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Automated multilabel diagnosis on
electrocardiographic images and signals
Veer Sangha1, Bobak J. Mortazavi 2,3, Adrian D. Haimovich 4, Antônio H. Ribeiro5, Cynthia A. Brandt4,6,

Daniel L. Jacoby7, Wade L. Schulz 3,8, Harlan M. Krumholz 3,7,9, Antonio Luiz P. Ribeiro 10,11 &

Rohan Khera 3,7✉

The application of artificial intelligence (AI) for automated diagnosis of electrocardiograms

(ECGs) can improve care in remote settings but is limited by the reliance on infrequently

available signal-based data. We report the development of a multilabel automated diagnosis

model for electrocardiographic images, more suitable for broader use. A total of 2,228,236

12-lead ECGs signals from 811 municipalities in Brazil are transformed to ECG images in

varying lead conformations to train a convolutional neural network (CNN) identifying 6

physician-defined clinical labels spanning rhythm and conduction disorders, and a hidden

label for gender. The image-based model performs well on a distinct test set validated by at

least two cardiologists (average AUROC 0.99, AUPRC 0.86), an external validation set of

21,785 ECGs from Germany (average AUROC 0.97, AUPRC 0.73), and printed ECGs, with

performance superior to signal-based models, and learning clinically relevant cues based on

Grad-CAM. The model allows the application of AI to ECGs across broad settings.
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E lectrocardiography is an essential tool in the diagnosis and
management of cardiovascular diseases, serving as an ave-
nue for the identification of key pathophysiological sig-

natures from the electrical activity of the heart. Currently, data
from electrocardiograms (ECGs) are collected as multichannel
surface signal recordings of the cardiac electrical activity that are
then transformed to images with printed waveforms. These
images are then interpreted by trained clinicians, often precluding
immediate diagnosis or the use of technology that can deliver
deeper insights. While the automated interpretation of ECGs
promises to improve clinical workflow, particularly for key car-
diovascular conditions, these tools are based on raw electro-
cardiographic signals1,2 rather than printed images.

Specifically, deep learning has been applied successfully to
automate diagnosis based on signal data, performing comparably
to trained clinicians for tasks such as the detection of ECG
abnormalities1–3. However, a reliance on signal-based models
poses a challenge in the real-world application of automated
diagnosis, as ECGs are frequently printed and scanned as images.
Thus, a major reorganization of operation is required to facilitate
the application of models that focus on signals. Such technology
is also inaccessible to paraclinical staff serving in remote settings,
or to patients who increasingly have access to electrocardio-
graphic images but lack ready access to experts for early diag-
nosis. Few tools have focused on the automated diagnosis that
allows for the incorporation of both ECG images and signals.
Many existing models are trained and tested on data from a single
source, with an inability to infer broad generalizability to different
institutions and health settings. Finally, there has also been a
preponderance of tools focusing on the diagnosis of single clinical
entities4,5, limiting clinical utility as ECGs can have multiple
abnormalities simultaneously.

We developed a multilabel prediction algorithm that can
incorporate either ECG images or signals as inputs to predict the
probability of various rhythm and conduction disorders using
over 2 million ECGs from Brazil, independently validated in data
from Germany, and for the image-based model, on real-world
printed ECGs.

Results
Study population. We used 12-lead ECGs collected by the Tel-
ehealth Network of Minas Gerais (TNMG) and described pre-
viously in Ribeiro et al.3. The data were assembled as a part of the
clinical outcomes in digital electrocardiography (CODE) study6.
There were 2,228,236 ECGs from 1,506,112 patients acquired
between 2010 and 2017 from 811 out of the 853 municipalities in
the state of Minas Gerais, Brazil. The median age of the patients
at the time of the ECG recording was 54 years (IQR 41, 67) and
60.3% of the ECGs were obtained among women. These ECGs
were recorded as standard 12-lead recordings sampled at fre-
quencies ranging from 300 to 600 Hz for 7– 10 s. In addition,
information on patient demographics and 6 clinical labels were
available (See “Methods” for details).

Of these ECGs, 39,661 (1.8%) had a label for atrial fibrillation
(AF), 61,551 (2.8%) for right bundle branch block (RBBB), 34,677
(1.6%) for left bundle branch block (LBBB), 34,446 (1.5%) for
first-degree atrioventricular block (1dAVb), 35,441 (1.6%) for
sinus bradycardia (SB), and 48,296 (2.2%) for sinus tachycardia
(ST) (Supplementary Table 1). Of the 231,704 ECGs with at least
one of the six detected rhythm disorders, 210,496 had exactly one,
and 21,208 had more than one label.

Further, to augment the evaluation of models built on the
primary CODE study dataset, where clinical annotations were
derived from routine clinical care and therefore a single clinician,
a secondary cardiologist-validated annotation test dataset was

used. This consisted of 827 additional ECGs obtained from the
TNMG network between April and September 2018, with a
similar distribution of age, sex, and clinical labels (Supplementary
Table 1). These ECGs were rigorously validated by 2-to-3
independent cardiologists based on criteria from the American
Heart Association7. An ECG dataset from Germany was obtained
for external validation (described in Methods, external
validation).

In addition to these signal waveform databases that had been
transformed to images, image models were evaluated on two real-
world image datasets. The first of these was from a rural US
hospital system, and the second consisted of web-based ECG
images (described in Methods, external validation).

Performance of image-based multilabel classification. We
resampled all ECGs to a 300 Hz sampling rate with 5 s simulta-
neous recordings across leads to obtain uniform length inputs.
QRS peak detection by the XQRS algorithm in lead I of the
original recording aided in the determination of the start and end
of the recordings to be assessed with the signal models and to be
converted to ECG images8. ECGs that did not have any peaks
detected (94,277, or 4.1%) were discarded, as inspection of a
sample of 50 ECGs after further preprocessing did not detect any
cardiac activity but rather uninterpretable noise. The ECGs were
transformed to the corresponding printed images using the
python library ecg-plot9.

All ECGs were randomly subset into training, validation, and
test sets (90%-5%-5%). Given the low prevalence of all clinical
labels, the data splits were stratified by clinical labels, so cases of
each of the six labeled clinical disorders were split proportionally
among the sets, as was gender. From the training waveforms, two
image-based datasets were created for image model training,
including a standardized subset, and a real-world variation subset.

In the standardized subset, each pre-image transformation
sample started 300 ms before the second QRS peak detected in
lead I. To ensure that like a clinician the model learned about
lead-specific information based on the label of the lead, rather
than just the location of leads on a single ECG format, we
included four formats of images in the standardized subset
(Fig. 1). Standard printed ECGs in the United States typically
consist of four 2.5 second columns presented sequentially on the
page, with each column containing three leads of 2.5 s intervals of
a continuous 10 s record. A 10-s rhythm strip was generated
using a concatenation of lead I signal on the last and first QRS of
the same 5 s signal7. The second plotting scheme we chose
consisted of two columns each containing six 5-s recordings, with
one column containing simultaneous limb leads and the other
simultaneous precordial leads. We treated this scheme as our
alternate image form (Fig. 1). The third and fourth formats were
representations of the standard and alternate formats with
shuffled lead locations. In the shuffled standard format precordial
leads were presented in the first two columns and limb leads in
the third and fourth. In shuffled alternative images precordial
leads were presented in the first column and limb leads in the
second (Fig. 1). This was done to prevent overfitting to certain
locations of ECG leads on the image, and to create a more
versatile algorithm.

The second real-world variation subset of the training sample
included images based on the same waveform signals as the
standardized subset. All ECGs were in the standard layout of the
standardized subset, but variations expected in real-world ECG
images were introduced in constructing these additional images.
These variations fell into two categories. First, each pre-image
transformation sample started at a point that was selected from a
uniform distribution of 0–1.3 s offset from the first detected QRS
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peak in lead I. This was designed to mimic the lack of
predetermined starting points in real-world ECGs. Second, color
schemes for the background of the ECG image plotted from the
signals were varied across ECGs (Details in “Methods”) (Fig. 1).

For image data, we built a convolutional neural network
(CNN) model based on the EfficientNet B3 architecture (see
“Methods” for details)10. We trained our primary image model on
both the standardized subset, with a 40%-40%-10%-10% split of
standard, alternate, standard shuffled, and alternate shuffled
images as well as the real-world variation subset. Validation was
conducted on standardized images. All images were randomly
rotated between −10 and +10 degrees prior to being input into

the model for training and validation to mimic variation that
might be seen in uploaded ECGs and further aid in the
prevention of overfitting.

To ensure that model learning was not affected by the low
frequency of certain labels, custom loss functions based on the
effective number of samples class sampling scheme were used for
both image and signal models, with weighting based on the
number of samples for each class (Supplementary Table 2)11.

The AUROCs for clinical labels on the held-out test set ranged
from 0.98 for 1dAVb to 1.00 (rounded up from 0.997) for LBBB
(Table 1). AUROC was 0.99 or higher for RBBB, LBBB, SB, AF,
and ST, but was lower for 1dAVB. The AUPRCs for clinical labels

Fig. 1 Study outline for waveform preprocessing and image transformation for modeling. ECG electrocardiogram.
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ranged from 0.51 for 1dAVb to 0.83 for LBBB. AUPRC was >0.73
for RBBB, LBBB, AF, and ST, with lower values for SB and
1dAVB (Table 1). At cutoffs that ensured maximum F1 value,
specificity was above 0.98 for all clinical labels, and sensitivity was
above 0.82 for RBBB, LBBB, SB, AF, and ST, but was lower for
1dAVb (0.61) (Table 1). For the higher-order label of gender,
AUROC was 0.93, AUPRC 0.91, and specificity and sensitivity
0.88 and 0.85 respectively.

Performance on standard and alternate format images was
comparable. The class mean weighted AUROC across clinical
labels on the held-out test set images in both standard and
alternate format was 0.99 (Supplementary Table 3). The class
mean weighted AUPRC across clinical labels was 0.73 on images
for the standard format, and 0.72 for images in the alternate
format. For the higher-order label of gender, AUROC was 0.93
for both standard and alternate format images, and AUPRC was
0.91 for standard format images and 0.90 for alternate format
images.

To explicitly test the robustness of this model to the noise-
artifacts we anticipated in the real world, we tested the model on a
representative subset of 5000 ECGs in our held-out test set. We
compared model performance on four variations of the same
5000 ECG waveform data. They were plotted in the standard
ECG layout, first without additional variation, second, in black
and white, third, with random rotations between −10 and +10
degrees, and fourth, with a varying starting point for plotted ECG
with a 0–1.3 s offset from the first detected QRS complex in the
signal. We saw no drop off in the performance of the model as
various types of noise were added (Supplementary Table 3). The
model is available as a publicly accessible web-based tool12.

Performance of signal-based multilabel classification. For signal
data, we developed a custom CNN model that combined incep-
tion blocks, convolutional, and fully connected layers, similar to
Raghunath et al. (see “Methods” for details)4. The AUROCs for
clinical labels on the held-out test set ranged from 0.93 for 1dAVb
to 0.99 for LBBB. AUROC was >0.98 for RBBB, LBBB, SB, AF,
and ST, but was lower for 1dAVB (Table 1). The AUPRCs for
clinical labels ranged from 0.20 for 1dAVb to 0.75 for LBBB.
AUPRC was >0.70 for RBBB, LBBB, and ST, and >0.55 for SB and
AF. At cutoffs that corresponded to the highest F1 value, speci-
ficity was above 0.98 for all clinical labels, and sensitivity was
above 0.75 for RBBB, LBBB, SB, AF, and ST, but was lower for
1dAVb (0.41). For the higher-order label of gender, AUROC was
0.80, AUPRC 0.74, and specificity and sensitivity 0.64 and 0.80
respectively.

Internal validation. In addition to the held-out test set, we
validated the algorithm in an expert validated test of 827 ECGs
from distinct patients in Minas Gerais, Brazil during a different
time window (April to September 2018). The labels on these
ECGs were validated by two cardiologists, with disagreements
resolved by a third cardiologist, based on criteria by the American
Heart Association.

The class weighted mean AUROC across clinical labels on the
cardiologist-validated internal test set was higher than the held-
out test. For the image-based model, it was 1.00 (rounded up
from actual value, 0.997) (95% CI, 0.99–1.00), and for the signal-
based model it was 0.99 (95% CI, 0.98–1.00) (Table 1). Class
weighted mean AUPRCs were also higher on the cardiologist-
validated test set, 0.92 for the image-based model and 0.85 for the
signal-based model. Performance on the higher-order label of
gender was slightly lower for the image-based model, with an
AUROC of 0.89 (95% CI, 0.87–0.91) and AUPRC of 0.85 but was

comparable for the signal-based model (AUROC 0.80 and
AUPRC 0.70).

External validation: ECG waveform database. In addition to the
held-out test set, model performance was evaluated on the
Germany-based external validation dataset, PTB-XL, whose data
have been previously described13. Briefly, the dataset has 21,837
recordings from 18,885 patients. ECGs were collected with
devices from Schiller AG between 1989 and 1996 and are avail-
able as 10 s recordings sampled at 500 Hz for 10 s. Each record
has labels for diagnostic, form, and rhythm statements. Data were
transformed in the same manner as the data from Brazil, and the
same labels were extracted to assess model performance. The
model performance in PTB-XL was comparable to the held-out
test set. For the image-based model, class weighted mean AUROC
was 0.98 (95% CI, 0.98–0.98) and for the signal-based model, it
was 0.96 (95% CI, 0.95–0.96) (Table 2). Class weighted mean
AUPRCs were also comparable, 0.78 for the image-based model
and 0.65 for the signal-based model. Performance on the higher-
order label gender was also comparable across datasets. For the
image-based model, AUROC was 0.90 (95% CI, 0.90–0.90) and
AUPRC was 0.90 on PTB-XL, and for the signal-based model,
AUROC was 0.74, and AUPRC was 0.75.

External validation: real-world ECG images. We also pursued
validation on two real-world image datasets. The first of these was
from the Lake Regional Hospital System (LRH), a rural US
hospital in Osage Beach, MO. These data included 64 ECG
images including 8–10 ECGs for our six labels of interest, as well
as ECGs that were labeled as normal. Subjectively, the ECGs had
a similar layout as the standard ECG format but had the V1 lead
rather than lead I as the rhythm strip (a single lead with a full 10 s
recording for identifying rhythm). There were vertical lines
demarcating the leads, the signal was black rather than blue, and
the background color and grid of the ECGs varied, as did the
location and the font of lead label. Model performance on the
LRH dataset was also comparable to the held-out test set. Class
weighted mean AUROC and AUPRC were 0.98 and 0.94,
respectively (Table 3). For gender, the model had an AUROC and
AUPRC of 0.78.

The second real-world image dataset consisted of ECG images
available on the internet, representing 42 ECGs. The approach to
obtaining these images is outlined in the methods. All ECG labels
were confirmed by a cardiologist. Qualitatively, these web ECGs
included both standard and alternate format images, as well as
new image formats such as ones with no rhythm leads, or two or
more rhythm leads. Moreover, the ECGs had varying background
colors, signal colors, quality, and location of lead labels, and many
had additional artifacts that were not present in our training data.
These images are available upon request. The model achieved
good performance on this web-based dataset, with class weighted
mean AUROC and AUPRC of 0.93 and 0.80 respectively, and a
high discrimination across labels (Table 3).

Comparison of performance of image and signal models. The
image and signal models performed comparably for clinical labels
on both datasets, with high correlation between prediction across
labels. For the clinically important diagnosis of AF, the image-
based model had AUROCs of 0.99 (95% CI, 0.99–1.00) on the
held-out test set, 1.00 (95% CI, 0.99–1.00) on the cardiologist-
validated internal test, and 0.99 (95% CI, 0.99–1.00) on PTB-XL,
while the signal-based model had AUROCs of 0.98 (95% CI,
0.98–0.98), 0.99 (95% CI, 0.97–1.00) and 0.97 (95% CI, 0.97–0.98)
respectively.
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The class weighted mean AUROC across clinical labels was
also comparable; 0.99 (95% CI, 0.99–0.99) on the held-out test set,
1.00 (95% CI, 0.99–1.00) on the cardiologist-validated internal
test set, and 0.98 (95% CI, 0.98–0.98) on PTB-XL for the image-
based model, and 0.98 (95% CI, 0.98–0.98), 0.99 (95% CI,
0.98–1.00), and 0.96 (95% CI, 0.95–0.96) for the signal-based
model (Tables 1, 2). For the higher-order label of gender, the
image-based model outperformed the signal-based model, with
AUROC of 0.93, 0.89, and 0.90 on the held-out test, cardiologist-
validated test, and PTB-XL, respectively, compared with 0.80,
0.80, and 0.74 for the signal-based model (p < 0.001 for difference
on held-out test, PTB-XL). The high discrimination across labels
and in all three datasets for both image and signal-based models
was noted in ROC curves (Figs. 2, 3).

The label-level performance of image and signal based models
was also consistent, with the highest AUROC and AUPRC scores
on the same clinical labels, LBBB and RBBB, (AUROC of 1.00
(0.997) and 0.99 for image-based, and 0.99 and 0.99 for signal
based, and AUPRC of 0.83 and 0.80 for image-based and 0.75 and
0.75 for signal-based on the held-out test set) and lowest scores
on the same class, 1dAVb (AUROC of 0.98 for image-based, and
0.93 for signal based, and AUPRC of 0.51 for image-based, and
0.20 for signal-based on the held-out test set). Confusion matrices
showed that among ECGs with only one clinical label, predictions
of LBBB, RBBB, and ST were the most accurate for both image
and signal-based models (above 87% for all three for the image-
based model, and above 86% for the signal-based one) (Fig. 4,
Supplementary Fig. 3). These findings were consistent in the
cardiologist-validated set and PTB-XL.

Manual review for misclassified ECGs. Two cardiologists inde-
pendently reviewed a sample of 10 false positives for each clinical
label with the highest probability of a given label (n= 120) to
verify the accuracy of the labels and qualitatively assess the
potential ECG features that may have prompted a false positive
result in both the held-out test set and the external validation data.
The most common errors across algorithms were type 1, or false
positives. We took 120 false positives from our image-based model
with the highest probability for each clinical label in the held-out
test set and external validation data, PTB-XL (10 for each label in
each dataset). Expert review by cardiologists confirmed that all 120
were accurately classified by the model and had incorrect labels,
i.e., that these were true positive results (ECGs available at https://
github.com/CarDS-Yale/ECG-DualNet).

Prediction interpretability with Grad-CAM. We used Gradient-
weighted Class Activation Mapping (Grad-CAM) to highlight the
regions in an image predicting a given label14. This provides
interpretability of the model’s predictions and allows for the
evaluation of whether model-assigned labels are based on clini-
cally relevant information or on heuristics based on spurious data
features15. The Grad-CAMs identified sections of the ECG that
were most important for the label classification. Figure 5 shows
the average class activation heatmaps for RBBB and LBBB pre-
dictions on standard and alternate form images, highlighting
ECG regions that were important for the diagnosis of each
rhythm across many predictions. We chose LBBB and RBBB to
illustrate the interpretability as these labels have lead-specific
information that is used to make the clinical diagnosis. This
contrasts with the other labels (AF, ST, SB, 1dAVB) where the
information on these rhythm disorders can be deduced from any
of the ECG leads, limiting assessment of lead-specific learning.

The region of the ECG corresponding to the precordial leads
was the most important for the prediction of RBBB across both
the standard and alternate images, with the region corresponding

to leads V4 and V5 especially important in the standard format,
and V1, V2, and V3 in the alternate format. On the other hand,
while regions corresponding to lead V6 was most important for
the prediction of LBBB across standard images, regions
corresponding to lead V4 and V5 were most important for LBBB
predictions across alternate images. Both formats showed
significant attention across precordial leads. The rhythm lead
was also important for the prediction of both LBBB and RBBB in
the standard format.

Supplementary Fig. 4 shows Grad-CAMs for individual
representative examples of model prediction of RBBB and LBBB
on real-world images from the web-based dataset. In both
examples of RBBB, the region corresponding to leads V1 and V2
is most important for the prediction of the label. In the two
examples of LBBB, precordial leads are again the most important
for the prediction of the label, despite varying in the relative
position of the leads and the difference in the number and type of
the continuous rhythm strip at the bottom of the ECG image.

Sensitivity analyses. Our image-based model performed com-
parably on both standard and alternate form printed images in
the held-out test set and cardiologist validated test set (Supple-
mentary Tables 4 and 5).

In the second sensitivity analysis, we trained a signal model
with the exact same architecture as the one described, but without
peak morphology inputs to test the ability of a convolutional
network to perform these operations internally and learn the
same patterns. Our signal model without peak morphology
information also performed comparably to the signal model with
them (Supplementary Tables 6 and 7).

Discussion
We have developed an externally validated multilabel automated
diagnosis algorithm that accurately identifies rhythm and con-
duction disorders from either ECG images or raw electrocardio-
graphic signals. The algorithm demonstrates high discrimination
and generalizes across two international waveform data sources,
which are acquired on different equipment and temporally
separated by over 2 decades. The image-based models are also
invariant to the layout of the ECG images, with interpretable
recognition of leads of interest and abnormalities by the image-
based algorithms. The model also demonstrated high dis-
crimination of clinical labels on two real-world image datasets,
with varying ECG layouts as well as additional artefacts. The
model also demonstrates consistent performance in identifying
the gender of patients from ECGs, highlighting that ECG images,
like signals, can be used to identify hidden features, which has
thus far exclusively been done with signal-based models. Our
approach has the potential to broaden the application of artificial
intelligence (AI) to electrocardiographic data across storage
strategies.

Image-based models represent an important advance in auto-
mated diagnosis from ECGs as they allow applications to data
sources for which raw signals may not be available. This repre-
sents most healthcare settings that have not been optimized for
storing and processing signal data in real-time and that rely on
printed or scanned ECG images. In addition, in contrast to ECG-
based models that have been developed in single health
systems2,16,17, our models have broad external validity, per-
forming equivalently in regionally and temporally distinct vali-
dation data. An important observation is that image-based
models demonstrate comparable performance to our signal-based
model, as well as signal-based models in published reports2,18

despite both the substantial downsampling of high-frequency
signal recordings to relatively low-resolution images and the
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redundant information introduced by the presence of background
pixels. We do not have a definitive explanation of these obser-
vations, though pixel-level information that is not interpretable
by humans may include more detailed diagnostic clues than the
review of broad waveform patterns used by human readers.
Moreover, it is possible that while the signal-based models have a
higher frequency record of the electrocardiographic activity of the
heart, and therefore, more data points that there is spatial
information outside of waveform data that is better represented in
printed images, or that the additional high-frequency recording of
noisier signal data does not necessarily have more information
than image data. We cannot definitively prove if either of these is
the case.

These models had an excellent performance on a validation
dataset that was manually annotated and confirmed by cardiol-
ogists. The reported performance on the held-out test and
external validation sets were limited by the quality of labels,
which likely varied given higher performance on LBBB, RBBB,
and AF, than for 1st degree AV block, a pattern was also observed
in signal-based models3. We confirmed this explicitly through
expert ECG review of a sample of reportedly false-positive ECGs
—those where the model predicted a label with high confidence
but the ECG was not actually labeled with the condition. We
found that these were in fact true positives, representing incorrect
labels.

We also found that the model performance was not limited to
images generated from the waveform data but extended to
those obtained as printed ECGs directly from different sources.
The included ECGs spanned different colors, lead positions,
and extraneous artifacts noted on a subjective review of these
data, but the model continued to have high discrimination,
precision, and recall. These observations suggest the utility of
both the real-world application of our model, but also provide a
strategy for training ECG-based models on ECG images gen-
erated from current repositories of ECG signals and labels
through the simulated introduction of real-world artifacts in
the training data.

Of note, the image-based model learned to identify individual
leads on varying ECG formats and identified lead-specific diag-
nostic cues, similar to human readers. In addition to external
validation performance suggesting that the model did not train to
rely on dataset-specific heuristics, the interpretability of the AI-
based predictions further supports their generalizability15. Our
examination of mean heatmaps across a sample of predictions for
RBBB and LBBB demonstrates that classifications for these
intraventricular conduction disturbances were guided by the same
information human readers focus on when reading an ECG.
Mean heatmaps consistently demonstrated the identification of
specific leads that are important in the clinical diagnosis of RBBB
and LBBB. Similar heatmaps applied to individual ECGs further
supported similar interpretable learning across clinical labels. The
identification of specific leads despite the variety of inputs in the
training data, and the rotation of training images suggests that the
model has learned more generalizable representations of ECG
images, especially as it still identified clinically relevant leads in
formats of images in the web-based real-world image dataset,
which it had never encountered in model training.

Such interpretability addresses some of the implementation
challenges of AI-based ECG models that are not readily
explainable19. Our findings also suggest that Grad-CAM can
ameliorate this issue in real-time by providing an automated
label, but also informing a clinician visually of the portions of the
ECG that were used by the model to ascribe the label. Providing a
Grad-CAM output in addition to the diagnosis and confidence of
the diagnosis can provide context to predictions made by CNNs
and aid in their acceptance in the clinical workflow1,20.T
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Our study has certain limitations. First, while our model has
excellent performance characteristics, the reason for the dis-
cordance of the model and the labels could not be confirmed for
all ECGs. The ECGs have been reviewed by a cardiologist in our
training data3, and by two cardiologists in the external validation
data13, but we found that high probability predictions initially
noted to be false positives in both these sets actually represented
inaccurate labels. Moreover, this pattern was not observed in the
cardiologist-validated internal test set, further suggesting that the
performance of the model likely exceeds what is reported in the
held-out and external validation sets, which could not be inde-
pendently validated given the large size of the data.

Second, we focused on 6 clinical labels, based on their avail-
ability in the training data, and therefore, our models would not

apply to other clinical disorders. We believe that our study
identifies a strategy of leveraging ECG images for a broad set of
disparate diagnoses—spanning rhythm and conduction disorders,
as well as hidden labels. We also demonstrate how existing data
repositories with waveform data can be augmented to accomplish
this task. Our goal for future investigations will be to design
custom models on repositories with a broader set of labels as well
as extract waveform-specific measures through access to valid
information from richer data repositories.

Finally, we were unable to discern an interpretable pattern
from Grad-CAM on ECG-based identification for gender classi-
fication, but the performance of the model on external validation
data argues against overfitting. Moreover, Grad-CAM does not
allow for interpretability of rhythm disorders, where large

Table 3 Performance of image model on real-world electrocardiogram (ECG) image datasets.

Real world
dataset

Label Accuracy PPV NPV Specificity Sensitivity AUROC F1 AUPRC

LRH Male 0.719 0.667 0.842 0.516 0.909 0.778 0.769 0.784
1dAVb 0.953 0.833 0.981 0.962 0.909 0.981 0.870 0.902
RBBB 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LBBB 0.984 1.000 0.981 1.000 0.909 0.983 0.952 0.957
SB 0.938 0.875 0.946 0.981 0.700 0.965 0.778 0.861
AF 0.969 0.867 1.000 0.961 1.000 0.988 0.929 0.945
ST 0.969 0.900 0.981 0.981 0.900 0.987 0.900 0.938
Weighted mean 0.969 0.912 0.983 0.980 0.909 0.984 0.908 0.935

Web-based 1dAVb 0.884 0.625 0.943 0.917 0.714 0.810 0.667 0.679
RBBB 0.930 0.700 1.000 0.917 1.000 0.944 0.824 0.693
LBBB 0.930 0.833 0.946 0.972 0.714 0.897 0.769 0.763
SB 0.977 0.875 1.000 0.972 1.000 0.992 0.933 0.962
AF 0.977 0.875 1.000 0.972 1.000 0.988 0.933 0.938
ST 0.953 0.778 1.000 0.944 1.000 0.960 0.875 0.761
Weighted mean 0.942 0.781 0.981 0.949 0.905 0.932 0.833 0.799

1dAVB 1st degree AV block, AF atrial fibrillation, AUPRC area under precision recall curve, AUROC area under receiver operator characteristic curve, LBBB left bundle branch block, NPV negative predictive
value. PPV positive predictive value, RBBB right bundle branch block, SB sinus bradycardia, ST sinus tachycardia.

Fig. 2 Area under the receiver operator characteristic (AUROC) curves for image and signal-based models. AUROC on held-out test set (A, image
model; B, signal model) and cardiologist validated test set (C, image model; D, signal model) are included in the 4 image panels. 1dAVB 1st degree AV
block, AF atrial fibrillation, LBBB left bundle branch block, RBBB right bundle branch block, SB sinus bradycardia, ST sinus tachycardia.
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sections of repeating patterns in the ECG, which cannot be
defined by heatmaps, are required for diagnosis. While the model
performed well on these labels, they represent a challenge for the
interpretability of AI applications on ECG tracings.

In summary, we have developed an externally validated multilabel
automated diagnosis algorithm that accurately identifies rhythm and
conduction disorders from either ECG images or raw electro-
cardiographic signals. The versatility, interpretability, generalizability,

Fig. 3 Area under the receiver operator characteristic (AUROC) curves on the external validation set (PTB-XL). A Image based model, and B Signal
based model. 1dAVB 1st degree AV block, AF atrial fibrillation, LBBB left bundle branch block, RBBB right bundle branch block, SB sinus bradycardia, ST
sinus tachycardia.

Fig. 4 Confusion matrices for image model predictions. A Held-out test set, B cardiologist-validated test set, and C PTB-XL. 1dAVB 1st degree AV block,
AF atrial fibrillation, LBBB left bundle branch block, RBBB right bundle branch block, SB sinus bradycardia, ST sinus tachycardia.

Fig. 5 Gradient-weighted Class Activation Maps for Image Predictions. Average of the Gradient weighted Class Activation Maps (Grad-CAMs) for the
25 most confident predictions of right bundle branch block (RBBB) and left bundle branch block (LBBB) on standard and alternate format images. A RBBB in
standard format, B RBBB in alternate format, C LBBB in standard format, and D LBBB in alternate format.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29153-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1583 | https://doi.org/10.1038/s41467-022-29153-3 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and broad ability to incorporate ECG images can broaden the
application of AI to clinical electrocardiography.

Methods
The study was reviewed by the Yale Institutional Review Board, which waived
informed consent as the study uses deidentified data.

Data source and study population. We used 12-lead ECGs collected by the
TNMG and described previously in Ribeiro et al.3. The data were assembled as a
part of the CODE study6. They include deidentified signal data captured between
2010 and 2017 from 811 out of the 853 municipalities in the state of Minas Gerais,
Brazil. The ECGs obtained were collected using one of two models of tele-
electrocardiograph machines, the TEB ECGPC, manufactured by Tecnologia
Electronica Brasileira, or the ErgoPC 13, manufactured by Micromed Biotecnolo-
gia. These ECGs were recorded as standard 12-lead recordings sampled at fre-
quencies ranging from 300 to 600 Hz for 7–10 s. In addition, information on
patient demographics and six clinical labels were available.

Briefly, labels for the primary CODE study dataset were obtained through the
following procedure, as described by Ribeiro et al.3,6. Automated University of
Glasgow statements and Minnesota codes obtained by the Uni-G automatic
analysis software were compared to both automatic measurements provided by the
Uni-G software and text labels extracted from expert reports written upon initial
reading of the signals. These labels were extracted using a semi-supervised Lazy
Associative Classifier trained on a dictionary created from text reports.
Discrepancies in the labels provided by extracted expert annotation and automatic
analysis were settled using both cutoffs related to ST, SB, and 1dAVb, as well as
manual review.

Further, to augment the evaluation of models built on the primary CODE study
dataset, where clinical annotations were derived from routine clinical care, a
secondary cardiologist-validated annotation test dataset was used. This consisted of
additional ECGs obtained from the TNMG network between April and September
2018. These ECGs were rigorously validated by 2-to-3 independent cardiologists
based on criteria from the American Heart Association7. This represents the
cardiologist-validated test set from the study by Ribiero et al3. Finally, an ECG
dataset from Germany was obtained for external validation (described in the
section on external validation).

Data preprocessing. We resampled all ECGs to a 300 Hz sampling rate. Such a
down-sampling of signals represents a standard preprocessing step for ECG
waveform analyses to allow for the standard data structure required for modeling.
QRS peak detection by the XQRS algorithm in lead I of the original recording aided
in the determination of the start and end of the recordings to be assessed with the
signal models and to be converted to ECG images8. ECGs that did not have any
peaks detected (94,277, or 4.1%) were discarded, as inspection of a sample of 50
ECGs after further preprocessing did not have any cardiac activity but rather
uninterpretable noise.

For signal data, 5 s simultaneous recordings across leads were used to obtain
uniform length inputs. Each ECG was processed as a matrix of 12 leads of
1500 sequential data points, representing a 5 s acquisition at a 300 Hz sampling
frequency. Each sample started 300 ms before the second QRS peak detected by the
XQRS algorithm in lead I of the original recording. The 5 s samples were
preprocessed with a one-second median filter applied across each lead and
subtracted from the original waveform to remove baseline drift. Next, we employed
a peak annotation technique for each ECG to include ECG morphology along with
waveform data as an input to the signal model. For all ECGs, we found the median
and standard deviation of all RR, PR, QRS, and ST intervals for each lead using
NeuroKit2, a Python toolkit for signal processing21. Briefly, the NeuroKit2
algorithm is based on the detection and delineation algorithms of Martinez et al.22,
and uses a discrete wavelet transform to localize QRS peaks, allowing it to identify
the local maxima associated with these peaks regardless of noise artifacts that may
be present in the signal. It then performs a guided search for P and T waves based
on the information about QRS location and known morphologies for these waves
in electrocardiographic signals. The median lengths of each interval across leads
were included as additional inputs into the signal model (Fig. 1).

The ECGs were transformed to the corresponding printed images using the
python library ecg-plot9. From the training waveforms, two image-based datasets
were created for image model training, including a standardized subset, and a real-
world variation subset. In the standardized subset, each pre-image transformation
sample started 300 ms before the second QRS peak detected in lead I. To ensure
that like a clinician the model learned about lead-specific information based on the
label of the lead, rather than just the location of leads on a single ECG format, we
included four formats of images in the ideal dataset (Fig. 1). Standard printed ECGs
in the United States typically consist of four 2.5 s columns presented sequentially
on the page, with each column containing three leads of 2.5 s intervals of a
continuous 10 s record. A 10-s rhythm strip was generated using a concatenation of
lead I signal on the last and first QRS of the same 5 s signal7. The second plotting
scheme we chose consisted of two columns each containing six 5-second
recordings, with one column containing simultaneous limb leads and the other

simultaneous precordial leads. We treated this scheme as our alternate image form
(Fig. 1).

The third and fourth formats were representations of the standard and alternate
formats with shuffled lead locations. In the shuffled standard format precordial
leads were presented in the first two columns and limb leads in the third and
fourth. In shuffled alternative images precordial leads were presented in the first
column and limb leads in the second (Fig. 1). This was done to prevent overfitting
to certain locations on the ECG image and to create a more versatile algorithm.

The second real-world variation subset included images based on the same
waveform signals as the standardized subset. While in the standard format of the
standardized subset, the variations expected in real-world ECG images were
introduced in constructing these additional images. These variations fell into two
categories. First, each pre-image transformation sample started at a point that was
selected from a uniform distribution of 0–1.3 s offset from the first detected QRS
peak in lead I. This was designed to mimic the lack of predetermined starting
points in real-world ECGs. The second variation introduced in the real-world
variation dataset was different color schemes for the background of the ECG image
and the signal being plotted. We modified the ecg-plot software to produce ECGs
with three common color schemes to the ECGs in the ideal dataset. This included
two variations of black and white ECGs, as well as a format with a pink background
but a black signal (Fig. 1).

Study outcomes. Each ECG was annotated for six physician-defined clinical labels
spanning rhythm and conduction disorders (AF, RBBB, LBBB, 1dAVB, ST, and
SB). Diagnoses for ECGs were obtained by a combination of the automated
diagnosis provided by the Glasgow ECG analysis software and the natural language
processing (NLP) extracted diagnosis from a cardiologist report of the ECGs. To
detect whether our image and signal-based modeling approaches could detect
hidden or higher-order features that are not discernable from the ECG by human
readers, we defined patient sex as the seventh label given its consistent availability
across the study population and prior literature describing its detection from
signal-based electrocardiographic deep learning models16.

Experimental design. All ECGs were randomly subset into training, validation,
and held-out test sets (90%-5%-5%). Given the low prevalence of all clinical labels,
the data splits were stratified by clinical labels, so cases of each of the six labeled
clinical disorders were split proportionally among the sets, as was gender. To
ensure that model learning was not affected by the low frequency of certain labels,
custom loss functions based on the effective number of samples class sampling
scheme were used for both image and signal models, with weighting based on the
number of samples for each class (Supplementary Table 2)11. To account for class
imbalance gave higher weights to rarer classes with the goal of ensuring that
performance on metrics sensitive to class imbalances remained high.

Image model overview. For image data, we built a CNN model based on the
EfficientNet set of architectures10. To balance the complexity and accuracy of a
model with the computational resources required for training, we chose the B3
architecture, which required PNG images to be sampled at 300 × 300 square pixels.
The model includes 384 layers, has over 10 million trainable parameters, and is
composed of seven blocks (Supplementary Fig. 1). Additional dropout layers were
added to prevent overfitting, and the output of the EfficientNet-B3 model was fed
into a fully connected layer with sigmoid activation to predict the probability of
target labels. The model was trained with an Adagrad optimizer and learning rate
5 × 10−3 for seven epochs with a minibatch size of 64. The optimizer and learning
rate was chosen after hyperparameter optimization. We a priori chose 30 epochs
for training models with built in early stopping based on validation loss not
improving after three consecutive epochs. Model weights were initialized as the
pretrained EfficientNetB3 weights on the ImageNet dataset to take advantage of
any possible transfer learning.

We trained our primary image model on both the standardized images, with a
40%-40%-10%-10% split of standard, alternate, standard shuffled, and alternate
shuffled images as well as the real-world variation subset, with equal numbers of
the three background colors stratified in the same manner described above (see
schematic in Fig. 1). Validation was conducted on standardized images. All images
were rotated a random amount between −10 and 10 degrees prior to being input
into the model for training and validation to mimic variation that might be seen in
uploaded ECGs and further aid in the prevention of overfitting.

Signal model overview. For signal data, we developed a custom CNN model that
combined inception blocks, convolutional, and fully connected layers, similar to
Raghunath et al.4. Our model had two inputs, the 1500 × 12 waveform data, and
the 8 × 1 array of derived elements from the ECG including various standard
intervals.

The waveform data input was passed through seven branches, each one
containing an initial 1D-convolutional layer followed by 5 inception blocks and
another 1D-convolutional layer (Supplementary Fig. 2). We used inception blocks
to capture information of various kernel sizes and therefore differing assumptions
of the locality, or spatial connectivity of ECG data. For example, smaller kernels
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performed more localized learning, on individual waves or parts of waves, while
larger ones combined data across sections of multiple waves.

The signal in each of these branches was then flattened, passed through two
fully connected layers, and concatenated with data from the other branches. These
final waveform signal data were passed through a fully connected layer and then
concatenated with the 8 × 1 peak morphology input. This information was passed
through two more fully connected layers, the second of which had sigmoid
activation to predict the probability of target labels. Further details of the signal
models are included in Supplementary Methods in the Online Supplement.

In sensitivity analyses, we trained a signal model with the exact same
architecture as the one described, but without peak morphology inputs to test the
ability of a convolutional network to perform these operations internally and learn
the same patterns.

Internal validation. Model performance was evaluated on the 5% held-out test set.
In addition to the held-out test set, we validated the algorithm in an expert vali-
dated test of 827 ECGs from distinct patients in Minas Gerais, Brazil during a
different time window (April to September 2018). The labels on these ECGs were
validated by 2 cardiologists, with disagreements resolved by a third cardiologist,
based on AHA criteria. For the image-based models, the performance was eval-
uated separately for the both the standard and alternate ECG lead layouts of the
held-out and the cardiologist validated test sets.

External validation: ECG waveform database. We also pursued external vali-
dation to assess the ability to generalize to novel data sources23. In addition to the
held-out test set, model performance was evaluated on the Germany-based external
validation dataset, PTB-XL, whose data have been previously described13. Briefly,
the dataset has 21,837 recordings from 18,885 patients. ECGs were collected with
devices from Schiller AG between 1989 and 1996 and are available as 10 s
recordings sampled at 500 Hz for 10 s. Each record has labels for diagnostic, form,
and rhythm statements. Data were transformed in the same manner as the data
from Brazil, and the same labels were extracted to assess model performance.

External validation: real-world ECG images. We pursued validation on two real-
world image datasets. The first of these was from the Lake Regional Hospital System
(LRH), a rural US hospital in Osage Beach, MO. These data included 64 ECG images
including 8–10 ECGs for our six labels of interest, as well as ECGs that were labeled as
normal. Subjectively, the ECGs had a similar layout as the standard ECG format but
had the V1 lead rather than lead I as the rhythm data. There were vertical lines
demarcating the leads, the signal was black rather than blue, and the background
color and grid of the ECGs varied, as did the location and the font of the lead label.

The second real-world image dataset consisted of ECG images available on the
internet, representing 42 ECGs. We followed a systematic approach to constructing
this dataset. We first accessed images on life in the fast lane (LIFTL) website, an
educational website for teaching about ECGs available at https://litfl.com/ecg-
library/. From LIFTL, we took all ECGs for the labels of interest, without any pre-
selection. Our goal was to have at least 6–7 ECGs per label. As LIFTL only had 2–6
ECGs per label, we pursued a google image search for “<label> ecg image” and
selected the first 12-lead ECGs that appeared until we had seven ECGs for each
label of interest. Qualitatively, these web ECGs included both standard and
alternate format images, as well as a new format of images such as ones without
rhythm leads, or with two or more rhythm leads. Moreover, the ECGs had varying
background colors, signal colors, quality, and location of lead labels, and many had
additional artifacts that were not present in our training data. These images are
available from the authors upon request.

Model interpretability. We used Gradient-weighted Class Activation Mapping
(Grad-CAM) to highlight the regions in an image predicting a given label14. This
provides interpretability of the model’s predictions and allows for the evaluation of
whether model-assigned labels are based on clinically relevant information or on
heuristics based on spurious data features15. To deploy Grad-CAM in our models,
we calculated the gradients of the final stack of filters in the network for each
prediction class of interest. These gradients assigned the importance of a given
pixel to the prediction of the label. Then, we created filter importance weights by
performing a global average pooling of the gradients in each filter, emphasizing
filters whose gradient suggested they contributed to the prediction of the class of
interest. Finally, each filter in our final convolutional layer was multiplied by its
importance weight and combined across filters to generate a Grad-CAM heatmap.
We overlayed the heatmaps on the original ECG images.

We used two approaches to assess model interpretability. First, we examined
individual ECGs, obtaining, and overlaying the Grad-CAM heatmaps for both the
standard and alternate images. Second, we averaged class activation maps for a
condition of interest for any given model. We a simple mean across the heatmaps
for the images for a certain condition, and overlayed this average heatmap over a
representative ECG to understand it in context.

We chose LBBB and RBBB to illustrate the interpretability as these labels have lead-
specific information that is used to make the clinical diagnosis. This contrasts with the
other labels (AF, ST, SB, 1dAVB) where the information on these rhythm disorders can
be deduced from any of the ECG leads, limiting assessment of lead-specific learning.

Statistical analysis. Model performance was evaluated in the held-out test set,
cardiologist-validated test set, and the external validation set. We assessed the area
under the receiver operating characteristic (AUROC) curve, which represents
model discrimination, with values ranging from 0.50 to 1.00, representing random
classification and perfect discrimination of labels, respectively. In addition, we
assessed the area under the precision recall curve (AUPRC), and F1 score of the
model for each label, metrics that are sensitive to rare events and may provide more
insight on the clinical usefulness of our models23–25. We also assessed the sensi-
tivity, specificity, positive predictive value, and negative predictive value for each
label. For the threshold dependent measures, the threshold that maximized the
F1 score was selected, representing a strategy that optimized both precision and
recall. Class weighted mean metrics across clinical labels were calculated to evaluate
the performance of a model at a dataset-level by taking the weighted average of
metrics on the labels in that dataset (e.g., held-out test set, cardiologist-validated
internal test set, external validation set), weighed by the counts of labels in that
dataset. Models were compared by computing p values and 0.95 confidence
intervals for AUROC using DeLong’s Method26. We used confusion matrices to
illustrate the discordance between a model’s predictions and the diagnoses that
came with our datasets. These were constructed among ECGs with single clinical
labels. All analyses were performed using Python 3.9.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The cardiologist-validated test set is publicly available on the link: https://zenodo.org/
record/3765780#.YVIM8J5Kgl9%2F. The training data are based on the CODE study,
published in Nature Communications (Volume 11, Article number: 1760 (2020)) and can
be obtained from Ribeiro et al. (antonio.ribeiro@ebserh.gov.br). Restrictions apply to the
availability of the training set and requests to access will need to be submitted and
reviewed on an individual basis by the Telehealth Network of Minas Gerais for academic
use only. The data for PTB-XL are available from physionet.org. The test data from Lake
Regional Health System and the web-based validation set will be made available from the
authors upon request.

Code availability
The code for the study was shared with the Editors and reviewers for peer review and is
available from the authors upon request for replicating the results. The algorithm
developed in this study is the intellectual property of Yale University. The model for
testing electrocardiographic images is available as a publicly accessible web-based tool at
https://www.cards-lab.org/ecgdx.
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