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Abstract 64 

 65 

Emerging infectious diseases are increasingly understood as a hallmark of the Anthropocene1–3. Most 66 

experts agree that anthropogenic ecosystem change and high-risk contact among people, livestock, 67 

and wildlife have contributed to the recent emergence of new zoonotic, vector-borne, and 68 

environmentally-transmitted pathogens1,4–6. However, the extent to which these factors also structure 69 

landscapes of human infection and outbreak risk is not well understood, beyond certain well-studied 70 

disease systems7–9. Here, we consolidate 58,319 unique records of outbreak events for 32 emerging 71 

infectious diseases worldwide, and systematically test the influence of 16 hypothesized social and 72 

environmental drivers on the geography of outbreak risk, while adjusting for multiple detection, 73 

reporting, and research biases. Across diseases, outbreak risks are widely associated with mosaic 74 

landscapes where people live alongside forests and fragmented ecosystems, and are commonly 75 

exacerbated by long-term decreases in precipitation. The combined effects of these drivers are 76 

particularly strong for vector-borne diseases (e.g., Lyme disease and dengue fever), underscoring that 77 

policy strategies to manage these emerging risks will need to address land use and climate change10–12. 78 

In contrast, we find little evidence that spillovers of directly-transmitted zoonotic diseases (e.g., Ebola 79 

virus disease and mpox) are consistently associated with these factors, or with other anthropogenic 80 

drivers such as deforestation and agricultural intensification13. Most importantly, we find that observed 81 

spatial outbreak intensity is primarily an artefact of the geography of healthcare access, indicating that 82 

existing disease surveillance systems remain insufficient for comprehensive monitoring and response: 83 

across diseases, outbreak reporting declined by a median of 32% (range 1.2%-96.7%) for each 84 

additional hour’s travel time from the nearest health facility. Our findings underscore that disease 85 

emergence is a multicausal feature of social-ecological systems, and that no one-size-fits-all global 86 

strategy can prevent epidemics and pandemics. Instead, ecosystem-based interventions should 87 

follow regional priorities and system-specific evidence, and be paired with investment in One Health 88 

surveillance and health system strengthening.  89 
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Introduction 90 

 91 

In the last few decades, emerging infectious diseases transmitted by wildlife (zoonoses; e.g. COVID-92 

19, Ebola virus disease, influenza, and mpox) or arthropod vectors (e.g. dengue fever, Lyme disease, 93 

and Zika virus disease) have had catastrophic social, economic and ecological impacts. This trend runs 94 

counter to overall improvements in population health, and is widely believed to be the result of an 95 

ongoing state shift in the biosphere14,15, where human-driven environmental change has both increased 96 

animal susceptibility to infection, and created more opportunities for animal-to-human transmission 97 

(zoonotic spillover2), leading to more outbreaks of both familiar and novel pathogens. The rising tide of 98 

emerging infectious diseases has brought global attention to ecological and social interventions that 99 

could mitigate the upstream drivers of disease emergence13,16. Recently, most attention has focused 100 

on curbing wildlife trade or deforestation17–20, but other interventions could include greenhouse gas 101 

emissions reduction to limit climate change, human and livestock vaccination, improved access to 102 

point-of-care diagnostics and clinical care, the development of “One Health” disease surveillance 103 

systems and workforces, and stricter biosafety and biosecurity practices17,21,22.  104 

 105 

Although these interventions are grounded in public health and ecological first principles, there is 106 

limited scientific consensus on their potential benefits and relative priority, in large part because of 107 

insufficient evidence about the universality of many drivers of disease transmission and emergence. A 108 

growing number of literature syntheses and meta-analyses have found evidence of predictable 109 

anthropogenic impacts on disease dynamics in wildlife hosts of emerging infectious diseases23,24, as 110 

well as vertebrate host25–27 and arthropod vector27–29 community composition. In general, these studies 111 

suggest that habitat fragmentation and disturbance, biodiversity loss, and agriculture tend to increase 112 

wildlife disease prevalence30, but the net impacts of urbanization, deforestation, and climate change 113 

may be more unpredictable31–34. This reflects a mix of scientific evidence gaps and true heterogeneity 114 

across systems, driven by differences in pathogen life cycles, host and vector ecology, and the 115 

intensity and types of anthropogenic impacts. As a result, the downstream relationship between 116 

human disease risk and climate change, biodiversity loss, or land use may also be idiosyncratic across 117 

diseases and regions35. These relationships are further complicated by exposure processes: human-118 

wildlife contact patterns and social vulnerability to outbreaks both vary across landscapes and 119 

populations, and neither are usually captured in wildlife-focused studies. 120 

 121 

A few influential studies have directly examined the ecological correlates of human disease 122 

emergence, based on the location where and circumstances under which around 300 emerging 123 

pathogens were first scientifically identified (“emergence events”)1,4–6. These studies have found that 124 

land use change, agricultural expansion, biodiversity hotspots and global travel are widely associated 125 

with observed geographic hotspots of disease emergence. However, the historical circumstances of 126 

the first confirmed outbreak may not be representative of the social and ecological factors that 127 

determine wider landscapes of infection risk. By design, data on emergence events are biased towards 128 

better-resourced settings where new diseases are more likely to be detected and described, rather 129 

than the rural, poor, and marginalized populations in lower-resource settings that experience an 130 
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endemic burden of zoonotic and vector-borne diseases36 (including many infections typically framed 131 

as “emerging”37–39). Assigning outbreak drivers based on expert opinion5,6 is also prone to confirmation 132 

bias40, and difficult to generalize to wider patterns of risk. The growing availability of fine-scale, 133 

comprehensive georeferenced outbreak datasets for many of these diseases – compiled from disease 134 

surveillance reports, scientific and gray literature41 -- provides the opportunity for a more systematic, 135 

global, data-driven assessment of emerging disease drivers. 136 

 137 

In this study, we harmonized spatially-explicit human outbreak data sources for 32 emerging infectious 138 

diseases with available data (Figure 1, Extended Data Table 1, Supp. Table 1), including bat viruses with 139 

epidemic and pandemic potential (e.g. filo-, henipa-, and coronaviruses), rodent-borne pathogens 140 

(e.g. hanta- and arenaviruses, plague, and mpox), mosquito-borne arboviruses (including flavi-, alpha-141 

, and orthobunyaviruses: e.g., chikungunya, dengue fever, and Rift Valley fever), and other neglected 142 

zoonotic, vector-borne, and environmentally-transmitted infections (e.g. melioidosis, Crimean-Congo 143 

hemorrhagic fever, and Plasmodium knowlesi zoonotic malaria). Because our goal was to understand 144 

drivers of outbreak risk, rather than the distinct factors that predispose outbreaks to become 145 

epidemics or pandemics, we only examined records associated with some level of environmental 146 

influence: we included all available records associated with vector-borne or environmental exposure, 147 

but for diseases with substantial onward human-to-human transmission chains (e.g. Ebola virus 148 

disease, mpox), only index cases with a probable zoonotic origin were included (Methods). Datasets 149 

were mainly collated from published scientific datasets, as well as national notifiable disease 150 

surveillance system data from the United States, Brazil, and Argentina. The complete dataset includes 151 

58,319 unique outbreak events across 169 countries (Figure 1a; Methods) spanning 1910 to 2022 (but 152 

primarily post-2000; Figure 1b), with an outbreak event defined as ≥1 confirmed case at a given 153 

georeferenced location in a given year (either point or administrative polygon; Methods). Because of 154 

several source datasets’ focus on comprehensive coverage for certain diseases42–54, our harmonized 155 

database has widespread coverage in the Americas, sub-Saharan Africa and South and Southeast Asia, 156 

although records are still sparse in North Africa and above the 50° N latitude line.  157 

 158 

Using this extensive dataset, we developed a standardized framework for inferring the socio-159 

environmental drivers of spatial outbreak intensity (Methods, Extended Data Figure 1). We use a 160 

modified case-control design55,56, which compares contemporary (post-1980) outbreak localities to 161 

population-weighted background locations (Methods, Extended Data Figure 2). At each location we 162 

extracted a set of 16 covariates from gridded geospatial datasets (Extended Data Table 2), which fall 163 

under five broad categories: detection processes (motorized travel time to healthcare57; urban land 164 

cover), socioeconomic factors (livestock density; relative social vulnerability), ecosystem structure 165 

(spatial vegetation heterogeneity as an indicator of landscape fragmentation; forest cover; cropland 166 

cover; biodiversity intactness index58), land use change and intensity (forest loss; cropland expansion; 167 

urban expansion; mining; protected area coverage; hunting pressure index) and climate change (mean 168 

change in annual temperature and precipitation between a 1950-1970 reference period and 2000-169 

2020). These covariates were mainly derived from satellite remotely-sensed products, climate 170 

reanalysis and gridded demographic data, but some necessarily came from composite or modeled 171 
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products, notably biodiversity intactness (average local abundance of all species relative to their 172 

abundance in minimally-disturbed habitat, predicted as a function of land use intensity58); social 173 

vulnerability (a composite indicator of relative multidimensional deprivation, based on inputs including 174 

infrastructure, human development index, nighttime lights and infant mortality rate59), and hunting 175 

pressure (estimated average hunting-linked abundance decline across all mammal species, predicted 176 

from several geographical covariates; tropical forest biomes only60). We used Bayesian logistic 177 

regression models to test the contribution of these covariates to outbreak risk, including continuous 178 

geospatial random intercepts to account for unexplained macro-scale patterns of data availability, for 179 

example between countries or subnational regions (Gauss-Markov random field, models implemented 180 

in INLA v23.3.2661,62; Methods, Extended Data Figure 2). Models were fitted to outbreak event records 181 

from 1985 onwards to align with the timescales of covariate data (with certain data-sparse exceptions 182 

that included data from post-1980; Methods). We apply this framework first to our entire dataset, and 183 

then on a disease-by-disease basis, and ask (1) whether a general anthropogenic fingerprint on the 184 

spatial intensity of outbreak events can be distinguished from both bias and noise; (2) whether any 185 

broad categories of environmental change are consistently implicated in outbreak events across 186 

pathogen types, transmission modes, and regions; and (3) whether there is evidence of widely-shared 187 

drivers across diseases and transmission modes that could point towards promising ecosystem-based 188 

intervention strategies. 189 

 190 

Detection biases shape outbreak hotspots at global and local scales 191 

 192 

Globally, zoonotic, vector-borne, and environmentally transmitted disease outbreak events (n = 193 

49,239 after data preprocessing, with 50,000 background points; Methods) were correlated with 194 

human-driven ecosystems (more forest cover, but more fragmented vegetation and lower biodiversity 195 

intactness) and less socially vulnerable communities (Figure 2a). However, these associations could 196 

be confounded by both broad- and local-scale biases in outbreak detection, investigation and 197 

reporting, as well as by the spatial extent of the specific sources that were compiled into our database. 198 

Extending the model to include a geospatial random effect and adjust for detection-related covariates 199 

showed that apparent hotspots are primarily created by these observation and reporting processes 200 

(Figure 2b-c). At its extremes, the magnitude of the geospatial effect exceeds all covariate effects, 201 

with the highest intensity in the United States and Brazil – two of the three countries whose national 202 

disease surveillance systems are substantially represented in our database – as well as in regional 203 

reporting hotspots across West and Central Africa, the Middle East, and South and Southeast Asia 204 

(Figure 2d). At a more local scale, outbreak events are much more commonly reported in cities and near 205 

clinics, with these two slope estimates much larger than any other covariate effects (Figure 2c). These 206 

relationships likely reflect the importance of health systems infrastructure in disease detection (and 207 

its direct influence on the location where outbreaks are reported), although our analysis cannot 208 

distinguish reporting bias from a true effect of urban environments on outbreak risk63. 209 

 210 

Social and ecological risk factors were detectable, but with weaker or modified effects, after adjusting 211 

for detection and reporting processes (Figure 2a, 2c). Outbreak event risk was strongly associated with 212 
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higher livestock density (especially when analysis was limited to zoonotic diseases, i.e. whose human 213 

infections arise principally from spillover from an animal reservoir; Extended Data Figure 3), forest cover 214 

and fragmented vegetation and, more weakly, with higher biodiversity intactness and protected area 215 

coverage. Outbreak events were also generally associated with areas experiencing long-term drying 216 

trends (Figure 2c). These results were very similar across models only including diseases classed non-217 

exclusively as either zoonotic (n = 26 diseases) or vector-borne (i.e. transmitted by invertebrate 218 

vectors regardless of host type; n = 20) (Extended Data Figure 3). The findings of these global, disease-219 

agnostic models (hereafter “global models”) thus broadly align with the consensus that emerging 220 

infectious diseases are associated with zones of frequent contact among people, livestock, and 221 

biodiverse ecosystems1,4–6. However, spatial reporting biases at multiple scales, both regional and 222 

highly localized, have by far the strongest influence on the inferred global geography and drivers of 223 

outbreak events. These biases, and the socio-ecological diversity of disease systems represented in 224 

our dataset, emphasize the need to transition towards more granular (and bias-adjusted) disease 225 

system-specific inference. 226 

 227 

Anthropogenic drivers of outbreak risk are detectable and differ across disease systems 228 

 229 

Next, we developed disease-specific geospatial models for 31 diseases (excluding Hendra virus 230 

disease, due to data sparsity [n = 11 outbreak records]). The high number of pairwise disease-driver 231 

combinations (n = 496) and spatial reporting biases created a substantial risk of detecting spurious 232 

relationships. Therefore, to ensure we only tested specific and plausible hypotheses, we conducted a 233 

participatory hypothesis-generating exercise in which 25 study authors independently ranked 234 

candidate drivers for each disease (Supp. Table 2; Methods). The results were used to identify specific 235 

drivers to test per disease, based on either broad or strict thresholds for consensus (Methods, 236 

Extended Data Figure 4). Overall, the top-ranked hypothesized drivers were healthcare access and 237 

socioeconomic vulnerability, followed by landscape fragmentation, deforestation, urbanization, and 238 

climate change-related variables (Extended Data Figure 4). We fitted hypothesis-driven multivariable 239 

models for each disease following the general methods described above, with geospatial effects and 240 

both detection process covariates included in all models as a priori expected confounders (except 241 

when detection covariates were highly collinear; Methods, Extended Data Figure 3). We also fitted 242 

univariable models, i.e.each driver individually plus a geospatial random effect, to compare to inferred 243 

effects without adjustment for local detection covariates (Extended Data Figure 5). 244 

 245 

Across diseases, we again found widespread evidence of systematic reporting biases: the most 246 

prevalent significant predictors were increasing urban land cover (20 out of 30 diseases tested) and 247 

proximity to the nearest health facility (15 out of 23 tested); these predictors also had the two largest 248 

average scaled effect sizes (Figure 3, Extended Data Figure 6, Supp. Figure 1). For approximately half of 249 

the diseases we examined, we again found that outbreak risk was higher in fragmented and forested 250 

landscapes, with common and almost always positive effects of vegetation heterogeneity (15 out of 30 251 

tested) and forest cover (13 out of 27 tested) (Figure 3). For a quarter of the diseases we examined (8 252 

out of 31 tested), outbreak event risk was higher in localities experiencing long-term changes in annual 253 
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precipitation: in particular, climate drying was strongly associated with several vector- and water-254 

borne diseases with known or suspected links to anomalous drought-wetness dynamics (e.g. Rift 255 

Valley fever64, dengue fever65, melioidosis66 and Japanese encephalitis67; Extended Data Figure 5).  256 

 257 

Relationships with land use, biodiversity, temperature, and socioeconomic factors were less commonly 258 

detected across diseases, more heterogeneous in effect size and direction (Figure 3; Extended Data 259 

Figure 5), and often failed to align with their hypothesized importance (Extended Data Figure 4). 260 

Although deforestation is often considered one of the most common drivers of disease emergence, we 261 

detected impacts of recent cumulative forest loss (2000-2020) in one quarter of systems for which 262 

this driver was tested (7 out of 29 tested), with a mix of directional effects (three positive, four 263 

negative) and small effect sizes (Figure 3). There were similarly varied relationships with biodiversity 264 

intactness, protected area coverage, and livestock density (respectively 7 out of 24; 6 out of 27; and 5 265 

out of 18 tested; Figure 3), the latter contrasting notably with the large positive effect of livestock 266 

density in the global model. Warming was a hypothesized driver for most diseases, but we only 267 

detected effects of long-term temperature change for a few diseases (5 out of 28 tested) again with 268 

little consistency in direction (three positive, two negative; Figure 3). Finally, although social 269 

vulnerability was one of the highest-ranked hypothesized drivers, disentangling any signal from 270 

detection biases proved impossible at this broad scale (and with a relatively coarse global vulnerability 271 

indicator): outbreak events were strongly biased towards more affluent settings in univariable models 272 

(25 out of 30 diseases tested), but these effects almost always became negligible after adjusting for 273 

detection covariates (Extended Data Figure 5). All of these findings were very similar when testing 274 

hypotheses generated using a stricter criterion for consensus (Extended Data Figures 5-6). 275 

 276 

It is unclear to what degree the limited detectability of certain drivers reflects a true absence of causal 277 

relationships, or is primarily a byproduct of data sparsity, spatial misalignment between where 278 

infections occur and where they are detected, temporal misalignment between infections and 279 

environmental driver data, and/or measurement error in the environmental driver covariates 280 

(Methods). Because of these limitations, our framework may not always detect weaker, more 281 

confounded or time-sensitive effects (e.g. transient changes in risk during the land conversion 282 

process30), especially for data-limited diseases. To some degree, these limitations may be inherent to 283 

cross-disease geospatial analyses at continental or global scales; we therefore suggest our approach 284 

should be thought of as complementary to system-specific work, including both longitudinal eco-285 

epidemiological studies7 and ethnographic research40. Nonetheless, our confidence in the overall 286 

findings was strengthened by a sensitivity analysis of arbovirus surveillance data from the United 287 

States, which showed that our outbreak event case-control framework can detect similar spatial 288 

drivers as full models of county-level case incidence (Extended Data Figure 7). Our models also 289 

detected numerous well-known or strongly-suspected drivers of specific diseases, further validating 290 

the approach: these included a negative effect of biodiversity intactness on Lyme disease (consistent 291 

with foundational disease ecology research into the dilution effect8,68); pig density and both 292 

temperature and precipitation change trends as drivers of Japanese encephalitis69; an increased risk 293 

of avian influenza A/H5N1 outbreaks in areas with higher poultry densities70; positive impacts of forest 294 
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loss on mpox and zoonotic malaria71; and evidence of fragmented forest cover driving human outbreaks 295 

of arboviruses that emerge at human-forest ecotones72 (i.e., Mayaro fever, Oropouche fever, and 296 

yellow fever) (Extended Data Figure 5). Finally, for Argentine hemorrhagic fever, after adjusting for 297 

detection processes we found evidence that outbreak events are more frequent in relatively more 298 

socially-vulnerable areas, which aligns with the disease’s rodent-borne transmission ecology73. 299 

Surveillance data on this disease were the most consistently and precisely geolocated in our entire 300 

database (Extended Data Table 1), demonstrating the value of precise, standardized spatial disease 301 

surveillance reports for reducing the confounding impacts of detection bias.  302 

 303 

Shared drivers and syndemic risks differ by pathogen transmission mode 304 

 305 

Prevailing narratives about disease emergence tend to focus on the impacts and relative importance 306 

of individual drivers, but outbreak risks often arise through synergistic interactions between diverse 307 

socio-environmental processes7,74. For pathogens with shared ecological characteristics, convergence 308 

of socio-ecological drivers - for example, similar vector community responses to land use pressures29 - 309 

might produce clustering of multiple infections within the same population, potentially leading to worse 310 

outcomes (“syndemics” or syndemic interactions)74–76. Differences in the landscape-level structure of 311 

anthropogenic impacts could even help to explain global syndromes of disease emergence: for 312 

example, in East Asia and the Pacific, most drivers we analyzed are tightly correlated across space, 313 

while the opposite is true in sub-Saharan Africa (Extended Data Figure 8).  314 

 315 

To explore how these kinds of interactions could affect outbreak risks, we visualized patterns of driver 316 

occurrence and co-occurrence as unipartite networks (Figure 4, Extended Data Figure 6), across all 31 317 

disease-specific models and separately for either directly transmitted (n = 10) or vector-borne 318 

zoonoses (n = 16). We found that certain drivers co-occur frequently overall – principally urban cover 319 

and healthcare access, and to a lesser extent fragmented vegetation and forest cover (Figure 4a) – 320 

and that this pattern does not simply reflect landscape structure; for example, forest cover and 321 

vegetation heterogeneity are uncorrelated globally, while cities, travel time to healthcare, and 322 

vegetation heterogeneity are at most moderately correlated (Extended Data Figure 8).  323 

 324 

Notably, patterns of driver co-occurrence differ substantially by transmission route. In particular, 325 

zoonotic diseases that transmit from animals to humans through an arthropod vector (e.g., Chagas 326 

disease, Lyme disease, or yellow fever) have a proportionally higher rate of co-occurring ecosystem 327 

drivers (Figure 4c). This reinforces existing evidence about vector-borne disease risks in degraded and 328 

urbanizing landscapes28,77,78, particularly where compound drivers and shared vectors (e.g., Aedes 329 

mosquitoes) could interact to create syndemic risks79,80; and suggests that ecosystem-based 330 

strategies (such as protecting intact forests, or regulating the financial actors most responsible for 331 

unsustainable, extractive land use81) may be effective in mitigating the burden of these diseases.  332 

 333 

In contrast, we found little evidence of widely shared spatial drivers among directly transmitted 334 

zoonoses (e.g., Ebola virus disease, MERS, or mpox) (Figure 4b). This may be due in part to the relative 335 
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paucity of outbreak data for several of these pathogens, which constrains inferential power (Figure 1b-336 

c), but it also likely reflects their diversity of ecologies, life cycles, and human exposure pathways (e.g., 337 

hunting, contact with livestock and food products, household contact with wildlife82, or occupational 338 

contact with wildlife, such as through agriculture83). These findings do not support the idea that one-339 

size-fits-all ecological interventions (e.g. tighter global regulations on deforestation and agricultural 340 

expansion) would be broadly protective against epidemic and pandemic threats, such as directly-341 

transmitted respiratory and hemorrhagic fever viruses. Ecosystem-based risk prevention and 342 

surveillance programmes remain the most effective and scientifically-supported option to reduce 343 

spillover risk and improve outbreak detection at the human-animal interface16, but our findings suggest 344 

that proposed interventions should be tailored to the ecology of specific priority pathogens in specific 345 

landscapes. In systems where this evidence is currently limited, long-term ecological research can 346 

establish these principles in striking detail7. 347 

 348 

Healthcare access supports both surveillance and response 349 

 350 

Even with our extensive dataset of 32 diseases, representing a wide variety of different pathogens, 351 

biomes and socioeconomic contexts, our study remains limited by sample size and data quality. 352 

Detection and reporting biases are a pervasive, worldwide phenomenon, spanning multiple spatial 353 

scales and low- to high-income settings (Figures 2 and 3). Strikingly, many of the highest-concern 354 

diseases – such as bat-borne epidemic viruses – have the lowest availability of data (Figure 1). These 355 

gaps probably reflect under-detection rather than a true scarcity of spillover events: previous studies 356 

have estimated that up to half of all Ebola outbreaks might never have been identified84, a pattern that 357 

serological evidence indicates also applies to many high-concern zoonotic pathogens (e.g. SARS-358 

related bat coronaviruses85 and Lassa fever86). 359 

 360 

These findings highlight an underappreciated and disease-agnostic lever for intervention: improving 361 

access to healthcare in underserved rural and remote communities. In much of the world, it can take 362 

over a day to reach a clinic, especially without motorized transportation57, and remote clinics often lack 363 

capacity for molecular diagnostics, especially for rare infections; these gaps in health systems are 364 

likely to be persistent at high-risk interfaces between rural communities and intact ecosystems. 365 

Outbreaks that start further from clinics are less likely to be detected, promptly diagnosed and treated, 366 

and – without a timely response – may be more likely to grow into epidemics87. For most of the diseases 367 

we examined, outbreak event reports are clustered in close proximity to clinics: outbreak odds declined 368 

by a median of 32% (range 1.2%-96.7%) for each additional hour’s motorized travel time from the 369 

nearest healthcare facility (Figure 5a). Average travel times to healthcare across each disease’s entire 370 

geographic range are generally much higher than at documented outbreak locations, with a substantial 371 

proportion of population-weighted background locations falling over 2 hours away (median 23%, range 372 

2%-38%; Figure 5b-c). These travel time estimates may also be relatively conservative, given 373 

socioeconomic disparities in access to motorized transport, the tendency for models to underestimate 374 

actual travel times (e.g. due to road quality or traffic)88, and the many additional non-geographic 375 

barriers to accessing healthcare. Investing in new infrastructure and lowering social and economic 376 
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barriers to access would ensure timely disease diagnosis, treatment, and prevention for underserved 377 

communities — and would substantially increase the odds of outbreak detection and reporting. 378 

Improving global surveillance of infectious diseases at human-nature interfaces would also help 379 

address the data gaps highlighted in our study, and could therefore help strengthen the scientific 380 

evidence base around ecological strategies for risk reduction. 381 

 382 

Conclusion 383 

 384 

The recent rise of emerging infectious diseases is often described – both by scientists and science 385 

communicators – as a byproduct of global anthropogenic environmental change20,91. This trend may 386 

share common causes with both the climate and biodiversity crisis, but is also a “wicked problem” in its 387 

own right: our analyses suggest that emerging infectious disease risks are ubiquitous, and widely 388 

associated with mosaic landscapes where people and cities live alongside forests and fragmented 389 

ecosystems. For many vector-borne diseases, we find evidence of a strong and consistent 390 

anthropogenic fingerprint, supporting the idea that certain land use and climate policies could achieve 391 

net reductions in disease burden. However, we were unable to detect a similarly consistent 392 

anthropogenic fingerprint on directly-transmitted zoonotic infections, diverging from popular 393 

emergence narratives that have been based largely on evidence from in-depth case studies2,91,92. In any 394 

given region, investments in ecological and community-led research will be needed to identify and 395 

evaluate locally-tailored ecosystem interventions that reduce spillover risk and the endemic burden of 396 

regional priority diseases. Meanwhile, as new diseases continue to emerge – and human activities 397 

continue to transform the planet, even in the best-case scenarios for sustainable development – we 398 

suggest that the global community should redouble their investments in health system strengthening. 399 

Achieving universal health coverage, strengthening outbreak response capacity, and investing in novel 400 

vaccines and therapeutics, can help to ensure that - even in a world with 5% more spillover events each 401 

year93 – outbreaks never have the opportunity to become epidemics. 402 

  403 
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Materials and Methods 404 

 405 

Overview 406 

 407 

The aim of this study was to empirically test for a general detectable fingerprint of anthropogenic 408 

drivers on the geographical distribution of human outbreaks of 32 emerging infectious diseases, based 409 

on existing geolocated outbreak and case data sources, as well as gridded datasets representing key 410 

socio-environmental disease drivers. To account for differing ecological characteristics across 411 

diseases and avoid testing for spurious or irrelevant associations, we generated a set of hypothesized 412 

key drivers for each individual disease through a structured form-based exercise completed by most 413 

coauthors, whose expertise spans a wide range of disciplines and scales of enquiry (from microbiology 414 

to global public health). Across all diseases overall, and individually per disease, we applied a 415 

standardized statistical inference framework, which involved harmonization of point and polygon data 416 

and inference of the drivers of outbreak risk using geospatial logistic regression models. We describe 417 

these methodological stages in detail in the following sections. 418 

 419 

Collection and harmonization of geolocated human disease data 420 

 421 

We collated and harmonized geolocated point and polygon data on human case occurrence and/or 422 

incidence of 32 environmentally-linked emerging infectious diseases, from numerous published 423 

datasets in the scientific literature and from open national disease surveillance data portals (Figure 1, 424 

Extended Data Table 1, Supp. Table 1). We used the following broad criteria to select diseases for 425 

inclusion: (1) Human infection risk should be closely coupled and thus in principle attributable to local 426 

environmental or ecological conditions (i.e. zoonotic, vector-borne, or environmentally-transmitted), 427 

and if extended human-to-human transmission chains independent of these conditions are possible, 428 

datasets must specify the locations of probable index cases. (2) Diseases should not be sufficiently 429 

well-surveyed that prevalence surveys, rather than case incidence or occurrence, could form the basis 430 

for inference. (3) Diseases should not have been subject to long-term eradication programmes that 431 

could confound inference of environmental drivers. These criteria meant that our analyses included 432 

many emerging, rare and high-concern zoonotic and vector-borne pathogens (including many 433 

mosquito-borne arboviruses, rodent- and bat-borne viruses and Plasmodium knowlesi zoonotic 434 

malaria), but not P. falciparum or P. vivax malarias or neglected tropical helminthiases.  435 

 436 

The full list of diseases, data sources and their spatial and temporal coverage is provided in Extended 437 

Data Table 1. When compiling data for each disease, our priority was to select datasets that covered as 438 

much of the known geographic extent of transmission as possible, while remaining internally 439 

consistent (i.e. collated in a standardized and comparable way to facilitate analysis). We focused on 440 

compiling existing published datasets from scientific literature and openly accessible disease 441 

surveillance portals, rather than collecting additional data (e.g. via scraping scientific literature or 442 

ProMED), to ensure that our analyses are representative of data that are currently in the public domain 443 

and relatively analysis-ready. Notably, sufficient or suitable data were not available for certain high-444 
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priority diseases, most notably SARS-related coronaviruses, because too few confirmed spillover 445 

events have been documented to provide a geographic picture of risk94. Datasets were obtained either 446 

via downloading from scientific paper supplementary data or open repositories, sharing between study 447 

coauthors, or through email requests to specific paper lead authors. To credit the substantial work 448 

involved in compiling the source datasets and ensure our author team included disease-specific 449 

expertise, lead authors who collated and shared datasets were invited to be study coauthors and 450 

participate in hypothesis generation (see below) and manuscript writing and editing (see Author 451 

Contributions section for a breakdown of roles). 452 

 453 

Human case datasets are generally available in one of two formats. (1) Geolocated spillover or outbreak 454 

occurrences. Here, records represent 1 or more cases occurring at a named place and time, with 455 

geographical precision ranging from a specific point location or point with buffer radius (more precise), 456 

to a named administrative unit (less precise). This category of data includes most of the datasets 457 

collated for the purpose of risk mapping, for example by research groups affiliated with the US-based 458 

Institute for Health Metrics and Evaluation53,95.(2) Case counts from named areal units. Here, records 459 

contain the number of cases reported from a particular areal unit (usually administrative level 1 or 2) 460 

during a particular time window (usually month or year). This category mainly includes datasets 461 

collected and reported through national notifiable disease surveillance systems, which are often 462 

available via online portals, reports, or scientific papers. Point locations can provide greater geographic 463 

precision on environmental conditions nearby to a reported disease case, whereas administrative units 464 

require averaging conditions across often much-larger polygons. Consequently, different sources 465 

provide different levels of information about both transmission intensity (binary outbreak occurrence 466 

versus number of cases) and environmental context (specific event location versus broad aggregated 467 

unit).  468 

 469 

To ensure that the results of our models were comparable across diseases and datasets (Extended 470 

Data Table 1), we therefore needed to develop a common harmonization framework to accommodate 471 

these diverse data sources while preserving spatial uncertainty in location of infection. A diagram of 472 

this pipeline is shown in Extended Data Figure 1 and described as follows. The response variable, an 473 

“outbreak event”, was defined as at least 1 case in a named locality in a given year, to ensure 474 

comparability in analyses between geolocated outbreak datasets (which contain no or partial 475 

information about the number of cases) and surveillance data (which typically provide an estimate of 476 

incidence). For any given disease, all outbreak locations (whether natively point or polygon) were 477 

converted to polygon objects using the ‘sf’ package in R96, by drawing a circular buffer around point 478 

locations with a radius of either 5km or another custom value (if specified within the source dataset). 479 

All polygons covering too large a spatial area were excluded as too imprecise to link to local 480 

environmental conditions; this was by default >5000 km2 (equivalent in area to a circular buffer with a 481 

radius of 40km) but was relaxed to higher values (mostly under 10,000km2, but maximum 20,000km2) 482 

for certain data-sparse diseases and coarser areal case surveillance datasets (Brazilian spotted fever, 483 

chikungunya, Eastern equine encephalitis, influenza (H5N1), Jamestown Canyon encephalitis, Marburg 484 

virus disease, Mayaro fever, Oropouche fever, plague, Rift Valley fever, St. Louis encephalitis, West Nile 485 
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fever, and yellow fever), as a compromise to retain as complete a geographical picture of outbreak 486 

event distributions as possible. 487 

 488 

For each disease, this process produced a dataframe where each row with a unique identifier 489 

represents an outbreak event (i.e. 1 or more cases in a given locality in a given year) with metadata 490 

where available (number of cases, case definition, diagnostic method, etc), along with an associated 491 

shapefile linking each record to a geographical polygon. For most diseases the shapefile contained a 492 

mixture of smaller circular buffers around point locations (with radius between 5 and 20km) and larger, 493 

irregularly shaped administrative unit polygons. Across all diseases, the full database contained 58,319 494 

unique georeferenced outbreak events, for 32 diseases, in 169 countries worldwide (Figure 1). The 495 

majority (88.7%) of records were from after 2000, whereas far fewer records (2.4%) were from before 496 

1980. The constraints of available data mean that these datasets are necessarily presence-only (i.e. 497 

contain only information on positive case detections without true negatives as controls), so later 498 

modeling analysis required the selection of background points as pseudo-controls (Extended Data 499 

Figures 1-2); we describe this process below. 500 

 501 

Disease-specific hypotheses for the drivers of human infection risk 502 

 503 

A large body of literature has proposed that several broad anthropogenic change processes may be 504 

general or common drivers of risk across a large number of zoonotic, vector-borne and 505 

environmentally-mediated diseases (e.g. agriculture and urban expansion, deforestation, wildlife 506 

hunting, biodiversity loss). Yet given the wide diversity of reservoir hosts and transmission ecologies 507 

across pathogens, spatial drivers of risk may often be pathogen- or context-specific. To ensure our 508 

analyses accounted for expected ecological differences between systems, we developed a 509 

structured, form-based exercise to identify key hypothesized drivers for each individual disease, which 510 

was then completed by study coauthors. To balance between comprehensiveness and exhaustion, we 511 

created a fill-in matrix spreadsheet of 18 drivers and 34 disease systems (see Supp. Table 2). Each cell 512 

could be filled in by the respondents indicating their choice of a driver having a negative, positive, none, 513 

or ‘don’t know’ impact, and respondents were additionally asked to provide a 1-3 ranking for their 514 

expected top three drivers for each disease (in either direction). Given that coauthors have a range of 515 

expertise, which may include either multiple disease systems, or a focus on one or a few, respondents 516 

could choose to leave one or more full disease systems blank (NA).The full list of drivers included 517 

ecological/environmental processes (biodiversity loss, forest cover, forest loss, invasive species, long-518 

term temperature change, long-term precipitation change), processes driving human-wildlife contact 519 

(cropland cover and expansion, landscape fragmentation, mining, protected area coverage, urban 520 

cover and expansion, wildlife hunting, wildlife trade and markets) and social processes influencing 521 

exposure and detection (socioeconomic vulnerability, proximity to hospitals/clinics, livestock density). 522 

This hypothesis-generation exercise was intended mainly to robustly identify a group of testable 523 

drivers for each disease that reflect system-specific knowledge, but this process also allowed us to 524 

compare between coauthor opinion and what can be inferred from available data.  525 

 526 
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This exercise was completed by most coauthors (25 of 31; Extended Data Figure 4), whose expertise 527 

spans multiple disciplines, disease systems and scales of biological organization, including 528 

microbiology and virology, genomics, disease ecology and evolution, epidemiology, veterinary 529 

medicine, social-ecological systems, public health, and machine learning and statistical inference. 530 

Despite this wide disciplinary expertise this group still consists largely of academic researchers based 531 

in Global North institutions, and as such our hypotheses are unlikely to fully reflect locally-situated 532 

understandings of most of these diseases. While this exercise was a concise approach to hypothesis 533 

generation, users reported spending multiple hours (>2) to fully complete the matrix; this is feasible 534 

and reasonable for invested author teams such as this, but we do not recommend this as a template 535 

for a rapid, large-scale survey exercise.  536 

 537 

We then post-processed the completed exercise data to generate hypothesized drivers for each 538 

disease using two definitions of group consensus. For each disease we first adopted a broad definition, 539 

including drivers for which more respondents stated an effect (either positive or negative) than stated 540 

no effect (“majority rule”). As a sensitivity check we also adopted a narrower definition, including only 541 

drivers that were included in the top 3 ranked drivers by at least 1 respondent (“top-ranked”). This 542 

process generated consensus lists of hypothesized drivers to test for each disease (Extended Data 543 

Figure 4) reducing the risk that models would identify spurious, ecologically-implausible drivers (e.g. 544 

wildlife hunting for West Nile). Such an issue could otherwise feasibly arise due to the small size and 545 

spatially-biased nature of many disease datasets (see “Limitations of data and methodology” below). 546 

 547 

Collation of geospatial data on socio-environmental drivers of disease 548 

 549 

In parallel, we collated global geospatial (raster) layers describing socio-environmental and climatic 550 

features as proxies for the key geographic drivers of risk listed above, based on remote sensing, climate 551 

reanalysis, social indicators and census-based data sources. A full table of socio-environmental 552 

covariates, their sources and processing is provided in Extended Data Table 2 and Supp. Table 3. The 553 

small size of many disease datasets unfortunately meant there was insufficient data to analyze the 554 

relationship between cases and covariates in both space and time, which therefore limited our study 555 

to spatial rather than spatiotemporal driver analysis (see “Limitations” below). Therefore, for variables 556 

describing gross characteristics of the environment (e.g. land cover type proportion variables) we 557 

selected a single raster year or time period close to the central tendency of reported disease data (i.e. 558 

between 2005 and 2015), while aiming for the best spatial and thematic resolution possible under that 559 

constraint. For variables describing anthropogenic change, we generated rasters that described the 560 

grid cell-level change in a particular variable across most of the disease data period (e.g. tree cover loss 561 

between 2000 and 2020, change in mean annual temperature between 1950-1970 and 2000-2020). 562 

Raster covariates were used at their original spatial resolution with a few exceptions (e.g. social 563 

vulnerability was aggregated; see Extended Data Table 2); since this was not a mapping study no 564 

rescaling was required. Notably, we were unable to identify suitable proxy covariates for several widely-565 

hypothesized drivers that have not been quantified in space and time, highlighting an important lack of 566 
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systematic data collection around key putative drivers of disease emergence; these include invasive 567 

species density, wildlife trade and/or live markets, and wildlife hunting outside tropical forests. 568 

 569 

A brief description of the full list of the socio-environmental raster datasets is as follows: temperature 570 

change (change in grid-cell level mean annual air temperature between reference period of 1950-1970 571 

and focal period of 2000-2020, derived from ERA5-Land reanalysis97); precipitation change (change in 572 

grid-cell level mean annual precipitation between 1950-1970 and 2000-2020, from ERA5-Land); forest 573 

cover (grid cell-level fractional tree cover from Copernicus land cover 2015); forest loss (grid cell-level 574 

tree cover loss 2000-2020 from Global Forest Change); biodiversity intactness (local Biodiversity 575 

Intactness Index, modeled for 2005 based on human disturbance layers58); cropland cover (grid cell-576 

level fractional crop cover from Copernicus land cover 2015); cropland expansion (grid cell-level 577 

cropland growth 2000-201998); vegetation heterogeneity (grid cell-level EVI dissimilarity index 2005, a 578 

metric of landscape fragmentation sensitive to anthropogenic landscapes99); hunting pressure index 579 

(a modeled defaunation index measuring average hunting-related species declines in tropical forest 580 

biomes60); protected area cover (whether grid cell is under area-based conservation, based on the 581 

World Database of Protected Areas 2022); mining cover (whether grid cell is under mining land use, 582 

based on ref.100); social vulnerability (the Global Gridded Relative Deprivation Index for a nominal 583 

present-day period59); travel time to healthcare (road-based travel time to nearest hospital or clinic for 584 

nominal year 201557); urban cover (grid-cell level fractional urban cover from Copernicus land cover 585 

2015); urban expansion (grid-cell level expansion of built-up areas 2000-2019 derived from ESA-CCI 586 

land cover); and livestock density (grid-cell-level density of livestock types from Gridded Livestock of 587 

the World v3).  588 

 589 

Statistical modeling 590 

 591 

To infer the drivers of the geographic distribution of human cases while accounting for spatial and 592 

detection biases, we applied a standardized geospatial modeling approach for each disease. We 593 

describe this procedure in the following paragraphs.  594 

 595 

For each model, we first defined the geographical boundaries of the modeling area (“study region”). For 596 

datasets compiled from the scientific literature, this was defined as a smoothed convex hull polygon 597 

around the full extent of geographical case occurrences, with a buffer of 180km (Extended Data Figures 598 

1-2). For national-level case surveillance data the study area was constrained to the borders of the 599 

relevant country or subnational region. We then generated a final case-control dataset for modeling. 600 

We excluded records from before 1985 for most diseases, to better align the disease data with the 601 

timescale of available covariates; exceptions were certain data-sparse diseases where data from post-602 

1980 were kept to retain as much information as possible (anthrax, Ebola virus disease, Marburg virus 603 

disease, Mayaro fever, and Oropouche fever). Because the case data were presence-only, meaning 604 

there were no true negative controls, we then generated background (pseudo-control) points 605 

throughout the study region. We selected between 2 and 8 times as many background points as 606 

presence points; this varied depending on the number of positive observations and their geographical 607 
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dispersion, with higher multiples selected for more widely-distributed but data-sparse diseases to 608 

capture the full background area. (Guidelines have been developed for the selection of background 609 

points for species distribution modeling, which often lean towards balanced training sets of presence 610 

and pseudoabsence points101, but we note that this is a distinct statistical approach; our objective here 611 

is to detect predictor effects, rather than correctly model the area of occupancy, and as such our 612 

priority is statistical power and coverage of the area being examined.) All else being equal, the null 613 

expectation is that the distribution of human disease cases would follow the distribution of population; 614 

as such, entirely spatially random selection of background points would over-represent sparsely 615 

populated rural areas and under-represent highly populated urban areas. We therefore weighted 616 

background points distribution by human population, i.e. randomly generated point locations with the 617 

probability of a location being selected proportional to log+1-transformed population. This was based 618 

on a global raster of 2010 human population per pixel (WorldPop’s top-down unconstrained mosaics102), 619 

at 1km resolution for most diseases, but 10km resolution for certain diseases spanning a multi-620 

continent geographic range to limit computation time (e.g. dengue, chikungunya). This approach 621 

produced a pseudo case-control design, i.e. comparing the socio-environmental conditions 622 

experienced by human populations at the locations where outbreaks have occurred (cases), to a 623 

representative background sample of the conditions experienced by populations across the study 624 

region (“controls”). Circular buffers were created around each background point with an area equal to 625 

the median area of the outbreak location polygons, to ensure covariates were averaged across a 626 

comparable geographical area for both presence and background points (Extended Data Figure 1). 627 

 628 

For each model, this process produced a final dataframe of presences and pseudo-absences with 629 

associated polygons (again using ‘sf’), from which we extracted the mean value for each raster 630 

covariate using the ‘exactextractr’ package. We excluded from the analyses any variables that were 631 

missing data for >10% of observations or contained zeroes for >95% of observations. We examined 632 

collinearity among covariates via visual inspection, correlation matrix plots and variance inflation 633 

factors, and identified and excluded highly collinear covariates from multivariable models; this step was 634 

conducted manually rather than programmatically, to prioritize the inclusion of covariates with a strong 635 

hypothesized relationship to each disease in question. The final sets of covariates included in each 636 

disease-specific multivariable model are visualized in Extended Figure 5.  637 

 638 

To infer relationships between covariates and disease outbreak probability 𝑝 at location 𝑖 (log odds of 639 

occurrence), we fitted geospatial logistic regression models in a Bayesian inference framework 640 

(integrated nested Laplace approximation, implemented in the package ‘INLA’ v23.3.2661,62), with the 641 

following general formula: 642 

𝑦!	~	𝐵𝑒𝑟𝑛(𝑝!)	643 

𝑙𝑜𝑔𝑖𝑡(𝑝!) = 	𝛼 + 𝜌! +	4𝛽"𝑋",!
"

	 644 

Here, 𝛼 is the intercept, 𝜌!  is a continuous spatially-structured random effect, and 𝛽 is a vector of 645 

linear fixed effects parameter estimates  for the matrix of 𝑗 covariates 𝑋" . The geospatial effect was 646 
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specified as a Gauss-Markov random field fitted using a stochastic partial differential equations 647 

approach (SPDE), with penalized complexity priors on the range and sigma parameters, and an 648 

intermediate mesh density chosen to reasonably balance between spatial precision and computation 649 

time. We set Gaussian priors for intercept and linear fixed effects (mean = 0, precision = 1). Due to wide 650 

variation in geographic range size and patchiness of data across the different diseases, the 651 

hyperparameters of the SPDE model’s Matern covariance function (range and variance) were manually 652 

tuned for each disease to ensure a smooth fit of the spatial field, assessed via visual inspection. After 653 

model fitting, we visually inspected posterior parameter and hyperparameter distributions, visualized 654 

the fitted SPDE to check for any visible issues with inference of the geospatial effect, and extracted 655 

the Watanabe-Akaike information criterion (WAIC) as a model adequacy metric.  656 

 657 

Global multi-disease models 658 

 659 

We first fitted general models to infer drivers of risk for all disease outbreaks (n = 49,239 after excluding 660 

early and spatially-imprecise records), with 50,000 background points across the global study area, not 661 

differentiating between specific diseases. To examine the potential confounding effects of local 662 

detection processes and broad-scale patterns of reporting effort on inferred drivers, we fitted three 663 

submodels: (1) including only socio-environmental covariates, i.e. with no outbreak detection-specific 664 

covariates (urban cover and healthcare travel time) and no geospatial effect; (2) adding a geospatial 665 

effect but no local outbreak detection-specific covariates; and (3) a full model with outbreak detection 666 

covariates and a geospatial effect (Figure 2). For comparison and sensitivity checking, we also fitted 667 

the full geospatial and detection covariate model for subsets of pathogens defined as either zoonotic 668 

(principally transmit to humans from an animal reservoir; n = 26) or vector-borne (transmitted to 669 

humans by arthropod vectors irrespective of host, i.e. also including anthroponotic arboviruses such 670 

as dengue fever; n = 20), whose risk is expected to be tightly coupled to local ecosystem 671 

characteristics (Extended Data Figure 3). 672 

 673 

Individual disease-specific models 674 

 675 

We fitted individual models for all diseases except Hendra virus disease, for which the number of human 676 

outbreak points was too low for reliable model fitting (Extended Data Table 1). The process of inference 677 

of drivers for each individual disease (n = 31) was as follows. First, we fitted separate geospatial models 678 

which included each covariate individually (“univariable”) plus a geospatial random effect to account 679 

for the broad geographical pattern in outbreak occurrence, but not possible finer-scale confounding 680 

by other variables (particularly detection proxies). We then fitted two hypothesis-driven multivariable 681 

geospatial models including either the broad (“majority rule”) or stricter (“top-ranked”) drivers from the 682 

coauthor exercise (Extended Data Figure 4). Because of the strong a priori expectation of detection 683 

bias driven by health systems proximity and accessibility, all hypothesis-driven models included both 684 

travel time to healthcare and urban cover; except in instances where these were highly collinear with 685 

each other; in these cases, the driver identified as most important in the hypothesis-generation 686 

exercise was selected. For all models where forest loss, cropland expansion or urban expansion were 687 
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hypothesized as drivers, we also respectively included either forest cover, cropland cover or urban 688 

cover to account for the inherently spatially correlated process of land use change. For most diseases, 689 

urban expansion and urban cover were highly collinear at the scale of this analysis (Pearson’s p >0.8) 690 

so urban expansion was almost always excluded from multivariable models. For diseases with strongly 691 

hypothesized associations to specific livestock, the livestock covariate was based on gridded data for 692 

only the most relevant livestock type(s) (e.g. poultry for influenza, ruminants for Rift Valley fever; Supp. 693 

Table 1, Methods); the exception was MERS, as gridded camel density data are not openly available. 694 

Across all diseases, both the multivariable and hypothesis-driven models always reduced WAIC relative 695 

to a model including only a geospatial effect (i.e. including covariates improved model fit). 696 

 697 

Examining compound drivers across diseases 698 

 699 

For many infectious diseases, synergistic interactions between drivers may be necessary to align the 700 

conditions for spillover and emergence risks (for example, high livestock densities in fragmented forest 701 

landscapes for bat-borne henipaviruses7). Improving geospatial prediction for emergence risks 702 

requires accounting for how compound drivers align to create local foci of pathogen transmission. To 703 

examine this question we visualized patterns of co-occurrence between drivers across all 31 individual 704 

modeled diseases. We generated a unipartite network with drivers represented as nodes, and with 705 

edges between driver pairs weighted by the number of diseases for which each pair of drivers co-706 

occurred (i.e. when both drivers had 95% credible intervals not overlapping zero), for all diseases 707 

(Figure 4a) and for subsets of either directly-transmitted zoonoses (Figure 4b) or vector-borne 708 

zoonoses (Figure 4c). In parallel, to examine observed autocorrelation among putative drivers at global 709 

and regional scales, we generated a matrix of pairwise Pearson correlation coefficients between each 710 

pair of scaled covariates across 50,000 background points globally, or subsets of background points 711 

within five regions containing most of our data (North America, Latin America and the Caribbean, sub-712 

Saharan Africa, East Asia and Pacific, and South Asia). These were used to visualize unipartite networks 713 

of pairwise driver correlations, with edges weighted by Pearson coefficient magnitude (Extended Data 714 

Figure 8). 715 

 716 

Limitations of data and methodology 717 

 718 

Because the goal of the study was to apply a general, standardized analysis framework across a variety 719 

of diseases with very different quantities and types of data, we encountered several important but 720 

irreconcilable methodological constraints that are significant to interpretation of our results, as well as 721 

to inference of spatial drivers of disease emergence more broadly. Firstly, the datasets for many 722 

diseases (especially rare and high-consequence pathogens) are very small and spatially biased 723 

towards surveillance hotspots. We adjusted for these biases using geospatial random effects and 724 

proxies for detection processes, but these are imperfect descriptors for complex processes, and some 725 

residual confounding might remain unaccounted for (e.g. health systems access is influenced locally 726 

by many factors other than proximity, and clinical index of suspicion and accessibility of diagnostics is 727 

often highly geographically variable for many rarer, non-specific febrile illnesses). Relatedly, it was 728 
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often not possible to combine multiple data sources for the same disease without creating a 729 

geographical imbalance in the distribution of points, so our analyses were mostly restricted to datasets 730 

that were usually broad in scale but lacked granular information about transmission intensity (e.g. most 731 

georeferenced outbreak datasets) or sometimes locally comprehensive at the expense of 732 

geographical breadth (e.g. hantavirus cardiopulmonary syndrome [HCPS], which was restricted to 733 

Brazil and Argentina due to available surveillance data, despite hantavirus infections occurring 734 

worldwide103). Notable exceptions where we were able to combine point and polygon data from more 735 

than one source without substantial issues included Lassa fever, Crimean-Congo hemorrhagic fever, 736 

HCPS, Chagas disease (acute), and yellow fever (Extended Data Table 1, Supp. Table 1). 737 

 738 

Importantly, some of the most relevant variables thought to shape risk for many high-consequence 739 

epidemic zoonoses either have not (hunting pressure outside the tropics) or cannot (wildlife trade) be 740 

readily translated into global geospatial covariates that accurately reflect their relationship to infection 741 

risk. For example, the impacts of wildlife trade and markets on disease risks can be spatially diffuse and 742 

transboundary, involving multiple actors at multiple points along commodity chains from capture to 743 

sale104; consequently, quantifying how these activities shape the spatiotemporal dynamics of zoonotic 744 

spillover may require substantially different analytic approaches than what is possible with this study’s 745 

geolocated outbreak event data. (However, we also refer to other work that has highlighted instances 746 

where wildlife trade has been overstated as a driver of spillover risk.20) Similarly, coarse modeled spatial 747 

proxies for hunting pressure such as the tropical defaunation index we used in this study60 probably 748 

more closely reflect commercial rather than subsistence hunting activities, even though the latter may 749 

often be more important in driving zoonotic spillover (e.g. rodent hunting and exposure to Lassa fever 750 

and mpox); our study’s sparse and ambiguous results for tropical hunting pressure (Extended Data 751 

Figure 5; Supp. Figure 1) should be interpreted with this limitation in mind. 752 

 753 

Developing a common analysis framework also led to the loss of information from some datasets, 754 

through reducing case surveillance data (with number of cases) to a binary annual outbreak indicator, 755 

(i.e. losing potentially valuable information on transmission intensity). Although necessary for a 756 

standardized framework, this could feasibly erode the reliability and accuracy of inference. We 757 

therefore conducted a model comparison test, examining how reducing the data's information content 758 

affects inferred drivers for a set of relatively well-reported diseases (4 arboviruses in the USA using 759 

CDC ArboNET data). For each disease we compared coefficient estimates between full geospatial 760 

models of county-level case incidence, and our outbreak event risk modeling framework. County-level 761 

total case incidence across the surveillance period (2000-2020) was modelled using a negative 762 

binomial (West Nile fever) or zero-inflated negative binomial likelihood (LaCrosse encephalitis, 763 

Powassan encephalitis and Jamestown Canyon encephalitis), including an offset of log population, and 764 

a fitted geospatial random effect to account for unexplained geographical variation, again 765 

implemented using INLA. We found that most significant socio-environmental effects from a full case 766 

incidence model (i.e. reflecting transmission intensity) remained detectable even in a dataset reduced 767 

to binary outbreak occurrences with background locations (Extended Data Figure 7). This test 768 
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improved our confidence that our modeling approach is sufficient to capture key spatial drivers of risk, 769 

despite this information loss.  770 

 771 

Nonetheless, given data sparsity for many infections, it was not possible in this standardised 772 

framework to account for temporal dimensions of causality (e.g. time-specific climate or land change 773 

effects), such as by aligning covariate and case data in time; and/or adjusting for temporal patterns of 774 

detection through spatiotemporal random effects. This kind of analysis is feasible and fruitful when 775 

modeling case surveillance time series for better-surveyed infections (including some in our study 776 

such as Borrelia burgdorferi or West Nile fever), but it was not possible to apply this consistently across 777 

diseases, given the extreme sparsity of outbreak data for infections like Ebola, Marburg, Hendra, and 778 

Nipah virus disease. Rather than solely a limitation of this study, this is a more general problem for 779 

attribution of outbreak drivers for rarely documented but high-consequence infections, that currently 780 

hinders our capacity to, for example, robustly link recent deforestation to viral zoonosis outbreaks. 781 

Improving both fundamental eco-epidemiological research, and strengthening healthcare access, 782 

diagnostics and surveillance in underserved areas, will be needed to fill these gaps. 783 

 784 

Code and Data Availability  785 

 786 

All code, data (where not subject to sharing constraints) and disease-specific results objects (e.g. 787 

CSVs of parameter estimates; rasters of fitted geospatial effects) are available on GitHub at 788 

github.com/viralemergence/fingerprint-preprint. 789 
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Figures and Tables 831 

 832 

Figure 1. A global compendium of outbreak events for 32 human emerging infectious diseases. 833 

Records include a mix of georeferenced human disease occurrence or outbreak data and case 834 

incidence data from national surveillance systems (Extended Data Table 1) (A). Each point represents 835 

an outbreak event (at least 1 confirmed case per named locality per year) for diseases whose 836 

predominant human infection routes are broadly classified as either zoonotic (e.g. Ebola virus disease, 837 

Lassa fever), zoonotic and vector-borne (e.g. West Nile fever, yellow fever), vector-borne and mainly 838 

maintained in human hosts (e.g. dengue fever, chikungunya, and Zika virus disease), or transmitted 839 

through the environment (melioidosis) (B-C). Data were predominantly from post-2002 across all 840 

transmission types (B; data shown from 1950 onward), with the most data available for well-monitored 841 

widespread diseases (e.g. Lyme disease, dengue fever, West Nile fever) and the least for emerging bat-842 

borne infections (filo- and henipaviruses) (C). Disease name abbreviations: AHF - Argentine 843 

hemorrhagic fever; BSF - Brazilian spotted fever; CCHF - Crimean-Congo hemorrhagic fever; EEE - 844 

Eastern equine encephalitis; HCPS - Hantavirus cardiopulmonary syndrome; JCE - Jamestown Canyon 845 

encephalitis; JE - Japanese encephalitis; LE - LaCrosse encephalitis; MERS - Middle East Respiratory 846 

Syndrome; RVF - Rift Valley fever; SLE - St. Louis encephalitis. For shorthand, we also omit “disease,” 847 

“virus disease,” and “fever” from disease names as appropriate; see Extended Data Table 1. 848 

  849 
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Figure 2: Geographical reporting and detection biases confound inference of global emerging 850 

infectious disease drivers. Points and error segments (A) show linear fixed effects of scaled 851 

covariates (posterior marginal mean and 95% credible interval) from Bayesian logistic regression 852 

models fitted to the full global dataset of contemporary outbreak events (i.e. pooling data across all 853 

diseases; n = 49,239 with 50,000 background points, between 1985-2022). Slope estimates denote 854 

the effect of each scaled covariate on spatial outbreak risk. Panels denote model specification: 855 

including either only socio-environmental fixed effects (no adjustment; A), adding a continuous 856 

geospatial random effect (geospatial; B), or adding a geospatial effect and local detection process 857 

covariates (geospatial + detection; C). The geospatial random effect (Gauss-Markov random field; D) 858 

reflects residual (unexplained) spatial variation in observed outbreak events, largely due to macro-859 

scale sampling processes such as biases in awareness and reporting. Map color scale denotes 860 

contribution to the observed pattern of outbreak events (log-odds scale) with outbreak events 861 

overlaid as translucent points. The geospatial effect was only inferred within the latitudinal range of 862 

available data; areas outside these bounds are shaded in gray. Inferred effects were very similar for 863 

models fitted to subsets of diseases with different transmission characteristics (either zoonotic or 864 

vector-borne; Extended Data Figure 3). 865 

 866 
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Figure 3: Drivers of outbreak risk across 31 emerging infectious diseases. Results are summarized 867 

from separate hypothesis-based geospatial logistic regression models for all 31 diseases in the dataset 868 

(Extended Data Figure 5). Drivers are shown ranked by the number of diseases for which there was 869 

strong evidence of a relationship (95% credible interval not overlapping zero) (left column). The 870 

prevalence and directionality of driver effects is summarized for each driver (middle column), with point 871 

size showing the number of diseases for which relationships were either not tested (NT; gray), 872 

negative (Neg; blue), positive (Pos; red), or no strong evidence (None; i.e. 95% credible interval 873 

overlapping zero). Points and error segments (right column) show driver fixed effect parameters on the 874 

log-odds scale (posterior marginal mean and 95% credible interval) for all tested diseases, with filled 875 

points denoting strong evidence of a relationship, and point color denoting the broad class of socio-876 

environmental driver. Results are based on hypotheses generated using a broad “majority rule” 877 

criterion; results for stricter models testing only top-ranked drivers per-disease are qualitatively very 878 

similar (Extended Data Figure 6). 879 

 880 

  881 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.22.24307684doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.22.24307684
http://creativecommons.org/licenses/by/4.0/


 

26 
 

Figure 4: Co-occurrence of outbreak drivers across emerging infectious disease groups. The 882 

patterns of co-occurring drivers across individually-modeled diseases are represented as unipartite 883 

networks, for all diseases (n = 31; A) and for subsets of zoonotic diseases whose predominant mode of 884 

transmission to humans is either direct (B; n = 10) or vector-borne (C; n = 17). Nodes represent drivers, 885 

with node size proportional to the number of diseases with strong evidence of a non-zero effect 886 

(“driver occurrence”), and edge weight is proportional to the number of diseases for which driver pairs 887 

co-occur (“driver co-occurrence”; i.e., non-zero inferred effects of both drivers in multivariable 888 

models). Node colors denote driver type, as in Figure 3. Larger nodes reflect more prevalent drivers and 889 

darker edges reflect a higher prevalence of driver co-occurrence within each group of diseases. 890 

Results are derived from multivariable models testing hypotheses under the “majority rule” criterion; 891 

the pattern of clustered drivers is the same under the stricter “top ranked” criterion (Extended Data 892 

Figure 6). The pattern of co-occurring drivers does not simply reflect observed correlation between 893 

variables, as many of these variables are weakly or uncorrelated globally (Extended Data Figure 8). 894 
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Figure 5: Outbreak detection declines with increasing distance from healthcare facilities. Using 897 

the inferred slope parameters from each multivariable disease model, we estimated the marginal 898 

percentage change in odds of outbreak reporting for each additional hour of motorized travel time 899 

from the nearest health facility (A; points and error segments show posterior median and 95% 900 

credible interval). Barplot (B) shows, for each disease, the median motorized travel time to the 901 

nearest health facility across outbreak locations (blue) compared to population-weighted 902 

background locations (i.e. a representative background sample across the at-risk area; green). 903 

Barplot (C) shows the percentage of population-weighted background locations falling more than 2 904 

hours from the nearest health center. This covariate effect was tested for 23 diseases (22 shown; St. 905 

Louis encephalitis was not visualized due to extremely wide uncertainty) but not for the remaining 8 906 

diseases (mostly in the US) due to high collinearity with urban cover (Methods). 907 
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Extended Data 909 

 910 

Extended Data Table 1: Database of outbreak events for 32 emerging infectious diseases. The 911 

table lists all diseases for which we were able to compile georeferenced human case or outbreak data, 912 

including the disease, pathogen(s), predominant transmission route to humans, number of outbreak 913 

event records and time period. A fuller set of data source descriptions with information about open 914 

accessibility for each source dataset is provided in Supp. Table 1. Most disease data were from a 915 

single source, but for several diseases we were able to combine and harmonize data from across more 916 

than one source database, as shown in the table (Extended Data Figure 1; e.g. hantaviruses; Lassa 917 

fever).This table includes all data points across all years (including prior to 1985) and regardless of 918 

spatial precision; prior to modeling, these data were subsequently subset to post-1985 records to 919 

better harmonize with covariate layers, and records with very low spatial precision were excluded 920 

(Methods). Abbreviations: NDSS - national disease surveillance systems. 921 

 922 

Disease Abbr. Pathogen Pathogen 
type Source type(s) No. records Years Principal route of 

human infection  

Anthrax  Bacillus anthracis Bacterium Literature 121 1995-2010 Zoonotic (direct)  

Argentine 
hemorrhagic fever AHF 

Junín virus 
(Arenaviridae) Virus NDSS (Argentina) 415 2000-2020 Zoonotic (direct)  

Brazilian spotted 
fever BSF 

Rickettsia rickettsii; R. 
parkerii Bacterium NDSS (Brazil) 1,531 2001-2020 Zoonotic (vector-

borne)  

Chagas disease 
(acute)  Trypanosoma cruzi Protozoan Literature; NDSS 

(Brazil) 1,776 2000-2020 Zoonotic (vector-
borne)  

Chikungunya  
Chikungunya virus 
(Togaviridae) Virus Literature 1,020 2002-2011 Vector-borne 

(human-to-human)  

Crimean-Congo 
hemorrhagic fever CCHF 

Crimean-Congo 
hemorrhagic fever virus 
(Bunyaviridae) 

Virus Literature 1,772 1953-2020 Zoonotic (vector-
borne)  

Dengue fever  
Dengue virus 
(Flaviviridae) Virus Literature 12,668 1985-2015 Vector-borne 

(human-to-human) 
 

Eastern equine 
encephalitis EEE 

Eastern equine 
encephalitis virus 
(Togaviridae) 

Virus NDSS (USA) 147 2003-2020 Zoonotic (vector-
borne)  

Ebola virus disease  Ebola virus (Filoviridae) Virus Literature 36 1976-2022 Zoonotic (direct)  

Hantavirus 
cardiopulmonary 
syndrome 

HCPS 

South American 
members of the genus 
Orthohantavirus 
(Hantaviridae) 

Virus NDSS (Brazil, 
Argentina) 1,391 2001-2020 Zoonotic (direct)  

Hendra virus 
disease  

Hendra virus 
(Paramyxoviridae) Virus Literature 11 1994-2013 Zoonotic (direct)  

Influenza (H5N1)  
Influenza A/H5N1 
(Orthomyxoviridae) Virus Literature 257 2003-2014 Zoonotic (direct)  

Jamestown Canyon JCE Jamestown Canyon Virus NDSS (USA) 178 2011-2020 Zoonotic (vector-  
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encephalitis virus (Peribunyaviridae) borne) 

Japanese 
encephalitis JE 

Japanese encephalitis 
virus (Flaviviridae) Virus Literature 3,367 1935-2015 Zoonotic (vector-

borne)  

LaCrosse 
encephalitis LE 

LaCrosse virus 
(Peribunyaviridae) Virus NDSS (USA) 862 2003-2020 Zoonotic (vector-

borne)  

Lassa fever  
Lassa virus 
(Arenaviridae) Virus Literature 456 1970-2020 Zoonotic (direct)  

Lyme disease  Borrelia burgdorferi Bacterium NDSS (USA) 17,956 2000-2019 Zoonotic (vector-
borne)  

Marburg virus 
disease  

Marburg virus 
(Filoviridae) Virus Literature 25 1975-2023 Zoonotic (direct)  

Mayaro fever  
Mayaro virus 
(Togaviridae) Virus Literature 168 1981-2021 Zoonotic (vector-

borne)  

Melioidosis  
Burkholderia 
pseudomallei Bacterium Literature 673 1910-2014 Environmental  

Middle East 
respiratory 
syndrome 

MERS 
Middle East Respiratory 
syndrome coronavirus 
(Coronaviridae) 

Virus Literature 193 2012-2016 Zoonotic (direct)  

Mpox  Mpox virus (Poxviridae) Virus Literature 498 1981-2019 Zoonotic (direct)  

Nipah virus disease  
Nipah virus 
(Paramyxoviridae) 

Virus Literature 76 1998-2018 Zoonotic (direct)  

Oropouche fever  
Oropouche virus 
(Peribunyaviridae) Virus Literature 87 1954-2020 Zoonotic (vector-

borne)  

Plague  Yersinia pestis Bacterium Literature 304 1950-2005 Zoonotic (vector-
borne)  

Powassan 
encephalitis  

Powassan virus 
(Flaviviridae) Virus  NDSS (USA) 181 2004-2020 Zoonotic (vector-

borne)  

Rift Valley fever RVF 
Rift Valley fever virus 
(Phenuiviridae) Virus Literature 477 1987-2018 Zoonotic (vector-

borne)  

St. Louis 
encephalitis SLE 

St. Louis encephalitis 
virus (Flaviviridae) Virus NDSS (USA) 152 2003-2020 Zoonotic (vector-

borne)  

West Nile fever  
West Nile virus 
(Flaviviridae) Virus NDSS (USA) 8,990 1999-2020 Zoonotic (vector-

borne)  

Yellow fever  
Yellow fever virus 
(Flaviviridae) Virus Literature; NDSS 

(Brazil) 1,123 1961-2016 Zoonotic (vector-
borne)  

Zika virus disease  Zika virus (Flaviviridae) Virus Literature 322 1953-2016 Vector-borne 
(human-to-human) 

 

Zoonotic malaria  Plasmodium knowlesi Protozoan Literature 185 1996-2013 Zoonotic (vector-
borne)  

 923 
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Extended Data Table 2: Socio-environmental covariate data sources. Table provides descriptions 925 

of the socio-environmental covariates used for each hypothesized driver, including the source, precise 926 

description, and spatial and temporal resolution. Information on open accessibility for each covariate 927 

is provided in Supp. Table 3.  928 

 929 

Covariate Description Source Spatial 
resolution 

Temporal 
resolution 

Driver type  

Biodiversity 
intactness 

The Biodiversity Intactness Index: average 
abundance of originally present species, 
relative to undisturbed habitat, modeled as 
a function of land use intensity 

Newbold et al. 2016 1km 
2005 (single 
time period) 

Ecosystem 
structure 

 

Cropland cover % area covered by cropland 
Copernicus Land Cover 
(PROBA-V satellite) 

100m 
2015 (single 
time period) 

Ecosystem 
structure 

 

Cropland 
expansion 

Net change in cropland 2000 to 2019 (gain-
loss) as % of total area 

GLAD Global Cropland 
Expansion (Landsat) 

30m 2000-2019 Land use impact  

Forest cover % area tree cover 
Copernicus Land Cover 
(PROBA-V satellite) 

100m 
2015 (single 
time period) 

Ecosystem 
structure 

 

Forest loss 
Tree cover loss 2000 to 2020 as % of total 
area 

Global Forest Change 
(Landsat) 30m 2000-2020 Land use impact  

Human 
population 

Census estimates disaggregated to pixel 
level using unconstrained top-down 
predictive model 

WorldPop 1km 2010 
Human 
population 

 

Hunting 
pressure 

Model-predicted average hunting-related 
species abundance declines (tropical 
forest biomes only) 

Projected meta-analytic 
model from Benitez-Lopez 
et al 2019 

 
Present-day 
(single nominal 
time period) 

Land use impact  

Livestock 
density 

Mean per-grid-cell density of livestock Gridded Livestock of the 
World 

1km 2010 (single 
time period) 

Socioeconomic  

Mining % of area covered in mining land use 
Global mining land use 
maps from Maus et al 2022 

1km 
2019 (single 
time period) 

Land use impact  

Precipitation 
change 

Difference in mean annual precipitation 
between reference period (1950-70) and 
present day (2000-2020) 

ERA5-Land monthly 
precipitation (post-
processed) 

9km 

Focal period 
2000-2020, 
compared to 
baseline period 
1950-1970 

Climate change  

Protected area 
coverage 

% area under land-based conservation 
protection 

World Database on 
Protected Areas 

1km 
Present-day 
(single time 
period) 

Land use impact  

Social 
vulnerability 

Global 1km Gridded Relative Deprivation 
Index (aggregated to 20km grid cells to 
average across levels of urbanisation) 

SEDAC 20km 
2010-2020 
(single time 
period) 

Socioeconomic  

Temperature 
change 

Difference in mean annual air temperature 
between reference period (1950-70) and 
present day (2000-2020) 

ERA5-Land monthly air 
temperature means (post-
processed) 

9km 

Focal period 
2000-2020, 
compared to 
baseline period 
1950-1970 

Climate change  

Travel time to 
healthcare 

Mean motorized travel time to the nearest 
health facility 

Modeled travel time based 
on friction surface, from 
Weiss et al 2020 

1km 2015 (single 
time period) 

Detection  

Urban Net change in built-up area 2000-2019 as % ESA-CCI Land Cover 300m 2000-2019 Land use impact  
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expansion of total area 

Urban land 
cover 

% impervious land cover 
Copernicus Land Cover 
(PROBA-V satellite) 

100m 
2015 (single 
time period) 

Detection  

Vegetation 
heterogeneity 

Second-order dissimilarity of Enhanced 
Vegetation Index among neighboring pixels 

Habitat heterogeneity 
metrics database from 
Tuanmu et al 2015 

1km 
2005 (single 
time period) 

Ecosystem 
structure 
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Extended Data Figure 1: Bringing diverse disease case and outbreak data sources into a common 931 

analytical framework. Disease data sources included georeferenced case or outbreak event 932 

locations in point format (nearest named location), case or outbreak event occurrences within named 933 

administrative polygons, and case surveillance data at administrative polygon levels from national 934 

surveillance systems (sources variously shown in blue). Each contains different information about 935 

transmission intensity and different levels of geographical precision, which necessitated bringing 936 

different data types into a common, standardized analytical framework, shown in this figure. All 937 

outbreak locations (whether natively point or polygon) were converted into polygons (blue) and any 938 

polygons covering too large a spatial area were excluded as too imprecise (typically > 5000 km2, but 939 

up to 20,000 km2 for some data-deficient diseases as a compromise to retain as much data as 940 

possible; Methods). Background points were generated across the study area weighted by 941 

population (Methods, Extended Data Figure 2, map shown is for West Nile fever), then buffers were 942 

created around background locations to cover the same median area as the presence locations 943 

(orange), to ensure covariates were averaged across a comparable spatial area for both occurrence 944 

points and polygons and background locations. For each polygon the mean value of each raster 945 

covariate was calculated across the entire polygon, and used as input to geospatial logistic 946 

regression models. 947 
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Extended Data Figure 2: Case-control and geospatial model design for a subset of diseases. 950 

Geospatial logistic regression models were fitted to estimate the effect of covariates on the log odds 951 

of outbreak event occurrence (red points). The top row shows an example of model design for acute 952 

Chagas disease in Central and South America. Since outbreaks are presence-only data, we generated 953 

background points through randomly sampling 1 km grid cell locations across the study area (black 954 

border) weighted by log human population (left panel; shown as black points) to create a pseudo case-955 

control design (i.e. comparing socio-environmental conditions at outbreak locations to the background 956 

distribution of conditions experienced by human populations overall) (A). To account for unmeasured 957 

factors shaping broad-scale outbreak geographies, models included a continuous geospatial random 958 

effect (Gauss-Markov random field; fitted field for Chagas disease is shown in top right panel) (B). 959 

Additional subpanels show fitted geospatial effects from the hypothesis-driven (“top ranked”) models 960 

for 12 randomly-selected diseases (C). Shading denotes the marginal contribution to outbreak risk (log 961 

odds scale), with brown denoting higher risk, and green denoting lower risk. Observed outbreak event 962 

locations are overlaid as gray points. 963 

 964 

  965 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2024. ; https://doi.org/10.1101/2024.05.22.24307684doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.22.24307684
http://creativecommons.org/licenses/by/4.0/


 

34 
 

Extended Data Figure 3: Global drivers of emerging disease outbreaks across different 966 

transmission groups. Replicating the analysis of Figure 2 (main text), global geospatial models were 967 

fitted separately for groups of diseases defined non-exclusively as either zoonotic (non-human animal 968 

reservoir with any mode of transmission; n = 26 diseases, 36,577 outbreak points) or vector-borne 969 

(transmitted by invertebrate vectors regardless of host, i.e. including principally anthroponotic 970 

arboviruses such as dengue; n = 20 diseases, 45,556 points). Points and error bars show linear fixed 971 

effects of scaled covariates (posterior marginal mean and 95% credible interval) from Bayesian logistic 972 

regression models fitted to all outbreak points, with point color denoting transmission group (zoonotic 973 

or vector-borne). Slope estimates denote the effect of each scaled covariate on spatial outbreak risk. 974 

Fitted geospatial random effects for each model (Gauss-Markov random field) are visualized as maps 975 

(color scale denotes marginal contribution to outbreak risk on the log-odds scale). 976 

 977 
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Extended Data Figure 4: Hypothesised socio-environmental drivers for emerging infectious 980 

diseases from a collective hypothesis-generation exercise. To ensure our analyses tested 981 

appropriate, ecologically-plausible drivers for each disease, we used a structured form-based 982 

hypothesis exercise completed by the majority of coauthors (n = 25 out of 31; Methods). Respondents 983 

had the option to either fill in the form or leave blank for each disease (diseases names provided were 984 

as in panel A). There was substantial variability in response rates (A), with most responses for better-985 

studied or widespread diseases (e.g. Ebola, dengue, influenza A) and vice versa. Respondents ranked 986 

each driver effect as “positive”, “negative”, “none” or “don’t know” and additionally were asked to select 987 

the top 3 most important drivers for each disease. Health systems access and socioeconomic 988 

vulnerability were the most commonly top-ranked drivers, followed by fragmentation, deforestation, 989 

urbanization and climate change (B; shows the proportion of diseases for which each driver was ranked 990 

in the top 3 by at least 1 respondent). Bottom panels (C) show hypothesized drivers to test for each 991 

disease based on two schemes: a broad “majority rule” criterion (drivers for which more respondents 992 

stated any effect than no effect) and a stricter “top ranked” criterion (all drivers that were ranked 993 

among the top 3 by at least 1 respondent). 994 
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Extended Data Figure 5: Estimated posterior mean effects of socio-environmental drivers of 999 

emerging infectious disease outbreaks, in univariable and hypothesis-driven models. Models were 1000 

run in univariable driver-disease pairs (i.e. geospatial random effect plus each driver individually; top) 1001 

and in multivariable models including two sets of hypothesized drivers identified through the 1002 

hypothesis exercise (Extended Data Figure 4). These included a broader definition (“majority rule”: 1003 

covariates that were identified by more respondents as having an effect on risk, than having no effect 1004 

on risk; middle row), and a stricter definition (“top-ranked”: only covariates that were ranked among the 1005 

top 3 drivers by any respondent; bottom row). Color represents the posterior mean linear effect of the 1006 

scaled covariate (log odds scale), where red denotes increasing risk and blue denotes decreasing risk. 1007 

Black borders denote evidence of a non-zero effect on risk (i.e. 95% credible interval not overlapping 1008 

zero). Drivers are ranked by number of non-zero effects from the “top-ranked” models (top to bottom), 1009 

and diseases are ordered from left to right by number of outbreak records (lowest to highest).  1010 
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Extended Data Figure 6: Drivers of outbreak risk for 31 emerging infectious diseases based on “top 1013 

ranked” hypothesis criterion. The figure replicates the results from main text Figures 3 and 4, but 1014 

based on hypotheses generated using the stricter “top ranked” criterion (Extended Data Figure 4c). 1015 

Top row (A): panels show ranked drivers by number of diseases with strong evidence of a relationship 1016 

(right column), prevalence and directionality of driver effects (middle column, with point size denoting 1017 

number of diseases), and posterior marginal mean and 95% credible interval for all tested diseases 1018 

(right column, filled points represent evidence of a non-zero effect). See Figure 3 legend for full 1019 

description. Bottom row (B-D): unipartite networks show the pattern of co-occurring drivers for all 1020 

diseases; directly-transmitted zoonoses; and vector-borne zoonoses. Nodes represent drivers with 1021 

size proportional to the number of diseases with evidence of a non-zero effect; edge weight denotes 1022 

the number of diseases for which driver pairs co-occur. See Figure 4 legend for full description. 1023 
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Extended Data Figure 7: Comparison of detected socio-environmental drivers of disease 1028 

incidence and outbreak event risk for arboviruses in the USA. Developing a common analytic 1029 

framework based on outbreak events required discarding information about transmission intensity 1030 

(i.e. number of cases) that is contained within national case surveillance datasets. To examine how 1031 

this might affect inferred drivers, we compared coefficient estimates between full geospatial models 1032 

of county-level case incidence, and our outbreak event risk modeling framework (Methods), for 4 1033 

diseases with varying quantities of case incidence data from the US CDC’s ArboNET surveillance 1034 

platform. Incidence slope parameters (blue points and error segments) measure the inferred effects 1035 

of each driver on observed log incidence (mean and 95% credible interval). These are shown 1036 

alongside slope parameters from outbreak event models (green), which measure covariate effects on 1037 

log odds of outbreak event occurrence compared to population-weighted background points (i.e. our 1038 

standardized framework for this study; Methods). Drivers tested were based on the “top ranked” 1039 

criterion in the hypothesis exercise (Extended Data Figure 4). Data: West Nile fever (annual 2004-1040 

2020; total cases=35,233; number of outbreak events=1,895; total counties included in model study 1041 

area=3,084); LaCrosse encephalitis (annual 2003-2020; cases=1,369; outbreaks=306; 1042 

counties=2,354); Jamestown Canyon encephalitis (annual 2000-2020; cases=225; outbreaks=112; 1043 

counties=2,642); Powassan encephalitis (annual 2004-2020; cases=199; outbreaks=93; 1044 

counties=1,146). 1045 
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Extended Data Figure 8: Clustering of emerging infectious disease drivers at global and regional 1051 

scales. Networks show pairwise Pearson correlations between all driver covariates (nodes), with edge 1052 

color showing direction and strength of correlation (positive in green, negative in brown) and edge 1053 

weight denoting strength of correlation (i.e. absolute value). Correlations were calculated based on 1054 

50,000 population-weighted background points generated across the global study area (bounding box 1055 

around all outbreak occurrences; Methods), with covariate values averaged across a 10km radius buffer 1056 

around each point. Networks are shown using all background points (global) and separately for the five 1057 

subregions containing most of the outbreak data. To visualize regional differences in covariate 1058 

intensity per region, node sizes in region-specific networks are proportional to each covariate’s mean 1059 

scaled value, with node text color denoting whether this was above (red) or below (blue) the global 1060 

average (for example, North America has substantially lower mean social vulnerability than the global 1061 

average across all points, and sub-Saharan Africa and South Asia substantially higher). Urban 1062 

expansion was excluded as it was consistently highly correlated with urban cover (ρ > 0.85), and 1063 

hunting was excluded as its restriction to tropical forest biomes resulted in a high proportion of missing 1064 

values. Most variable pairs were uncorrelated or very weakly correlated (mean 13% of driver pairs with 1065 

absolute ρ > 0.5, and 8% with absolute ρ > 0.7, across all regions). 1066 
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