Developmental **Electrophysiology**

Rachael Tillman, Max Rolison, Giulia Righi, Cora Mukerji, Adam Naples, Marika Coffman, Celine Cuevas, Jennifer Foss-Feig, Peter Hashim, & James McPartland

Yale Child Study Center

Laboratory

BACKGROUND

Biological motion

- Perceptual sensitivity to biological motion (BM) is critical to social function and evident in infants as young as 2 days old (Simion et al., 2008).
- Neural response to BM is marked by distinct event-related potentials (ERPs) and attenuation of EEG mu rhythm (5-9Hz) in infants as young as 8 months.
- Behavioral studies reveal atypical BM perception by toddlerhood in autism spectrum disorder (ASD).

Audio-visual synchrony (AVS)

- Detection of temporal contingency between auditory and visual events is also evident in infancy.
- Electrophysiological studies in typically developing adults and children reveal neural facilitation to audio-visual events, marked by greater response to audio-visual stimuli relative to the sum of auditory-alone and visual-alone events.
- Toddlers with ASD display preferential attention to audio-visual synchrony (AVS) rather than the typical preference for biological motion (Klin et al., 2009).

Study Aims

- To investigate the neural bases for observed hyposensitivity to BM and hypersensitivity to AVS in infants at high-risk (HR) for ASD.
- To investigate neural specialization for BM in infants younger than 8 months.
- Two experiments assessed electrophysiological brain responses to BM, scrambled motion (SM), and AVS in infants at elevated risk for ASD in the first year of life.
- We predicted that, relative to normal risk (NR) infants, HR infants would display
 - Hyposensitivity to BM, evidenced by reduced attenuation of EEG mu rhythm • Intact or enhanced audiovisual integration in HR infants

PARTICIPANTS & METHODS

100 trials total:

- 25 point-light display walkers moving right
- 25 walkers moving left
- 25 scrambled patterns moving right
- 25 scrambled patterns moving left
- EEG recorded continuously at 500 Hz using EGI Net Amps 300, 128-channel Hydrocel Geodesic Sensor Nets.
- EEG and ERPs segmented to stimulus onset, hand-edited for artifact, and averaged referenced.
- Event-related power in the mu band (6-9 Hz) was computed using EEGLab.
- Peak amplitude for the Positive Slow Wave (PSW) was extracted in the Biological Motion Paradigm.
- Peak amplitude and latency for the N200 was extracted in the Biological Motion Paradigm.
- Peak amplitude for the N100 was extracted in the Audio-visual Synchrony Paradigm.

Acknowledgements:

Simons Foundation 94924 (Klin, Pelphrey, McPartland) NIMH K23MH086785 (McPartland) NARSAD Atherton Young Investigator Award (McPartland)

- 90 trials total:
- 30 audio only
- 30 visual only

STIMULUS ONSET

 $0 \, \mathrm{ms}$

• 30 audiovisual

	Normal Risk Infants		
Mullen T- scores	6 months Mean(SD)	12 months Mean(SD)	6 moi Mean
Gross Motor	47 (11)	49 (16)	45 (2
Fine Motor	49 (8)	59 (15)	52 (2
Visual	52 (7)	53 (16)	47 (2
Expressive Language	39 (4)	43 (14)	42 (
Receptive Language	47 (10)	47 (7)	54 (

Neural Sensitivity to Biological Motion versus Audio-visual Synchrony in Infants at Risk for Autism

Yale Child Study Center, New Haven, CT

Figure 1: Grand averaged waveforms for biological and scrambled motion for HR and NR infants at 6 month and 12 month time points.

6 Hz 7 Hz 8 Hz 8 Hz 9 Hz

HR

Figure 2: Event-related Power in the mu frequency in HR and NR infants at 9 to 12 months.

Figure 3: BM N200, PSW, & Mu recording sites. Data were averaged across 8 electrodes for the N200 and PSW recording sites (77, 84, 85, 90, 91, 92, 95, 96) and 8 for the mu recording sites (11, 12, 5, 13, 6, 112, 7, 106).

Figure 4: AVS N100 Data were averaged across 8 electrodes (4, 5, 11, 12, 19, 24, 124).

Figure 5: Amplitude of grand averaged waveforms elicited by audio-visual stimuli and summed response to audio only and visual only stimuli in 6 to 9 month infants.

HR

PRELIMINARY RESULTS

Biological Motion:

N200

- N200 morphology is not observed at 6 months in either group but is evident at 12 months for both groups.
- At 12 months, only NR infants show emergent differentiation between BM and SM. At 12 months, HR infants demonstrate greater amplitude compared to NR infants, irrespective of condition [BM, t(18)=-2.48, p<.05; SM, t(18)=-2.37, p<.05].

PSW

- At 6 months, NR infants exhibit enhanced amplitude to BM relative to the HR infants [t(16)=-2.14, p<.05].
- At 6 months, NR infants demonstrate enhanced amplitude in comparison to SM, whereas HR infants fail to show such a pattern.
- At 12 months, NR infants exhibit enhanced amplitude irrespective of condition.

Mu Rhythm

• HR infants fail to display attenuation in EEG mu rhythm to biological motion relative to LR infants at 200 ms [*t*(30)=2.49, *p*<.05], 300 ms [*t*(30)=2.43, *p*<.05], and 500 ms [*t*(30)=2.49, *p*<.05]

Audio-visual Synchrony:

N100

- summed audio-only and visual-only response than the audio-visual response. response is more negative going than the summed response.
- Between 6 to 9 months, HR infants show reduced sensitivity to AVS, reflected in a larger • LR infants demonstrate typical processing of audio-visual contingency; the audio-visual

CONCLUSIONS

- Rather than an imbalance in the processing of biological motion and audiovisual synchronous stimuli, HR infants demonstrated atypical neural responses to BM and reduced sensitivity to AVS.
- Atypical responses to BM in HR infants related to distinct electrophysiological markers of social perception at different developmental points. At 6 months, reduced differentiation was observed at the PSW, but, at 9-12 months, attenuated EEG mu rhythm indicated weaker differentiation in the action-perception system.
- Diminished responses to audio-visual contingency at 6 to 9 months in HR infants indicated coexisting anomalies in more basic processing, i.e., multi-sensory integration.
- Results suggest pervasive perceptual anomalies in HR infants rather than isolated dysfunction in social or perceptual brain circuitry. Both social processes and multi-sensory integration may represent neural endophenotypes marking early atypical development in ASD.

FUTURE DIRECTIONS

- Ongoing data collection will follow infants through diagnostic outcomes at 36 months.
- Changing patterns of group differences across time points emphasize the importance of considering developmental trajectories of high-risk infants.
- Work in progress examines AVS in social versus non-social contexts and examines oscillatory activity indexing other cognitive processes (gamma rhythm) and its relationship to clinical characteristics.

REFERENCES

rather than biological motion. *Nature*, *459*(7244), 257-61. doi:10.1038/nature07868

- Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-Year-Olds with autism orient to non-social contingencies
- Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. *Proceedings of the* National Academy of Sciences of the United States of America, 105(2), 809-13. doi:10.1073/pnas.0707021105