30–60 minutes of Kato–Katz slide preparation. Dupli-
cate counts were analyzed from each sample and the mean
value recorded. Children infected with hookworm were
referred to GHS officials for treatment with a single oral
dose of albendazole (Zentel 400 mg; Glaxo Smith Kline,
Bangalore, India).34,35 All study medications were adminis-
tered under direct observation by GHS Pharmacists based
at the Kintampo Health Center on one of two treatment days
(June 24 or June 30, 2011), and the anthelminthic activity
of the albendazole preparation used in the study was con-
firmed in the field using an in vitro assay.43 Stool speci-
mens were collected from treated individuals 10–14 days
later and evaluated by fecal microscopy using the Kato-
Katz method as described above. This time point was
chosen to measure the effect of treatment on fecal egg excre-
tion before reinfection.44 Subjects who remained infected
were referred for a second treatment with albendazole.
Blood and serum analysis. Approximately 1 mL of blood

was obtained by venipuncture from study participants for
automated complete blood count analysis conducted at the
KHRC. Whole blood was analyzed using a malaria rapid
diagnostic test kit (First Response Malaria Ag HRP-2; Pre-
mier Medical Corporation Ltd., Kachigam Daman, India)
for the presence of circulating Plasmodium falciparum
antigens.35 Thick and thin blood smears were prepared
from positive samples for further confirmation using light
microscopy. All study subjects appeared well and without
symptoms of malaria at the time of screening.
Statistical analysis. The response to treatment of STH

infections is traditionally assessed using two indicators: the
fecal egg reduction rate (ERR) and the cure rate (CR), both
of which are useful for monitoring effectiveness in field set-
tings.25,30,34,35 The individual ERR was calculated according
to the following formula:

Mean EPG before treatment � Mean EPG after treatment
Mean EPG before treatment

� 100 %ð Þ

Community ERR values were calculated by averaging
the individual values for study subjects living within each
community. In subjects with higher EPG values observed
posttreatment, which would result in a negative value for
ERR, we defined the value as zero for the purposes of com-
munity averages.FIGURE 1. Study sample flow diagram.
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The CR was calculated as the percentage of treated chil-
dren in whom the findings of posttreatment fecal micros-
copy exam were negative:

Number of treated children who were cured
Number of treated children

� 100 %ð Þ

Data were entered into Microsoft Excel (Redmond, WA)
and analyzed using SPSS (version 19; IBM, Armonk, NY)
and Stata (Intercooled 12.0; Stata Corp, College Station, TX)
software packages.
To define socioeconomic status, we used principal compo-

nents analysis and extracted the first component, as an index
of wealth, from a consumer goods index (improved cooking
fuel, improved toilet, improved drinking water, electricity,
radio, television, telephone, refrigerator, bicycle, bank account,
improved floor, and improved roof) and an agricultural goods
index (land, horse or donkey, goat or sheep, poultry, and
pigs).45 Univariate analysis was performed for descriptive
purposes of baseline and posttreatment populations. χ2 tests,
Kruskal–Wallis, and analysis of variance were used to test
for differences between populations and groups. A zero-
or-one inflated beta regression model46 was used to identify
predictors of ERR, allowing separate analysis of children
with 100% reduction, 0% reduction, and variable reduction
from 1% to 99%. Logistic regression was used to identify
predictors of cure, that is, 100% ERR.

RESULTS

Study population characteristics. Of the 254 potentially
eligible SAC residing in five villages in the Kintampo North
District in the Brong Ahafo region in central Ghana, 140
subjects (range 6–13 years of age) were randomly selected
and enrolled after providing informed consent (Figure 1).
Significant differences across the five communities were
identified in measures of anthropometry, nutritional status,
wealth index, and hookworm infection status (Table 1).
Specific anthropometric and nutritional factors that varied
significantly between communities included age (P = 0.001)
and MUAC (P = 0.01). Although average household wealth
and consumer/financial wealth were comparable across the
five study communities, we did find a significant difference
in agricultural wealth index (P = 0.003). Other socioeco-
nomic measures that varied between communities included
access to improved drinking water (P = 0.03) and pig owner-
ship (P = 0.01).
Community-level variation in the prevalence of hookworm

and response to deworming treatment. The baseline preva-
lence of hookworm infection among all study participants
within the surveyed communities was 59% (82/140) (Figure 1).
Among the 82 subjects infected at baseline, 79 (96%) were
classified as light intensity (1–1,999 EPG), whereas three
(4%) were in the moderate (2,000–4,999 EPG) category.
As shown in Table 1, there was significant variation in

TABLE 1
Study population and community variation

Village (North > South) Atta Akuraa (N = 40) Cheranda (N = 26) Jato Akuraa (N = 34) Mahama Akuraa (N = 18) Tahiru Akuraa (N = 22) P value

Anthropometry/nutrition
Age (years)* 10.1 (9.8, 10.5) 10.2 (9.3, 11.1) 9.1 (8.6, 9.7) 10.6 (9.8, 11.4) 9.0 (8.6, 9.4) 0.001
Female 21 (53%) 17 (65%) 20 (59%) 7 (39%) 8 (36%) 0.2
Body mass index 15.3 (15.1, 15.6) 15.6 (15.2, 16.0) 15.2 (14.8, 15.6) 16.0 (15.4, 16.6) 15.2 (14.7, 15.6) 0.07
Mid-upper arm
circumference (cm)

18.9 (18.5, 19.3) 19.3 (18.5, 20.0) 18.3 (17.7, 18.8) 19.2 (18.6, 19.7) 18.0 (17.6, 18.4) 0.01

Hemoglobin (g/dL) 12.0 (11.2, 12.7) 11.9 (11.1, 12.6) 11.2 (10.8, 11.6) 11.6 (11.1, 12.0) 11.9 (11.5, 12.2) 0.3
WBC (×103) 7.44 (6.7, 8.2) 6.72 (6.0, 7.4) 7.88 (7.0, 8.8) 6.67 (5.7, 7.6) 7.22 (6.3, 8.1) 0.3
Food insecure households 33 (83%) 21 (81%) 29 (85%) 16 (89%) 16 (72%) 0.7
Measures of Wealth
Average wealth index −0.45 (−0.81, −0.08) −0.01 (−0.65, 0.62) 0.35 (−0.19, 0.88) 0.20 (−0.6, 0.99) 0.16 (−0.44, 0.77) 0.2
Consumer and financial
wealth index

0.09 (−0.36, 0.55) 0.32 (−0.24, 0.88) −0.07 (−0.57, 0.42) −0.25 (−0.90, 0.39) −0.22 (−0.65, 0.21) 0.6

Agricultural wealth index −0.52 (−0.82, −0.23) −0.10 (−0.55, 0.35) 0.41 (−0.00, 0.81) 0.31 (−0.21, 0.84) 0.21 (−0.21, 0.63) 0.003
Improved toilet 12 (30%) 18 (69%) 0 (0%) 0 (0%) 15 (68%) < 0.001
Improved drinking water 7 (18%) 5 (19%) 10 (29%) 8 (44%) 11 (50%) 0.03
Visible trash 12 (30%) 8 (32%) 13 (39%) 5 (28%) 7 (32%) 0.9
Pig ownership 3 (8%) 6 (23%) 14 (41%) 5 (28%) 9 (41%) 0.01
Baseline hookworm infection status
Positive (N = 82) 23 (58%) 11 (42%) 24 (71%) 15 (83%) 9 (41%) 0.02
95% CI 40–72 27–57 53–85 59–96 21–64
Negative (N = 58) 17 (43%) 15 (58%) 10 (29%) 3 (17%) 13 (59%)
Baseline EPG
(arithmetic mean)

322 (109) 175 (81) 298 (84) 324 (157) 161 (72) 0.1

Baseline EPG
(geometric mean)

230 (125) 200 (85) 181 (97) 126 (56) 181 (51) 0.07

Malaria intensity
Negative 13 (33%) 9 (38%) 8 (24%) 2 (11%) 6 (29%) 0.1
1–999 parasites/μL 21 (54%) 11 (46%) 12 (35%) 11 (61%) 9 (43%)
≥1,000 parasites/μL 5 (13%) 4 (17%) 14 (41%) 5 (28%) 6 (29%)
Posttreatment hookworm infection status
Positive (N = 49) 6 (29%) 2 (18%) 24 (100%) 12 (86%) 7 (88%) < 0.001
Negative (N = 27) 15 (71%) 9 (82%) 0 2 (14%) 1 (13%)

CI = confidence interval; EPG = eggs per gram; WBC = white blood cell.
*Numbers in parentheses represent standard deviation from mean. Arithmetic means analyzed using Kruskal–Wallis nonparametric test; geometric means analyzed by analysis of variance.
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hookworm prevalence among the five study communities:
Mahama Akuraa (83%), Jato Akuraa (71%), Atta Akuraa
(58%), Cheranda (42%), and Tahiru Akuraa (41%) (P =
0.02). Despite the variation in hookworm prevalence, there
was no difference in intensity of infection, as measured by
mean hookworm EPG excreted in feces. There was also
no statistically significant difference in the prevalence of
P. falciparum malaria infection, which ranged from 62% in
Cheranda to 89% in Mahama.
The overall CR following single-dose albendazole across

the five communities was 36% (27/76) (Figure 1), which is
comparable to prior studies of hookworm in Kintampo.34,35

However, there was a statistically significant difference in
CR following albendazole treatment between communities
(Table 1; P < 0.001) (Figure 2). The lowest CR recorded
among the five study communities was 0% (N = 24) in Jato
Akuraa, whereas Cheranda had the highest CR (82%; N = 11).
The difference in effectiveness did not correlate with pre-
treatment community prevalence or intensity of infection.
For example, the community with the lowest prevalence,
Tahiru Akuraa (41%), showed a CR of only 22% (N = 8).
The ERR measured among all study subjects was lower

than expected at 61% (95% confidence interval [CI]: 51.8–
71.1), with significant variation noted between communities
(Figure 2). The overall ERR, as well as individual commu-
nity values from Jato (53%), Mahama Akuraa (69%), and
Tahiru Akuraa (84%) each fell short of the 90% target
defined in 2013 by the WHO for effective response to single-
dose albendazole.30,42 By contrast, Atta Akuraa (95%) and
Cheranda (96%) met the expected standard.
Individual host factors associated with hookworm

infection status and response to treatment. Among all
study subjects (N = 140), those infected with hookworm at
baseline were older in age (10.1 ± 4 versus 9.3 ± 4 years;
P = 0.005), and the prevalence was higher in males (46/67;
69%) than females (36/73; 49%) (P = 0.02). In addition,
hookworm-infected children were less likely to reside in
households using an improved toilet (26% versus 41%; P =
0.049), and more likely to live in households with visible trash
(40% versus 23%; P = 0.04).

Regarding response to treatment (Table 2), children who
were cured of hookworm following albendazole treatment
had a higher mean MUAC (19.5 versus 18.7 cm; P = 0.02)
and a higher mean blood hemoglobin level (12.8 versus
11.4 g/dL; P < 0.001). Cure was also significantly more likely
in children living in households with access to improved toi-
lets (41% versus 18%; P = 0.03). The timing of food intake
also impacted response to albendazole. Among infected
children who had not eaten at least 6 hours before treatment,
the CR was 90%, whereas in those who had eaten more
recently, the CR was significantly lower at 59% (P = 0.02).
Using multivariate analysis, fasting at least 6 hours before

albendazole treatment remained a strong predictor of hook-
worm cure. The unadjusted odds ratio (OR) predicting the
likelihood of cure was 9.52 (95% CI: 2.6–34.9; P < 0.01) in
subjects who had not eaten in 6 hours or more before treat-
ment. Blood hemoglobin level and MUAC also correlated
with albendazole effectiveness (Table 3). For every increase
of 1 g/dL in blood hemoglobin level, the OR for being cured
of hookworm was 1.75 (95% CI: 1.2–2.6; P < 0.01). Likewise,
for every increase of 1 cm in MUAC, the OR for hookworm
cure was 1.47 (95% CI: 1.03–2.1; P < 0.05). When controlling
for age and sex of study subjects, the adjusted odds ratio
(AOR) for albendazole cure remained statistically signifi-
cant for time (> 6 hours) since last meal (AOR: 8.59; 95%
CI: 2.3–32.3; P < 0.001) and blood hemoglobin level
(AOR: 1.77; 95% CI: 1.17–2.67; P < 0.01) (Table 3). How-
ever, the AOR (1.36) for MUAC was no longer statistically
significant (CI: 0.91–2.03; P = 0.1) when controlling for age
and sex.

DISCUSSION

A central finding of this study is the identification of
modifiable host factors associated with improved treatment
response following single-dose albendazole (400 mg).
We and others have previously observed that host nutri-
tional factors, most notably BMI, anemia, and dietary
diversity, were predictors of hookworm infection among
people living in endemic areas.35,47–49 To our knowledge,
however, this is the first report of an association between
specific host nutritional factors and the effectiveness
of anthelminthic chemotherapy, specifically the commonly
used drug albendazole. Initial multivariate analysis
revealed that increasing blood hemoglobin level (OR: 1.75;
P < 0.01) and increasing MUAC (OR: 1.47; P < 0.05)
reduced the probability of remaining infected after treat-
ment (Table 3). We also observed that children who had
fasted 6 hours before treatment were significantly more
likely to be cured of hookworm (OR: 9.52; P < 0.01). When
further adjusted for potential confounding variables, for
example, age and sex, these factors remained strongly
associated with enhanced treatment response.
Hookworms infect more than 400 million people world-

wide, and are responsible for two-thirds of the nearly
5 million years lived with disability that have been attrib-
uted to STH infections.5 These blood-feeding intestinal
parasites have long been associated with malnutrition, the
putative mechanisms of which include an effect on appetite,
absorption of macronutrients, the loss of iron and serum pro-
teins through gastrointestinal hemorrhage, chronic intestinal
inflammation, and malabsorption.47,49–54 Data from animal

FIGURE 2. Community variation in hookworm prevalence and
response to albendazole, as measured by egg reduction rate (ERR)
and cure rate. Error bars represent 95% confidence intervals. Hori-
zontal dotted line represents the World Health Organization’s 2013
ERR standard (90%) for deworming effectiveness.
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models have also shown that poor host nutritional status is
also associated with an increased susceptibility to helminth
infections, and that malnutrition represents an independent
risk factor for infection.53,55–57

The global strategy for control of hookworm and other
STH infections, as outlined by the WHO, involves preventive
chemotherapy using one of four anthelminthics, administered
1–2 times per year depending on estimates of community
prevalence. Currently, MDA is broadly recommended for
SAC, in whom the morbidity from hookworm is thought to
be highest. Recent targets established by the WHO propose
scaling-up MDA to reach 75% of the population at risk by
2020,6 with much of the cost defrayed through donations of
anthelminthics by the pharmaceutical industry.
However, recent controversy affirms that there is no con-

sensus view on the long-term benefit of MDA as a sus-
tainable approach to helminth control.16,58 First, although
deworming confers short-term nutritional benefit to individ-
ual children, randomized trials have not shown consistent
long-term benefits in terms of physical development, cogni-
tive function, school performance, or birth outcomes.16 Sec-
ond, because infected adults serve as a substantial reservoir
of STHs across endemic communities, targeting SAC alone
may not substantially reduce overall prevalence or risk of
reinfection, both of which are necessary for ultimate elimina-
tion.9,21 Third, widespread exposure to benzimidazoles, for
example, albendazole and mebendazole, has the potential to
accelerate the emergence of genetically mediated resistance
in human nematode parasites.25,27,59

Although it has been observed in the veterinary context,
there is no evidence to date that this genetically mediated
resistance has reduced the effectiveness of benzimidazoles
for STH infections in human populations.33,60–63 However,
it may be possible to extrapolate from ongoing lymphatic

filariasis control programs in Ghana, which advocate treat-
ment of all community members, not just SAC. In these
populations, there have been reports of reduced effective-
ness of ivermectin against Onchocerca volvulus,64 whereas
Wuchereria bancrofti worms collected in communities exposed
to combination treatment (albendazole and ivermectin) are
more likely to harbor genetic mutations associated with benz-
imidazole resistance.65 These observations highlight the need
for regular monitoring of treatment response in endemic com-
munities, as well as periodic assessment of resistance
using genetic analysis of parasite DNA.
Studies published over the past 15 years have defined

the epidemiology of hookworm infection in Ghana, both in
the centrally located Kintampo and more northern regions
of the country.34,35,43,66–69 Our work has characterized risk
factors for infection and the response to deworming treat-
ment in communities located along approximately 100 km
of paved road in KNM. These communities exhibit a moder-
ate prevalence of hookworm in the absence of other STHs,
as well as a high prevalence of asymptomatic P. falciparum
malaria. The response to treatment with single-dose
albendazole (400 mg) has been highly variable, as mea-
sured by CR and ERR.34,35 The cross-sectional study
reported here was designed to identify nutritional factors
associated with deworming response, and revealed signifi-
cant variability at both the community and individual level.
First, among the five villages surveyed along the main
Kintampo road, we identified significant community-level
variation in hookworm prevalence, which ranged from 41%
to 83% (Figure 2; Table 1). We also observed a substantial
disparity in the effectiveness of albendazole at the commu-
nity level, as measured by CR and ERR. For example, Atta
Akuraa (71%) and Cheranda (82%) showed very high CRs
compared with the southern communities Mahama Akuraa

TABLE 2
Individual host factors associated with albendazole response

Hookworm status posttreatment

Positive (N = 51) Negative (N = 27) P value

Age (years)* (N = 74)† 9.9 (9.4, 10.3) 10.5 (9.9, 11.1) 0.1
Female (%) 20 (39.2%) 14 (51.9%) 0.3
Hemoglobin (g/dL)* 11.43 (11.2, 11.7) 12.8 (11.9, 13.8) < 0.001
Mid-upper arm circumference (cm)* 18.7 (18.3, 19.1) 19.5 (18.9, 20.1) 0.02
Body mass index* 15.6 (15.2, 15.9) 15.7 (15.4, 16.1) 0.5
Improved toilet 9 (17.7%) 11 (40.7%) 0.03
Visible trash (N = 77) 21 (42.0%) 11 (40.7%) 0.9
Last meal less than 6 hours before treatment (N = 77) 45 (90.0%) 16 (59.3%) 0.002
Number of bowel movements (24 hours)* 1.1 (0.9, 1.3) 1.5 (1.0, 1.9) 0.1

*Numbers in parentheses represent standard deviation from mean.
†N = 78 unless otherwise indicated.

TABLE 3
Host factors associated with complete response to albendazole treatment†

Crude OR Adjusted OR†

Last meal more than 6 hours before treatment (N = 73) 9.52 (2.6, 34.9)** 8.59 (2.3, 32.3)**
Hemoglobin (g/dL)‡ (N = 74) 1.75 (1.2, 2.6)** 1.77 (1.2, 2.7)**
MUAC (cm)§ (N = 74) 1.47 (1.03, 2.1)* 1.36 (0.91, 2.03)

MUAC = mid-upper arm circumference; OR = odds ratio.
*P < 0.05;
**P < 0.01.
†Adjusted for child age and sex.
‡For every increase of 1 g/dL in blood hemoglobin, there is a corresponding 75% (crude OR) increase in the probability of being negative following treatment. After adjusting for child age

and sex, for every 1 g/dL increase in hemoglobin there is a 77% increase in the probability of being negative following drug treatment.
§For every 1 cm increase in MUAC, there is a corresponding 47% increase in the probability of being negative following albendazole treatment (unadjusted). After adjusting for child age

and sex, there is a 36% increase in the probability of being negative following treatment of every 1-cm increase in MUAC.
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(14%) and Tahiru Akuraa (13%). Most striking, and of
greatest concern, is the CR of 0% (N = 24) among treated
children in Jato Akuraa, despite an identical treatment pro-
tocol using the same source of drug. Of note, the ERR data
roughly mirrored the CR data, with the highest reductions in
intensity of infection found in the villages of Atta Akuraa
(95%) and Cheranda (96%) (Figure 2) and more modest
therapeutic effect in Jato Akuraa (53%), Mahama Akuraa
(67%), and Tahiru Akuraa (84%).
Although the cause of these widely variable responses to

albendazole across the Kintampo communities is likely multi-
factorial, WHO guidelines recommend that an ERR of less
than 90% for hookworm following albendazole treatment
should elicit concern about potential parasite resistance.42

These concerns have been raised even though at present
there is no evidence that genetically mediated resistance
plays a role in reducing the effectiveness of albendazole
against human hookworms. In fact, studies published have
failed to demonstrate significant frequencies of resistance
associated gene mutations circulating in N. americanus hook-
worm samples collected from individuals living in endemic
areas.31,70 Although the low CRs and ERRs reported here,
especially in Jato Akuraa (0% CR), are worrisome, geneti-
cally mediated benzimidazole resistance is only one of a
number of potential explanations.
The observation that fasting enhances albendazole activity

against hookworm is supported by animal studies on drug
bioavailability and pharmacokinetics.71,72 In fact, Lange and
others previously suggested that treatment of intraluminal
infections, such as hookworm, might be enhanced if the
drugs were administered on an empty stomach, since absorp-
tion of albendazole is thought to be increased when taken
with meals.71 The data reported here supports the idea that
conditions associated with reduced absorption of albendazole
may improve its effectiveness against hookworm and poten-
tially other intestinal nematodes. Therefore, given our obser-
vation that food intake influences treatment response in
children, attention to this modifiable factor represents an
intervention that could increase CRs and enhance the posi-
tive impact of deworming programs at no additional cost.
We therefore recommend that specific guidelines be devel-
oped to address the timing of albendazole when administered
under school-based deworming programs.
Because malnutrition also appears to be an independent

risk factor for hookworm infection,34,35 improving the nutri-
tional status of children living in hookworm-endemic areas
could potentially produce a double benefit, that is, by both
enhancing the response to deworming and reducing sus-
ceptibility to infection. For example, defining the prevalence
of anemia and nutritional status (via MUAC) within schools
or communities could identify children in whom albendazole
effectiveness might be less than adequate. Conversely, care-
ful monitoring of treatment response could identify individ-
uals in whom deworming effectiveness might be improved
through nutritional support. Of course, results from this rela-
tively small, cross-sectional study will need to be validated
using a prospective study design before any changes in cur-
rent recommendations or policies regarding the implementa-
tion of MDA programs can be considered.
In summary, these data demonstrate the potential value

of monitoring the response to drug treatment at both the
community and individual level, so that significant variations

in outcome can be factored into predictive models of prev-
alence, intensity, and emerging resistance. More impor-
tantly, the identification of specific host nutritional factors
that significantly impact drug effectiveness highlights the
critical importance of providing nutritional support as a
means of reducing the global health impact of hookworm
and other globally important STN infections.
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