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General Information

= The purpose of the study was to investigate
wss " the health effects of air quality on respiratory
symptoms.
= Data were collected from mothers and their
iInfants in Southwest Virginia for a summer period
from June 10 to August 31, 1995.
= Symptoms recorded daily include runny or stuffy
nose.
= A general IS that symptom prevalence

IS related to air quality as well as to non-specific
personal characteristics.
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Variables in Our Analysis

We consider three symptom variables for mothers (i.e., runny

nose, cough, sore throat) and three for infants (runny nose,

cough, general sickness).

= These events are denoted by 7, indexed by individual
symptom.
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Personal characteristics include allergy (ALL), household pets

(PETS), number of children (or siblings) in day care (CHDC),

and mother’s marital status (MS).

= These variables are denoted by x4, ..., x4, INndexed by
Individual symptom.
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Sample Data

DAY SYMP MTMP MHUM  COARSE SO4 ALL PETS CHDC MS
1 0 86 97 10.30 130.24 1 1 0 1
2 0 88 100 8.00 35.99 1 1 0 1
3 1 69 100 5.94 23.42 1 1 0 1
4 1 72 75 4.74 46.42 1 1 0 1
5 1 80 77 6.98 38.65 1 1 0 1
6 1 80 76 4.81 35.48 1 1 0 1
7 1 81 93 7.87 69.11 1 1 0 1
8 1 80 100 6.66 100.37 1 1 0 1
9 1 81 96 2.85 91.74 1 1 0 1
10 1 78 90 3.82 104.12 1 1 0 1
80 0 87 93 8.12 66.01 1 1 0 1
81 1 90 97 7.49 181.98 1 1 0 1
82 0 91 93 10.78 208.98 1 1 0 1
83 1 92 93 7.41 208.44 1 1 0 1
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Data Summary

Variable Label Description Range Summary

MTMP Maximum 24-hour temperature  69-100°F 85.8 + 6.9

MHUM Maximum 24-hour Humidity 79-100 92.3 £ 5.6

COARSE Coarse mode particles 1.41-19.79g/m> 7.5+ 3.3
(PM10-PM2 5)

SO4 24-hour sample sulfate level 6.34-306.89nm/m? 98.3 £+ 66.4

ALLERGY Allergies diagnosed or 0,1 42%(1.3%)
treated by a doctor

PETS Fur-bearing pets kept in the 0,1 46%(1.3%)
home within the past year

CHDC Number of children in day 0-5 45%™ (1.3%)
care(index child excluded)

MS Mother’s marital status 0,1 83%(4%)

* for CHDC > 0.
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Existing models for the data described above are
generally restrictive and sometimes involve
somewhat arbitrary decisions.

= Gent et al. (2003) used logistic regression in the context of
repeated measures. They used each subject to serve as his
or her own control; as a result, personal variables that
remained constant during the study could not be included.
They also categorized the air quality exposure variables into
guintiles for modeling purposes.
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Limitations of Existing Models

Existing models for the data described above are
generally restrictive and sometimes involve
somewhat arbitrary decisions.

= Gent et al. (2003) used logistic regression in the context of
repeated measures. They used each subject to serve as his
or her own control; as a result, personal variables that
remained constant during the study could not be included.
They also categorized the air quality exposure variables into
guintiles for modeling purposes.

= Zhang et al. (2000) introduced a simple model that uses a
binary time series for each individual as the response
variable against a battery of covariates.
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Zhang et al. (2000) Model

v Is simple
v enables separate analyses for incidence data, prevalence

data, and symptom duration, which are usually difficult to
Incorporate in a single model
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v is simple
v enables separate analyses for incidence data, prevalence

data, and symptom duration, which are usually difficult to
Incorporate in a single model

X air quality measures were included as time-varying
covariates ignoring the uncertainties in those repeated
measures.
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SNIEN

IS simple
enables separate analyses for incidence data, prevalence

data, and symptom duration, which are usually difficult to
Incorporate in a single model

air quality measures were included as time-varying
covariates ignoring the uncertainties in those repeated
measures.

characterization of binary time series is difficult due to the
discrete nature of the series and this limits our ability to
conduct rigorous statistical inference.
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data, and symptom duration, which are usually difficult to
Incorporate in a single model

X air quality measures were included as time-varying
covariates ignoring the uncertainties in those repeated
measures.

x characterization of binary time series is difficult due to the
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Joint Models

Tsiatis, Degruttola and Wulfsohn (1995): evaluate the
relationship between the repeated measures of CD4 counts
and survival. No recurrent event and no multiple repeated
measures.
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Joint Models

Tsiatis, Degruttola and Wulfsohn (1995): evaluate the
relationship between the repeated measures of CD4 counts
and survival. No recurrent event and no multiple repeated
measures.

Additional work: Faucett and Thomas (1996), Wulfsohn and
Tsiatis (1997), Hogan and Laird (1997a, b), Faucett, Schenker
and Elashoff (1998), Finkelstein and Schoenfeld (1999), Vaida
and Xu (2000), Henderson, Diggle and Dobson (2000), Xu and
Zeger (2001), Wang and Taylor (2001), and Ibrahim et al.
(2004)

Excellent review: Tsiatis and Davidian (2004)

Henderson, Diggle and Dobson (2000): a latent bivariate
Gaussian process affects both a repeated measurement
sequence and the hazard for an associated event-time.
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Decomposition of Time Series

Yi(t) = pe(t) + Wi(t) (1)

where W (t) = {W1(t),..., W, (t)} is a multivariate zero-mean
Gaussian process. Thus, Wy (t) is specific to Yi (1).
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Decomposition of Time Series

Yi(t) = pe(t) + Wi(t) (1)

where W (t) = {W1(t),..., W, (t)} is a multivariate zero-mean
Gaussian process. Thus, Wy (t) is specific to Y (?).

Wi(t) = qeQ(t) + o1&k (1) (2)

where Q(t) and £(¢t) = {&1(t), ..., En(t)} are independent
Gaussian processes with mean zero and unit variance, and
qx(> 0) and o, (> 0) are coefficient parameters.

All of the independence conditions are imposed to ensure the
uniqueness of the decomposition.
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Two Types of Event Transition

1 Transition from a normal state (Z = 0) to an abnormal state
(Z = 1), denoted by 0 — 1. We assume that the event
intensity (hazard rate) for this transition is A ().
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Two Types of Event Transition

1 Transition from a normal state (Z = 0) to an abnormal state
(Z = 1), denoted by 0 — 1. We assume that the event
intensity (hazard rate) for this transition is A ().

|} The reverse 1 — 0, with event intensity A5 (%).
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Proportional Hazards

For any individual 7,

Nis(t) = exp{Xi(t)" B + Bis(t) } s, (3)
where
Bz’s (t) — /YOSUZ' + /YSQ(t)? (4)

and {U, }_, are subject-specific frailties which follow the
standard normal distribution and are independent of Q(¢) and
E(t).
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Correlation

We write the u-lag correlation functions for Q(¢) and & (t) as
p1(aq,u) and pog (o, u), respectively.
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Correlation

We write the u-lag correlation functions for Q(¢) and &x(t) as
p1(aq,u) and po (s, u), respectively.

Many different correlation structures have been proposed Iin
the geostatistical literature (see, for example, Matérn, 1960,
p.16; Cressie, 1993, pp. 85-86; Chiles and Delfiner, 1999,
Section 2.5).
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Correlation

We write the u-lag correlation functions for Q(¢) and & (t) as
p1(aq,u) and pog (o, u), respectively.

We use the powered exponential correlation function:

pla,u) = exp(—alul®) : 0 < § < 2.

(5)
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Covariance-Stationarity

Let
Vi = (p1(aa, i — j])),, ,» where p (a1, u) is defined by (5).

Vor = (par (a2, 1t — 41)) 1
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Covariance-Stationarity

Let
Vi = (p1(aa, i — j])),, ,» where p (a1, u) is defined by (5).

o Q fC\lJ N(O, Vl)
ng; = (,02k(042k:7 |Z — jl))dxd'
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Let
Vi = (p1(aa, i — j])),, ,» where p (a1, u) is defined by (5).

o QL N(O,V).
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Time Series

Let

=
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Time Series

Let

Yy —
M f—

(Y1(1)7 7Y1(d)7' ) 7Ym(1)7 7Ym(d))T7
(M1(1)7°'° 7:“1(d)7°'° 7ﬂm(1)7°'° num(d))T'

Y £ N(u, V) with

(Q%V1+0§1V21 q192V1 q19m V1 \

v— | ea% GVitosnVe o @m0

\ dmdqi1 Vl

where ¢ = d x m.

gmq2V1 ¢z Vi + 03, Vam )
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Counting Processes

and

Ni(l)(t) =#{0<u<t: Z;(u)

Ni@)(t) =#{0<u<t: Z;(u)
N2(0) = 0.
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Counting Processes

and

NY@) =#{0<u<t: Ziw)
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Partitioning of the Time Interval
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Partitioning of the Time Interval

ND (g 1 9 : 1 2
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j=1 (7 Ti(j—1) T

— N®
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Likelihood Function

where

L(Q) — L1(97 Y)E(Q,U)|Y [L2('97 N ‘ Q> U)] )

(7)
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Likelihood Function

L(0) =Li(0,Y)Equ)y |L2(0,N|Q,U)],
where
= () contains all parameters

(7)
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Likelihood Function

L(0) =Li(0,Y)Equ)y |L2(0,N|Q,U)],
where

= () contains all parameters

= [1(6,Y) is the likelihood from the marginal multivariate
normal distribution of Y

(7)
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where I(-) is an indicator function, and
AN (1) = NV () - N7 ().
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Two-stage Procedure

1. Estimate parameters «;, a9, g and oo, associated with the
time series data Y by maximizing the likelihood function

L1(9, Y) In ﬂ
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Stage 1

We have Y £ N(u, V).
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Stage 1

We have Y £ N(u, V). Then,
L1(6.Y) = (2m)~*[det(V)] " exp{—5 (¥ — ) VY — )},

To reduce computational complexity, we can pre-estimate u by
a weighted moving average,

mo

Ae(t) = > w(s)Ye(t+s) (8)

S=—Myo

for pre-specified non-zero weights
{w(s): s=—mg,—mg+1,---,0,--- ,mg—1,mg}.
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Stage 2

We use the EM algorithm (Dempster, Laird and Rubin, 1977)
to maximize

E.u)y|L200,N|Q,U)].

@ and U are the unobserved data and N is observed, so the
complete likelihood is the joint density of (N, Q, U).
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Stage 2

We use the EM algorithm (Dempster, Laird and Rubin, 1977)
to maximize

E.u)y|L200,N|Q,U)].

@ and U are the unobserved data and N is observed, so the
complete likelihood is the joint density of (N, Q, U).

The EM algorithm starts with an initial value 0(°), and then

evaluates the expectation of the log likelihood of (Q,U)
conditional on N, denoted by Fyw [l2(0, N,Q,U)|N].
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Stage 2

We use the EM algorithm (Dempster, Laird and Rubin, 1977)
to maximize

Eg.u)y |[L2(0,NQ,U)].

@ and U are the unobserved data and N is observed, so the

complete likelihood is the joint density of (N, Q, U).

The EM algorithm starts with an initial value 0(°), and then

evaluates the expectation of the log likelihood of (Q, U)

conditional on N, denoted by Ey0)[l2(0, N,Q,U)|N].

= This expectation involves integral of U = {U;}83, and Q,
where U is subject specific frailty and (Q is random process.
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Stage 2

We use the EM algorithm (Dempster, Laird and Rubin, 1977)
to maximize

Eg.u)y |[L2(0,NQ,U)].

@ and U are the unobserved data and N is observed, so the

complete likelihood is the joint density of (N, Q, U).

The EM algorithm starts with an initial value 0(°), and then

evaluates the expectation of the log likelihood of (Q, U)

conditional on N, denoted by Ey0)[l2(0, N,Q,U)|N].

= This expectation involves integral of U = {U;}83, and Q,
where U is subject specific frailty and (Q is random process.

= Gibbs sampler is used to approximate this high dimensional
Integral.
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Stage 2

We use the EM algorithm (Dempster, Laird and Rubin, 1977)
to maximize

Eg.u)y |[L2(0,NQ,U)].

@ and U are the unobserved data and N is observed, so the
complete likelihood is the joint density of (N, Q, U).

The EM algorithm starts with an initial value 0(°), and then

evaluates the expectation of the log likelihood of (Q, U)

conditional on N, denoted by Ey0)[l2(0, N,Q,U)|N].

= This expectation involves integral of U = {U;}83, and Q,
where U is subject specific frailty and (Q is random process.

= Gibbs sampler is used to approximate this high dimensional
Integral.

In the maximization step, we use a Newton-Raphson algorithm

to maximize Ey«o)|l2(0, N,Q,U)|N| and obtain an updated

point estimate for 6.
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Stage 1. Time Series Model

= Using model (2) and assuming o, = qx, We generated a two
dimensional time series Y, i.e., {Y (t) = (Y1(¢), Ya(t))? }L_,
for d days, where d was chosen to be either 30 or 50.
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Stage 1. Time Series Model

= Using model (2) and assuming o, = qx, We generated a two
dimensional time series Y, i.e., {Y (t) = (Y1(¢), Ya(t))? }L_,
for d days, where d was chosen to be either 30 or 50.

» The model for Y}, is Yj(t) = puw(t) + qpQ(t) + qr&r(t).

= \We used the correlation families (5). To demonstrate that
assuming 6 = 1 for the modeling has only a small effect on
the estimation, we generated data with the true ¢ taking
values 0.5 and 2.0.
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Stage 1. Time Series Model

= Using model (2) and assuming o, = qx, We generated a two
dimensional time series Y, i.e., {Y (t) = (Y1(¢), Ya(t))? }L_,
for d days, where d was chosen to be either 30 or 50.

» The model for Y}, is Yj(t) = puw(t) + qpQ(t) + qr&r(t).

= \We used the correlation families (5). To demonstrate that
assuming 6 = 1 for the modeling has only a small effect on
the estimation, we generated data with the true ¢ taking
values 0.5 and 2.0.

= Each simulation was replicated 1000 times.
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Effect of Correlation Parameter 6 = .5

Background

Parameter | True Value d=30 d=50
(YMIH) Study Estimate | S.E. Estimate | S.E.

o 81 1375 | 1.732 | 1.081 | 0.622
0 1.0 0916 | 0130 | 0935 | 0.102

4 1.0 0.908 | 0.131 | 0.940 | 0.104
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Effect of Correlation Parameter 6 =2

Background

Parameter | True Value d=30 d=50
(YMIH) Study Estimate | S.E. Estimate | S.E.

PI: Brian Leaderer, Ph.D.

Lierature o 0.81 0.971 0.334 0.897 0.208
odel q1 1.0 0.962 0.138 0.975 0.099
Estmation q2 1.0 0.956 0.132 0.975 0.104
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Effect of Nonstationarity

We used the following model to simulate a non-stationary
process

Yi(t) = pe(t) + qrQ(¢) + o (t)Ek (1), 9)
where Q(t) and & (t) are independent stationary Gaussian
processes, whilst the function o(¢) was generated from the x?

distribution at the discrete time points to introduce the
nonstationarity for Yx (¢).
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Effect of Nonstationarity

We used the following model to simulate a non-stationary
process

Yi(t) = pr(t) + qpQ(t) + o (t)Ek(t), 9)
where Q(t) and & (t) are independent stationary Gaussian
processes, whilst the function o(¢) was generated from the x?
distribution at the discrete time points to introduce the
nonstationarity for Yx (¢).
When d = 30, in roughly 10% of the simulations our estimation
procedure failed to converge. When d = 50, the estimation
procedure failed to converge in about 4% of the simulations.

This computational problem is due to the difficulty of estimating
a under the stationary assumption.
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Parameter Estimates under Nonstationarity

Parameter

d=30

d=50

Estimate

S.E.

Estimate

S.E.

1.846

0.885

1.775

0.689

q1

0.937

0.459

0.940

0.376

q2

0.903

0.443

0.916

0.374

01

1.536

0.659

1.586

0.551

1.498

0.619

1.578

0.539

(6 = 0.5)

- p. 37/49




Background

Yale Mothers and Infants Health
(YMIH) Study
PI: Brian Leaderer, Ph.D.

Literature

Model

Estimation

Simulation Study
e Stage 1: Time Series Model
e Effect of Correlation

Parameter 6 = .5
e Effect of Correlation
Parameter § = 2

e Effect of Nonstationarity

e Parameter Estimates under
Nonstationarity

e Stage 2: Counting Processes

e Other Settings

e Estimation of Covariate
Effects

Application

Stage 2. Counting Processes

= X;=1and X, < Uniform(0,1).
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Stage 2. Counting Processes

= X;=1and X, < Uniform(0,1).

= The counting processes N1 and N were generated with
intensities \;(¢) and Ao (¢) defined by (3) and (4),
respectively.
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Stage 2. Counting Processes

= X;=1and X, < Uniform(0,1).

= The counting processes N1 and N were generated with
intensities \;(¢) and Ao (¢) defined by (3) and (4),
respectively.

= The autocorrelation was again p(1,1t).
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Stage 2. Counting Processes

= X;=1and X, < Uniform(0,1).
= The counting processes N1 and N were generated with

intensities \;(¢) and Ao (¢) defined by (3) and (4),
respectively.

= The autocorrelation was again p(1,t).
= To generate stopping times

{(1) (2) (1) () o D) _(2)

Ti1 5 Tin s Tin s T > Tii s ), We first generated

(1) based on the condltlonal distribution of (1)\ (2) then

generated 7' ) based on the conditional dlstnbutlon T \ ),
and so on, stopplng when the last value was larger than or
equal to d.
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Other Settings

= The simulation was replicated 100 times.
= |In each simulation, we used n = 100 subjects.

= The number of Gibbs samples depended on the EM iteration
and was chosen large enough to minimize numerical
differences.

0 It was set at 500, 2000 and 10000 for iterations from 1 to
20, from 20 to 40, and over 40, respectively (Booth and
Hobert 1999, McCulloch 1997).

0 The maximum number of EM iterations was set at 100.

= The standard errors of the estimated parameters were
calculated using the observed information matrix, based on
the formula given by Louis (1982).
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Estimation of Covariate Effects

Parameter

True Value

Average

S.E.

Y11

D

0.43

0.089

Y12

1.0

0.88

0.151

o1

1.0

0.75

0.095

Y02

1.0

0.81

0.130

611

—2.9

—2.55

0.236

P2

1.0

0.88

0.334

P21

—4.0

—3.86

0.311

Ba2

1.5

1.35

0.357
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Residual Plots

0.4
0.4
0.4

Background

0.2
0.2
0.2

Yale Mothers and Infants Health
(YMIH) Study
PI: Brian Leaderer, Ph.D.

-2 -1 0 1 2 -1.0 -0.5 0.0 0.5 1.0 -2 -1 0 1 2

0.0
0.0
0.0

Literature

DAY 1-10 DAY 11 - 20 DAY 21-30

Model

Estimation

0.4

Simulation Study

Application

0.2

o Normality

e Air Quality Measures

e Residual Plots

e Mothers’ Predictors for
A1 () DAY 31 - 40 DAY 41 - 50 DAY 51 - 60

e Mothers’ Predictors for

Ao (t)

e Infants’ Predictors for

A1 ()

e Infants’ Predictors for
A2 (1)

e Conclusion

0.0

0.4

0.2

0.0

-2 -1 0 1 2 3 4 -2 -1 0 1 2

DAY 61 -70 DAY 71 - 83

- p. 44/49




Background

Mothers’ Predictors for

A1(2)

Yale Mothers and Infants Health
(YMIH) Study
PI: Brian Leaderer, Ph.D.

Literature

Model

Estimation

Simulation Study

Application

e Normality

e Air Quality Measures

e Residual Plots

e Mothers’ Predictors for
A1 (t)

e Mothers’ Predictors for
Ao (t)

e Infants’ Predictors for
A1 ()

e Infants’ Predictors for
Ao ()

e Conclusion

Variable Runny Nose Cough
Coefft. SE Coeff. SE

Q1(t) 0.025 | 0.082 | -0.043 | 0.119
U, 1.092 | 0.135 | 1.571 | 0.199
COARSE | 0.404 | 0.202 | 0.595 | 0.285
MTMP 0.146 | 0.140 | 0.195 | 0.195
SO4 0.226 | 0.238 | 0.642 | 0.334
MHUM -0.644 | 0.356 | -1.029 | 0.504
ALLERGY | 0.598 | 0.241 | 0.444 | 0.354
PETS 0.526 | 0.244 | 0.245 | 0.377
MS 0.584 | 0.379 | 0.080 | 0.515
CHDC -0.252 | 0.154 | -0.366 | 0.241
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Mothers’ Predictors for

Aa(1)

Variable Runny Nose Cough

Coefft. SE Coeff. SE
Q1(t) 0.065 | 0.082 | 0.074 | 0.111
U, 0.004 | 0.139 | 0.115 | 0.163
COARSE | -0.267 | 0.202 | 0.228 | 0.301
MTMP -0.185 | 0.147 | 0.109 | 0.226
SO4 -0.231 | 0.252 | 0.194 | 0.382
MHUM 0.544 | 0.358 | -0.480 | 0.527
ALLERGY | -0.255 | 0.182 | 0.032 | 0.262
PETS 0.209 | 0.172 | 0.163 | 0.307
MS -0.576 | 0.312 | -0.290 | 0.423
CHDC 0.046 | 0.133 | -0.009 | 0.214
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Variable

Runny Nose

Cough

Coeff.

SE

Coeff.

SE

Literature

Model

Q1(%)

-0.188

0.081

0.038

0.109

Estimation

U

0.811

0.107

1.000

0.153

Simulation Study

COARSE

-0.159

0.157

-0.425

0.222

Application

MTMP

-0.220

0.107

-0.321

0.151
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e Conclusion

SO4

-0.419

0.188

-0.653

0.266

MHUM

-0.025

0.284

0.676

0.401

PETS

-0.018

0.176

0.092

0.248

MS

0.372

0.254

-0.341

0.311

CHDC

-0.110

0.109

-0.245

0.159
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Infants’ Predictors for

Aa(1)

Variable

Runny Nose

Cough

Coeff.

SE

Coeff.

SE

Q1(%)

0.033

0.070

-0.131

0.109

U

0.152

0.076

0.031

0.131

COARSE

0.170

0.156

0.167

0.225

MTMP

0.105

0.110

0.112

0.156

SO4

0.101

0.189

0.079

0.269

MHUM

-0.023

0.285

0.143

0.430

PETS

-0.169

0.138

0.150

0.199

MS

-0.361

0.199

-0.246

0.235

CHDC

0.038

0.098

0.059

0.144
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Conclusion

There are differences in the etiology of respiratory symptoms

between mothers and infants.

= Coarse particles of mass between 2.5 and 10 microns in
diameter increased the risks of mothers’ runny nose and
cough symptoms, but not on infants’ symptoms.

= The sulfate level was negatively associated with the risk of
Infants’ runny nose and cough symptoms, but not on the
mothers’ symptoms.

= High level of humidity is negatively associated with the
mothers’ cough incidence, but not on infants’ symptoms.

Such differences reveal not only the sensitivity of the mothers

and infants to the air quality, but also call for further
understanding of the differences.
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Conclusion

There are differences in the etiology of respiratory symptoms

between mothers and infants.

= Coarse particles of mass between 2.5 and 10 microns in
diameter increased the risks of mothers’ runny nose and
cough symptoms, but not on infants’ symptoms.

= The sulfate level was negatively associated with the risk of
Infants’ runny nose and cough symptoms, but not on the
mothers’ symptoms.

= High level of humidity is negatively associated with the
mothers’ cough incidence, but not on infants’ symptoms.

Such differences reveal not only the sensitivity of the mothers
and infants to the air quality, but also call for further
understanding of the differences.

It is possible that actions taken to overcome humidity by
mothers may inadvertently affect the infants.
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