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Regression Model

Many scientific problems reduce to modeling the relationship
between two sets of variables. Regression methodology is
designed to quantify these relationships.

linear regression for continuous data
logistic regression for binary data
proportional hazard regression for censored survival data
mixed-effect regression for longitudinal data

These parametric (or semiparametric) regression methods may
not lead to faithful data descriptions when the underlying
assumptions are not satisfied.
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Recursive Partitioning Based Methods

Nonparametric regression has evolved to relax or remove the
restrictive assumptions.
Recursive partitioning provides a useful alternative to the
parametric regression methods.

Classification and Regression Trees (CART)
Multivariate Adaptive Regression Splines (MARS)
Forest
Survival Trees
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Areas of Applications

financial firms
banking crises (Cashin and Duttagupta 2008)
credit cards (Altman 2002; Frydman, Altman and Kao 2002; Kumar
and Ravi 2008)
investments (Pace 1995 and Brennan, Parameswaran et al. 2001)

manufacturing and marketing companies (Levin, Zahavi, and
Olitsky 1995; Chen and Su 2008)
pharmaceutical industries (Chen et al. 1998)
engineering research

natural language speech recognition (Bahl et al. 1989)
musical sounds (Wieczorkowska 1999)
text recognition (Desilva and Hull 1994)
tracking roads in satellite images (Geman and Jedynak 1996)
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Areas of Applications

astronomy (Owens, Griffiths, and Ratnatunga 1996)
computers and the humanities (Shmulevich et al. 2001)
chemistry (Chen, Rusinko, and Young 1998)
environmental entomology (Hebertson and Jenkins 2008)
forensics (Appavu and Rajaram 2008)
polar biology (Terhune et al. 2008).
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Biomedical Applications

Is this patient with chest pain suffering a heart attack?
Does he simply have a strained muscle?
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Examples

Chest Pain
Goldman et al. (1982, 1996): Build an expert computer system that
could assist physicians in emergency rooms to classify patients
with chest pain into relatively homogeneous groups within a few
hours of admission using the clinical factors available.
The authors included 10,682 patients with acute chest pain in the
derivation data set and 4,676 in the validation data set.

Coma
Levy et al. (1985): Predict the outcome from coma caused by
cerebral hypoxia-ischemia
they studied 210 patients with cerebral hypoxia-ischemia and
considered 13 factors including age, sex, verbal and motor
responses, and eye opening movement.
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Gene Expression

Zhang et al. (2001) analyzed a data set from the expression
profiles
2,000 genes in 22 normal and 40 colon cancer tissues (Alon et al.
1999).
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Gene Expression
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Statistical Problem

an outcome variable, Y, and a set of p predictors, x1, . . . , xp.

establish a relationship between Y and the x’s
IP{Y = y | x1, . . . , xp},
parametric models

exp(β0 +
∑p

i=1 βixi)

1 + exp(β0 +
∑p

i=1 βixi)
,

1√
2π

exp
[
− (y− µ)2

2σ2

]
, µ = β0 +

p∑
i=1

βixi.
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Statistical Problem

Table: Correspondence Between the Uses of Classic Approaches and
Recursive Partitioning Technique in This Book

Type of
Parametric methods

Recursive partitioning
response technique

Ordinary linear Regression trees and
Continuous regression adaptive splines

Binary
Logistic regression Classification trees and

forests

Censored
Proportion hazard Survival trees
regression
Mixed-effects models Regression trees and

Longitudinal adaptive splines
Multiple Exponential, marginal, Classification trees
discrete and frailty models
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Yale Pregnancy Outcome Study

PI: Dr. Michael B. Bracken at Yale University.
Population: women who made a first prenatal visit to a private
obstetrics or midwife practice, health maintenance organization, or
hospital clinic in the greater New Haven, Connecticut, area,
between May 12, 1980, and March 12, 1982, and who anticipated
delivery at the Yale–New Haven Hospital.
Sample size: a subset of 3,861 women whose pregnancies ended
in a singleton live birth.
Outcome: preterm delivery
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Yale Pregnancy Outcome Study

Table: A List of Candidate Predictor Variables

Variable name Label Type Range/levels
Maternal age x1 Continuous 13–46
Marital status x2 Nominal Currently married, divorced,

separated, widowed, never married
Race x3 Nominal White, Black, Hispanic, Asian, others
Marijuana use x4 Nominal Yes, no
Times of using x5 Ordinal >= 5, 3–4, 2, 1 (daily), 4–6,
marijuana 1–3 (weekly), 2–3, 1, < 1 (monthly)
Years of education x6 Continuous 4–27
Employment x7 Nominal Yes, no
Smoker x8 Nominal Yes, no
Cigarettes smoked x9 Continuous 0–66
Passive smoking x10 Nominal Yes, no
Gravidity x11 Ordinal 1–10
Hormones/DES x12 Nominal None, hormones, DES,
used by mother both, uncertain
Alcohol (oz/day) x13 Ordinal 0–3
Caffeine (mg) x14 Continuous 12.6–1273
Parity x15 Ordinal 0–7
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The Elements of Tree

root node: the circle on the top.
internal node
terminal nodes
left and right daughter nodes
offspring nodes
split
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Interpretation of Tree

What are the contents of the nodes?
Why and how is a parent node split into two daughter nodes?
When do we declare a terminal node?
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Interpretation of Tree

The root node contains a sample of subjects from which the tree is
grown–learning sample.
The root node contains all 3,861 pregnant women.
All nodes in the same layer constitute a partition of the root node.
Every node in a tree is merely a subset of the learning sample.
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An Example of Tree
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Aim of Recursive Partitioning

Produce the terminal nodes that are homogeneous
They contain either dots or circles
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Splitting a Node

Consider the variable x1 (age)
32 distinct age values in the range of 13 to 46
32-1=31 allowable splits
For an ordinal predictor, the number of allowable splits is one
fewer than the number of its distinctly observed values.
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Allowable Splits

Table: Race

Left daughter node Right daughter node
White Black, Hispanic, Asian, others
Black White, Hispanic, Asian, others
Hispanic White, Black, Asian, others
Asian White, Black, Hispanic, others
White, Black Hispanic, Asian, others
White, Hispanic Black, Asian, others
White, Asian Black, Hispanic, others
Black, Hispanic White, Asian, others
Black, Asian White, Hispanic, others
Hispanic, Asian White, Black, others
Black, Hispanic, Asian White, others
White, Hispanic, Asian Black, others
White, Black, Asian Hispanic, others
White, Black, Hispanic Asian, others
White, Black, Hispanic, Asian Others
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Splits of a Nominal Variable

Race has 5 levels
25−1 − 1 = 15 allowable splits
any nominal variable that has k levels contributes 2k−1 − 1
allowable splits
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Allowable Splits

The 15 predictors yield 347 possible splits
How do we select one or several preferred splits from the pool of
allowable splits?
We need to define a selection criterion
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Goodness of Split

The goodness of a split must weigh the homogeneities (or the
impurities) in the two daughter nodes.
Consider the question “Is x1 > c?”

Term Preterm
Left Node (τL) x1 ≤ c n11 n12 n1·

Right Node (τR) x1 > c n21 n22 n2·
n·1 n·2
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Entropy Impurity

Left node

i(τL) = −n11

n1·
log
(

n11

n1·

)
− n12

n1·
log
(

n12

n1·

)
.

Right node

i(τR) = −n21

n2·
log
(

n21

n2·

)
− n22

n2·
log
(

n22

n2·

)
.

The goodness of a split, s, is measured by

∆I(s, τ) = i(τ)− IP{τL}i(τL)− IP{τR}i(τR).

τ is the parent node of τL and τR. IP{τL} and IP{τR} are the proportions
of the observations assigned to the left and right daughter nodes,

respectively.
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Goodness of Split for Age Split at 35

Term Preterm
Left Node (τL) 3521 198 3719

Right Node (τR) 135 7 142
3656 205 3861

i(τL) = −3521
3719

log(
3521
3719

)− 198
3719

log(
198
3719

) = 0.2079.

i(τR) = 0.1964, i(τ) = 0.20753.

∆I(s, τ) = 0.00001.
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The Goodness of Allowable Age Splits

Split Impurity 1000∆I
value Left node Right node

13 0.00000 0.20757 0.01
14 0.00000 0.20793 0.14
15 0.31969 0.20615 0.17
16 0.27331 0.20583 0.13
17 0.27366 0.20455 0.23
18 0.31822 0.19839 1.13
19 0.30738 0.19508 1.40
20 0.28448 0.19450 1.15
21 0.27440 0.19255 1.15
22 0.26616 0.18965 1.22
23 0.25501 0.18871 1.05
24 0.25747 0.18195 1.50
25 0.24160 0.18479 0.92
26 0.23360 0.18431 0.72
27 0.22750 0.18344 0.58
28 0.22109 0.18509 0.37

Split Impurity 1000∆I
value Left node Right node

29 0.21225 0.19679 0.06
30 0.20841 0.20470 0.00
31 0.20339 0.22556 0.09
32 0.20254 0.23871 0.18
33 0.20467 0.23524 0.09
34 0.20823 0.19491 0.01
35 0.20795 0.19644 0.01
36 0.20744 0.21112 0.00
37 0.20878 0.09804 0.18
38 0.20857 0.00000 0.37
39 0.20805 0.00000 0.18
40 0.20781 0.00000 0.10
41 0.20769 0.00000 0.06
42 0.20761 0.00000 0.03
43 0.20757 0.00000 0.01
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The Largest Goodness of Split from All Predictors

Variable x1 x2 x3 x4 x5 x6 x7 x8
1000∆I 1.5 2.8 4.0 0.6 0.6 3.2 0.7 0.6
Variable x9 x10 x11 x12 x13 x14 x15
1000∆I 0.7 0.2 1.8 1.1 0.5 0.8 1.2
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Things to Notice

The greatest reduction in the impurity comes from the age split at
24.
What about the age split at age 19, stratifying the study sample
into teenagers and adults?
This best age split is used to compete with the best splits from the
other 14 predictors.
The best of the best comes from the race variable with
1000∆I = 4.0, i.e., ∆I = 0.004.

This best split divides the root node according to whether a
pregnant woman is Black or not.
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Top Splits
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Recursive Partitioning

After splitting the root node, we continue to divide its two daughter
nodes.
The partition of node 2 uses only 710 Black women, and the
remaining 3,151 non-Black women are put aside.
The pool of allowable splits is nearly intact except that race does
not contribute any more splits, as everyone is now Black.
The total number of allowable splits decreases from 347 to at least
332.
An offspring node may use the same splitting variable as its
ancestors.
The number of allowable splits decreases as the partitioning
continues.
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Important Issues

If all candidate variables are equally plausible substantively, then
generate separate trees using each of the variables to continue
the splitting process.
If only one or two of the candidate variables is interpretable in the
context of the classification problem at hand, then select them for
each of two trees to continue the splitting process.
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Terminal Nodes

The recursive partitioning process may proceed until the tree is
saturated in the sense that the offspring nodes subject to further
division cannot be split.

there is only one subject in a node.
the total number of allowable splits for a node drops as we move
from one layer to the next.
the number of allowable splits eventually reduces to zero
the nodes are terminal when they are not divided further
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Stopping Rules and Tree Pruning

The saturated tree is usually too large to be useful.

the terminal nodes are so small that we cannot make sensible
statistical inference.
this level of detail is rarely scientifically interpretable.
a minimum size of a node is set a priori.
stopping rules

Automatic Interaction Detection(AID) (Morgan and Sonquist 1963)
declares a terminal node based on the relative merit of its best split
to the quality of the root node

Breiman et al. (1984, p. 37) argued that depending on the
stopping threshold, the partitioning tends to end too soon or too
late.
pruning

find a subtree of the saturated tree that is most “predictive" of the
outcome and least vulnerable to the noise in the data.
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The computer-selected tree structure
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Interpretation

Let us examine the left node in the third layer

2,980 non-Black women who had no more than four pregnancies
The split for this group of women is based on their mothers’ use of
hormones and/or DES
If their mothers used hormones and/or DES, or the answers were
not reported, they are assigned to the left daughter node.
The right daughter node consists of those women whose mothers
did not use hormones or DES, or who reported uncertainty about
their mothers’ use.
Women with the “uncertain” answer and the missing answer are
assigned to different sides of the parent node.
We need to manually change the split.
Numerically, the goodness of split, ∆, changes from 0.00176 to
0.00148.
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Revised tree structure
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Risk profile

Who were at risk of preterm delivery?

non-Black women who have four or fewer prior pregnancies and
whose mothers used DES and/or other hormones are at highest
risk
19.4% of these women have preterm deliveries as opposed to
3.8% whose mothers did not use DES
among Black women who are also unemployed, 11.5% had
preterm deliveries, as opposed to 5.5% among employed Black
women
employment status may just serve as a proxy for more biological
circumstances
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Regression Model

Logistic regression is a standard approach to the analysis of binary
data. For every study subject i we assume that the response Yi has the
Bernoulli distribution

P{Yi = yi} = θyi
i (1− θi)

1−yi , yi = 0, 1, i = 1, . . . , n,

where the parameters
θ = (θ1, . . . , θn)′

must be estimated from the data. Here, a prime denotes the transpose
of a vector or matrix.
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Link Function

To model these data, we generally attempt to reduce the n parameters
in θ to fewer degrees of freedom. The unique feature of logistic
regression is to accomplish this by introducing the logit link function:

θi =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
,

where
β = (β0, β1, . . . , βp)′

is the new (p + 1)-vector of parameters to be estimated and
(xi1, . . . , xip) are the values of the p covariates included in the model for
the ith subject (i = 1, . . . , n).
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Likelihood

To estimate β, we make use of the likelihood function

L(β; y)

=

n∏
i=1

[
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)

]yi
[

1
1 + exp(β0 +

∑p
j=1 βjxij)

]1−yi

=

∏
yi=1 exp(β0 +

∑p
j=1 βjxij)∏n

i=1[1 + exp(β0 +
∑p

j=1 βjxij)]
.

By maximizing L(β; y), we obtain the maximum likelihood estimate β̂ of
β.
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Odds Ratio

The odds that the ith subject has an abnormal condition is

θi

1− θi
= exp(β0 +

p∑
j=1

βjxij).

Consider two individuals i and k for whom xi1 = 1, xk1 = 0, and xij = xkj

for j = 2, . . . , p. Then, the odds ratio for subjects i and k to be abnormal
is

θi/(1− θi)

θk/(1− θk)
= exp(β1).

Taking the logarithm of both sides, we see that β1 is the log odds ratio
of the response resulting from two such subjects when their first
covariate differs by one unit and the other covariates are the same.
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Revisit of the Pregnancy Example

Three predictors, x2 (marital status), x3 (race), and x12 (hormones/DES
use), are nominal and have five levels.
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Dummy Variable for Marital Status

Let

z1 =

{
1 if a subject was currently married,
0 otherwise,

z2 =

{
1 if a subject was divorced,
0 otherwise,

z3 =

{
1 if a subject was separated,
0 otherwise,

z4 =

{
1 if a subject was widowed,
0 otherwise.
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Dummy Variable for Race

z5 =

{
1 for a Caucasian,
0 otherwise,

z6 =

{
1 for an African-American,
0 otherwise,

z7 =

{
1 for a Hispanic,
0 otherwise,

z8 =

{
1 for an Asian,
0 otherwise,
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Dummy Variable for Hormones or DES

z9 =

{
1 if a subject’s mother did not use hormones or DES,
0 otherwise,

z10 =

{
1 if a subject’s mother used hormones only,
0 otherwise,

z11 =

{
1 if a subject’s mother used DES only,
0 otherwise,

z12 =

{
1 if a subject’s mother used both hormones and DES,
0 otherwise.
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Variable Selection

Table: MLE for an Initially Selected Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.172 0.6912 0.0017
x1(age) 1 0.046 0.0218 0.0356

z6(Black) 1 0.771 0.2296 0.0008
x6(educ.) 1 −0.159 0.0501 0.0015

z10(horm.) 1 1.794 0.5744 0.0018

The model selection is based on the observations with complete
information in all predictors even though fewer predictors are
considered in later steps.
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Variable Selection

x7 (employment) and x8 (smoking) were not selected and had most of
the missing data, and hence removed from the selection.

Table: MLE for a Revised Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.334 0.4583 0.0001
x6(educ.) 1 −0.076 0.0313 0.0151
z6(Black) 1 0.705 0.1688 0.0001
x11(grav.) 1 0.114 0.0466 0.0142

z10(horm.) 1 1.535 0.4999 0.0021
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Final Model

Table: MLE for the Final Model

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.344 0.4584 0.0001
x6(educ.) 1 −0.076 0.0313 0.0156
z6(Black) 1 0.699 0.1688 0.0001
x11(grav.) 1 0.115 0.0466 0.0137

z10 (horm.) 1 1.539 0.4999 0.0021
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Comparison of the Initial and Final Fits

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.334 0.4583 0.0001
x6(educ.) 1 −0.076 0.0313 0.0151
z6(Black) 1 0.705 0.1688 0.0001
x11(grav.) 1 0.114 0.0466 0.0142

z10(horm.) 1 1.535 0.4999 0.0021
Intercept 1 −2.344 0.4584 0.0001
x6(educ.) 1 −0.076 0.0313 0.0156
z6(Black) 1 0.699 0.1688 0.0001
x11(grav.) 1 0.115 0.0466 0.0137

z10 (horm.) 1 1.539 0.4999 0.0021
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Interactions

Two-way interactions between the selected variables were
examined.
The backward stepwise procedure was run again.
No interaction terms were significant at the level of 0.05.
The final model does not include any interaction.
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Interpretation

The odds ratio for a Black woman (z6) to deliver a premature infant
is doubled relative to that for a White woman, because the
corresponding odds ratio equals exp(0.699) ≈ 2.013..
The use of DES by the mother of the pregnant woman (z10) has a
significant and enormous effect on the preterm delivery.
Years of education (x6), however, seems to have a small, but
significant, protective effect.
Finally, the number of previous pregnancies (x11) has a significant,
but low-magnitude negative effect on the preterm delivery.
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Interpretation

The odds ratio for a Black woman (z6) to deliver a premature infant
is doubled relative to that for a White woman, because the
corresponding odds ratio equals exp(0.699) ≈ 2.013.

The use of DES by the mother of the pregnant woman (z10) has a
significant and enormous effect on the preterm delivery.
Years of education (x6), however, seems to have a small, but
significant, protective effect.
Finally, the number of previous pregnancies (x11) has a significant,
but low-magnitude negative effect on the preterm delivery.
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Impact of Missing Data

Selected Degrees of Coefficient Standard
variable freedom Estimate Error p-value

Intercept 1 −2.172 0.6912 0.0017
x1(age) 1 0.046 0.0218 0.0356

z6(Black) 1 0.771 0.2296 0.0008
x6(educ.) 1 −0.159 0.0501 0.0015

z10(horm.) 1 1.794 0.5744 0.0018
Intercept 1 −2.344 0.4584 0.0001
x6(educ.) 1 −0.076 0.0313 0.0156
z6(Black) 1 0.699 0.1688 0.0001
x11(grav.) 1 0.115 0.0466 0.0137

z10 (horm.) 1 1.539 0.4999 0.0021
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Impact of Missing Data

Missing data may lead to serious loss of information.
We may end up with imprecise or even false conclusions.
Variables change in the selected models.
The estimated coefficients can be notably different.
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Predictive Performance

false-positive errors
false-negative errors
receiver operating characteristic (ROC) curve plots true-positive
probability (y-axis) against false-positive probability (x-axis)
true positive probability: sensitivity
true negative probability: specificity
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The computer-selected tree structure
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Node Impurity

Intuitively, the least impure node should have only one class of
outcome (i.e., IP{Y = 1 | τ} = 0 or 1), and its impurity is zero.
Node τ is most impure when IP{Y = 1 | τ} = 1

2 .

The impurity function has a concave shape and can be formally
defined as

i(τ) = φ({Y = 1 | τ}),

where the function φ has the properties (i) φ ≥ 0 and (ii) for any
p ∈ (0, 1), φ(p) = φ(1− p) and φ(0) = φ(1) < φ(p).
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Common Choices of Node Impurity

φ(p) = min(p, 1− p), (Bayes or the minimum error)
φ(p) = −p log(p)− (1− p) log(1− p), (entropy)
φ(p) = p(1− p), (Gini index)

where 0 log 0 = 0.
Devroye et al. (1996, p. 29) call these φ’s the F-errors.
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Impurity Functions
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Entropy and Likelihood

Suppose that Y in node τL follows a binomial distribution with a
frequency of θ, namely,

IP{Y = 1 | τL} = θ.

The log-likelihood function from the n1· observations in node τL is

n11 log(θ) + n12 log(1− θ).

The maximum of this log-likelihood function is

n11 log
(

n11

n1·

)
+ n12 log

(
n12

n1·

)
,

which is proportional to the entropy.
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Determination of Terminal Nodes

For a tree T we define

R(T ) =
∑
τ∈T̃

IP{τ}r(τ),

where T̃ is the set of terminal nodes of T .
r(τ) measures a certain quality of node τ. It is similar to the sum
of the squared residuals in the linear regression.
The purpose of pruning is to select the best subtree, T ∗, of an
initially saturated tree, T0, such that R(T ) is minimized.
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Misclassification Cost

Let c(i|j) be a unit misclassification cost that a class j subject is
classified as a class i subject.
When i = j, we have the correct classification and the cost should
naturally be zero, i.e., c(i|i) = 0.

Without loss of generality we can set c(1|0) = 1.

The clinicians and the statisticians need to work together to gauge
the relative cost of c(0|1).
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Misclassification Cost

Assumed Node number
Class 1 2 3 4 5

c(0|1) 1 3656 640 3016 187 453
1 0 205 70 135 11 59

10 0 2050 700 1350 110 590
18 0 3690 1260 2430 198 1062
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Class Assignment

Node τ is assigned class j if∑
i

[c(j|i)IP{Y = i | τ}] ≤
∑

i

[c(1− j|i)IP{Y = i | τ}].

For example, when c(0|1) = 10, it means that one false-negative error
counts as many as ten false-positive ones. The cost is 3656 if the root
node is assigned class 1. It becomes 225× 10 = 2250 if the root node
is assigned class 0. Therefore, the root node should be assigned class
0 for 2250 < 3656.
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Use of r(τ) for Splitting?

It is usually difficult to assign the cost function before any tree is grown.
As a matter of fact, the assignment can still be challenging even when
a tree profile is given.
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Resubstitution Estimates of Misclassification Cost

Unit cost: c(0|1) = 10)
Node Node Weight Within-node Cost

number class IP{τ} cost r(τ) Rs(τ)

1 0 3861
3861

10∗205
3861

2050
3861 = 0.531

2 1 710
3861

1∗640
710

640
3861 = 0.166

3 0 3151
3861

10∗135
3151

1350
3861 = 0.35

4 0 198
3861

10∗11
198

110
3861 = 0.028

5 1 506
3861

1∗453
506

453
3861 = 0.117
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Caveat of Resubstitution Estimates

Let Rs(τ) denote the resubstitution estimate of the
misclassification cost for node τ.
The resubstitution estimates generally underestimate the cost.
If we have an independent data set, we can assign the new
subjects to various nodes of the tree and calculate the cost based
on these new subjects. This cost tends to be higher than the
resubstitution estimate, because the split criteria are somehow
related to the cost, and as a result, the resubstitution estimate of
misclassification cost is usually overoptimistic.
In some applications, such an independent data set, called a test
sample or validation set, is available.
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Cost–Complexity

Rα(T ) = R(T ) + α|T̃ |,

where α (≥ 0) is the complexity parameter and |T̃ | is the number of
terminal nodes in T .
The use of tree cost-complexity allows us to construct a sequence of
nested “essential” subtrees from any given tree T so that we can
examine the properties of these subtrees and make a selection from
them.
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Cost–Complexity

Let T0, be the five-node tree. The cost for T0 is
0.350 + 0.028 + 0.117 = 0.495 and its complexity is 3. Thus, its
cost-complexity is 0.495 + 3α for a given complexity parameter α.
Is there a subtree of T0 that has a smaller cost-complexity?

Theorem
(Breiman et al. 1984, Section 3.3) For any value of the complexity
parameter α, there is a unique smallest subtree of T0 that minimizes
the cost-complexity.
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Cost–Complexity

We cannot have two subtrees of the smallest size and of the same
cost-complexity.
This smallest subtree is referred to as the optimal subtree with
respect to the complexity parameter.
When α = 0, the optimal subtree is T0 itself.
What are the other subtrees and their complexities?

Heping Zhang (C2S2, Yale University) UHK and NENU 71 / 186



Cost–Complexity

We can always choose α large enough that the corresponding
optimal subtree is the single-node tree.
When α ≥ 0.018, T2 (the root node tree) becomes the optimal
subtree, because

R0.018(T2) = 0.531 + 0.018 ∗ 1 = 0.495 + 0.018 ∗ 3 = R0.018(T0)

and

R0.018(T2) = 0.531 + 0.018 ∗ 1 < 0.516 + 0.018 ∗ 2 = R0.018(T1).

Although R0.018(T2) = R0.018(T0), T2 is the optimal subtree, because
it is smaller than T0.

This calculation confirms the theorem that we do not have two
subtrees of the smallest size and of the same cost-complexity.
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Cost–Complexity

T1 is not an optimal subtree for any α.
T0 is the optimal subtree for any α ∈ [0, 0.018) and T2 is the optimal
subtree when α ∈ [0.018,∞).

Not all subtrees are optimal with respect to a complexity
parameter.
Although the complexity parameter takes a continuous range of
values, we have only a finite number of subtrees.
An optimal subtree is optimal for an interval range of the
complexity parameter, and the number of such intervals has to be
finite.
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Nested Optimal Subtrees

We derive the first positive threshold parameter, α1, for this tree by
comparing the resubstitution misclassification cost of an internal
node to the sum of the resubstitution misclassification costs of its
offspring terminal nodes.
Note the sum of the resubstitution misclassification costs of its
offspring terminal nodes denoted by Rs(T̃τ ) for a node τ.
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Nested Optimal Trees
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Cost–Complexity Parameter

Node Rs(τ) Rs(T̃τ ) |T̃τ | α

9 0.290 0.290 1
8 0.006 0.006 1
7 0.040 0.040 1
6 0.306 0.296 2 0.010
5 0.117 0.117 1
4 0.028 0.028 1
3 0.350 0.336 3 0.007
2 0.166 0.145 2 0.021
1 0.531 0.481 5 0.013

Minimum 0.007
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Cost–Complexity Parameter

The cost of node 3 per se is Rs(3) = 1350/3861 = 0.350.

It is the ancestor of terminal nodes 7, 8, and 9. The units of
misclassification cost within these three terminal nodes are
respectively 154, 25, and 1120. Hence,
Rs(T̃3) = (154 + 25 + 1120)/3861 = 0.336.

The difference between Rs(3) and Rs(T̃3) is 0.350− 0.336 = 0.014.

The difference in complexity between node 3 alone and its three
offspring terminal nodes is 3− 1 = 2.

On average, an additional terminal node reduces the cost by
0.014/2 = 0.007.
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Consequence of Pruning

If we cut the offspring nodes of the root node, we have the
root-node tree whose cost-complexity is 0.531 + α.

For it to have the same cost-complexity as the initial nine-node
tree, we need 0.481 + 5α = 0.531 + α, giving α = 0.013.
How about changing node 2 to a terminal node?

The initial nine-node tree is compared with a seven-node subtree,
consisting of nodes 1 to 3, and 6 to 9.
For the new subtree to have the same cost-complexity as the initial
tree, we find α = 0.021.

In fact, for any internal node, τ 6∈ T̃ , the value of α is precisely

Rs(τ)− Rs(T̃τ )

|T̃τ | − 1
.

The first positive threshold parameter, α1, is the smallest α over
the |T̃ | − 1 internal nodes.
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A Pruned Tree

Using α1 we change an internal node τ to a terminal node when

Rs(τ) + α1 ≤ Rs(T̃τ ) + α1|T̃τ |

until this is not possible. This pruning process results in the optimal
subtree corresponding to α1.
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Nested Optimal Subtrees

After pruning the tree using the first threshold, we seek the
second threshold complexity parameter, α2.

We knew from our previous discussion that α2 = 0.018 and its
optimal subtree is the root-node tree. No more thresholds need to
be found from here, because the root-node tree is the smallest
one.
In general, suppose that we end up with m thresholds,
0 < α1 < α2 < · · · < αm, and let α0 = 0.

Let the corresponding optimal subtrees be
Tα0 ⊃ Tα1 ⊃ Tα2 ⊃ · · · ⊃ Tαm , where Tα1 ⊃ Tα2 means that Tα2 is a
subtree of Tα1 .

Heping Zhang (C2S2, Yale University) UHK and NENU 80 / 186



Nested Optimal Subtrees

Theorem
If α1 > α2, the optimal subtree corresponding to α1 is a subtree of the
optimal subtree corresponding to α2.

What’s next?
We need a good estimate of R(Tαk) (k = 0, 1, . . . ,m), namely, the
misclassification costs of the subtrees.
We will select the one with the smallest misclassification cost.
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Select the Optimal Subtree

When a test sample is available, estimating R(T ) for any subtree
T is straightforward, because we only need to apply the subtrees
to the test sample.
Difficulty arises when we do not have a test sample.
The cross-validation process is generally used by creating artificial
test samples.
Divide the entire study sample into a number of pieces, usually 5,
10, or 25 corresponding to 5-, 10-, or 25-fold cross-validation,
respectively.
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Cross-validation
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Cross-validation

Randomly divide the 3861 women into five groups: 1 to 5. Group
1 has 773 women and each of the rest contains 772 women.
Let L(−i) be the sample set including all but those subjects in
group i, i = 1, . . . , 5.

Using the 3088 women in L(−1), produce another large tree, say
T(−1), in the same way as we did using all 3861 women.
Take each αk from the sequence of complexity parameters as has
already been derived above and obtain the optimal subtree,
T(−1),k, of T(−1) corresponding to αk.

We have a sequence of the optimal subtrees of T(−1), i.e.,
{T(−1),k}m

0 .

Using group 1 as a test sample relative to L(−1), we have an
unbiased estimate, Rts(T(−1),k), of R(T(−1),k).
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Cross-validation

Because T(−1),k is related to Tαk through the same αk, Rts(T(−1),k)
can be regarded as a cross-validation estimate of R(Tαk).

Using L(−i) as the learning sample and the data in group i as the
test sample, we also have Rts(T(−i),k), (i = 2, . . . , 5) as the
cross-validation estimate of R(Tαk).

The final cross-validation estimate, Rcv(Tαk), of R(Tαk) follows from
averaging Rts(T(−i),k) over i = 1, . . . , 5.
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Cross-validation

The subtree corresponding to the smallest Rcv is obviously
desirable.
The cross-validation estimates generally have substantial
variabilities.
Breiman et al. (1984) proposed a revised strategy to select the
final tree, which takes into account the standard errors of the
cross-validation estimates.

Let SEk be the standard error for Rcv(Tαk ).
Suppose that Rcv(Tαk∗ ) is the smallest among all Rcv(Tαk )’s.
The revised selection rule selects the smallest subtree whose
cross-validation estimate is within a prespecified range of Rcv(Tαk∗ ),
which is usually defined by one unit of SEk∗ . This is the so-called
1-SE rule.

Empirical evidence suggests that the tree selected with the 1-SE
rule is often superior to the one selected with the 0-SE rule.
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Cross-validation

Every subject in the entire study sample was used once as a
testing subject and was assigned a class membership m + 1 times
through the sequence of m + 1 subtrees built upon the
corresponding learning sample.
Let Ci,k be the misclassification cost incurred for the ith subject
while it was a testing subject and the classification rule was based
on the kth subtree, i = 1, . . . , n, k = 0, 1, . . . ,m.

Rcv(Tαk) =
∑

j=0,1 IP{Y = j}C̄k|j, where C̄k|j is the average of Ci,k

over the set Sj of the subjects whose response is j (i.e., Y = j).
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Cross-validation

Ci,k’s are likely to be correlated with each other, because Ci,k is the
cost from the same subject (the ith one) while the subtree (the kth
one) varies.
For convenience, however, they are treated as if they were not
correlated.
The sample variance of each C̄k|j is

1
n2

j

∑
i∈Sj

C2
i,k − njC̄2

k|j

 .

The heuristic standard error for Rcv(Tαk) is given by

SEk =

∑
j=0,1

(
IP{Y = j}

nj

)2

(
∑
i∈Sj

C2
i,k − njC̄2

k|j)


1/2

.
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An Initial with C(0|1) = 10

 

Heping Zhang (C2S2, Yale University) UHK and NENU 89 / 186



Cross-validation estimates of MC

5- and 10-fold estimates are respectively indicated by • and +. Also
plotted along the estimates are the intervals of length of two SEs..
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Interpretation

The 1-SE rule selects the root-node subtree.
The risk factors considered here may not have enough predictive
power to stand out and pass the cross-validation.
This statement is obviously relative to the selected unit cost
C(0|1) = 10.

When we used C(0|1) = 18 and performed a 5-fold
cross-validation, the final tree was different.
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An Alternative Pruning Approach

The choice of the penalty for a false-negative error, C(0|1) = 10, is
vital to the selection of the final tree structure.
In many secondary analyses, however, the purpose is mainly to
explore the data structure and to generate hypotheses.
It would be convenient to proceed with the analysis without
assigning the unit of misclassification cost.
Sometimes we cannot hold trees to a fixed algorithm.
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An Alternative Pruning Approach

After the large tree T is grown, assign a statistic Sτ to each
internal node τ from the bottom up.
Align these statistics in increasing order as

Sτ1 ≤ Sτ2 ≤ · · · ≤ Sτ|T̃ |−1
.

Select a threshold level and change an internal node to a terminal
one if its statistic is less than the threshold level.
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An Alternative Pruning Approach

Locate the smallest Sτ over all internal nodes and prune the
offspring of the highest node(s) that reaches this minimum.
What remains is the first subtree.
Repeat the same process until the subtree contains the root node
only.
As the process continues, a sequence of nested subtrees,
T1, . . . , Tm, will be produced. To select a threshold value, we make
a plot of minτ∈Ti−T̃i

Sτ versus |T̃i|, i.e., the minimal statistic of a
subtree against its size.
Look for a possible “kink” in this plot where the pattern changes.
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A Roughly Pruned Tree
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Maximum Statistic

Term Preterm
Left Node 640 70 710

Right Node 3016 135 3151
3656 205 3861

Relative risk (RR) of preterm as (70/710)/(135/3151) = 2.3.

The standard error for the log RR is approximately√
1/70− 1/710 + 1/135− 1/3151 = 0.141.

The Studentized log relative risk is 0.833/0.141 = 5.91.
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Statistics for Internal Nodes

Node # 1 2 3 4 5
Raw Statistic 5.91 2.29 3.72 1.52 3.64
Max. Statistic 5.91 2.29 3.72 1.94 3.64

Node # 6 7 8 9 10
Raw Statistic 1.69 1.47 1.35 1.94 1.60
Max. Statistic 1.69 1.94 1.94 1.94 1.60

For each internal node we replace the raw statistic with the
maximum of the raw statistics over its offspring internal nodes if
the latter is greater.
For instance, the raw value 1.52 is replaced with 1.94 for node 4;
The maximum statistic has seven distinct values: 1.60, 1.69, 1.94,
2.29, 3.64, 3.72, and 5.91, each of which results in a subtree.
We have a sequence of eight nested subtrees.

Heping Zhang (C2S2, Yale University) UHK and NENU 97 / 186



The First Subtree
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The Next Two Subtrees
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The Next Four Subtrees
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Tree Size vs Internal Node Statistics
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Tree-Based vs Logistic Regression

The area under the curve is 0.622 for the tree-based model and 0.637
for the logistic model
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Use of Both Tree-Based and Logistic Regression:
Approach I

Take the linear equation derived from the logistic regression as a
new predictor.
In the present application, the new predictor is defined as
x16 = −2.344− 0.076x6 + 0.699z6 + 0.115x11 + 1.539z10.
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The Final Tree

The equation from the logistic regression is used.
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Conclusion

Education shows a protective effect, particularly for those with
college or higher education.
Age has merged as a risk factor. In the fertility literature, whether
a women is at least 35 years old is a common standard for
pregnancy screening.
The risk of delivering preterm babies is not monotonic with respect
to the combined score x16.

The risk is lower when −2.837 < x16 ≤ −2.299 than when
−2.299 < x16 ≤ −2.062.
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Use of Both Tree-Based and Logistic Regression:
Approach II

Run the logistic regression after a tree is grown.
Create five dummy variables, each of which corresponds to one of
the five terminal nodes.

Variable label Specification
z13 Black, unemployed
z14 Black, employed
z15 non-Black, ≤ 4 pregnancies, DES not used
z16 non-Black, ≤ 4 pregnancies, DES used
z17 non-Black, > 4 pregnancies
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Use of Both Tree-Based and Logistic Regression:
Approach II

Include these five dummy variables, z13 to z17, in addition to the 15
predictors, x1 to x15.

Rebuild a logistic regression model.

θ̂ =
exp(−1.341− 0.071x6 − 0.885z15 + 1.016z16)

1 + exp(−1.341− 0.071x6 − 0.885z15 + 1.016z16)
.

It is very similar to the previous equation.
The variables z15 and z16 are an interactive version of z6, x11, and z10.
The coefficient for x6 is nearly intact.
The area under the new curve is 0.642, which is narrowly higher
than 0.639.
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Comparison of ROC Curves

dotted: tree; solid: logistic regression model; short-dashed: hybrid I;
long-dashed: hybrid II
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Missing Data

Surrogate splits (Breiman et al. 1984, Section 5.3)
Imputation (Little and Rubin 1987).
Missings Together (Clark and Pregibon 1992)
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Missing Data

For missings together and imputation, no need to change the tree
algorithm.
For imputation, missing data can be imputed and entered into
trees as observed.
For missings together, we create a new “level” for missing values.

Simple to implement and understand.
Easy to trace where the subjects with missing information.
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Surrogate Splits

Surrogate splits attempt to utilize the information in other
predictors to assist us in splitting when the splitting variable, say,
race, is missing.
The idea to look for a predictor that is most similar to race in
classifying the subjects.
One measure of similarity between two splits suggested by
Breiman et al. (1984) is the coincidence probability that the two
splits send a subject to the same node.
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Coincidence Probability

The 2× 2 table below compares the split of “is age > 35?” with the
selected race split.

Black Others
Age ≤ 35 702 8
Age > 35 3017 134

702+134=836 of 3861 subjects are sent to the same node, and
hence 836/3861 = 0.217 can be used as an estimate for the
coincidence probability of these two splits.
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Coincidence Probability

In general, prior information should be incorporated in estimating
the coincidence probability when the subjects are not randomly
drawn from a general population, such as in case–control studies.
We estimate the coincidence probability with

IP{Y = 0}M0(τ)/N0(τ) + IP{Y = 1}M1(τ)/N1(τ),

where Nj(τ) is the total number of class j subjects in node τ and
Mj(τ) is the number of class j subjects in node τ that are sent to
the same daughters by the two splits; here j = 0 (normal) and
1(abnormal). IP{Y = 0} and IP{Y = 1} are the priors to be
specified. Usually, IP{Y = 1} is the prevalence rate of a disease
under investigation and IP{Y = 0} = 1− IP{Y = 1}.
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The Best Surrogate Split

For any split s∗, split s′ is the best surrogate split of s∗ when s′ yields
the greatest coincidence probability with s∗ over all allowable splits
based on different predictors.
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Surrogate Split

It is possible that the predictor that yields the best surrogate split
may also be missing.
We have to look for the second best, and so on.
If our purpose is to build an automatic classification rule (e.g.,
Goldman et al., 1982, 1996), it is not difficult for a computer to
keep track of the list of surrogate splits.
However, the same task may not be easy for humans.
Surrogate splits are rarely published in the literature.
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Surrogate Split

There is no guarantee that surrogate splits improve the predictive
power of a particular split as compared to a random split. In such
cases, the surrogate splits should be discarded.
If surrogate splits are used, the user should take full advantage of
them. They may provide alternative tree structures that in principle
can have a lower misclassification cost than the final tree,
because the final tree is selected in a stepwise manner and is not
necessarily a local optimizer in any sense.
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Tree Stability

If we take a random sample of 3861 with replacement from the
Yale Pregnancy Outcome Study, what is the chance that we come
to the same tree as the original one?
This chance is not so great, as all stepwise model selections
potentially suffer from the same problem.
While the trees structures are instable, the trees could provide
very similar classifications and predictions.
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Tree for Treatment Effectiveness

In a typical randomized clinical trial, different treatments (say two
treatments) are compared in a study population, and the effectiveness
of the treatments is assessed by averaging the effects over the
treatment arms. However, it is possible that the on-average inferior
treatment is superior in some of the patients. The trees provide a
useful framework to explore this possibility by identifying patient groups
within which the treatment effectiveness varies the greatest among the
treatment arms.

Heping Zhang (C2S2, Yale University) UHK and NENU 118 / 186



Splitting Criterion

We need to replace the impurity with the Kullback–Leibler
divergence (Kullback and Leibler 1951).
Let py,i(t) = P(Y = y|t,Trt = i) be the probability that the response
is y when a patient in node t received the i-th treatment. Then, the
Kullback–Leibler divergence within node t is

∑
y py,1 log(py,1/py,2).

Note that the Kullback–Leibler divergence is not symmetric with
respect to the role of py,1 and py,2, but it is easy to symmetrize it as
follows:

DKL(t) =
∑

y

py,1 log(py,1/py,2) +
∑

y

py,2 log(py,2/py,1).

A simpler and more direct measure is the difference

DIFF(t) =
∑

y

(py,1 − py,2)2.
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Splitting Criterion

It is noteworthy that neither DKL nor DIFF is a distance metric and
hence does not possess the property of triangle inequality.
Consequently, the result does not necessarily improve as we split a
parent node into offspring nodes.
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Limitations of Trees

Tree-based data analyses are readily interpretable.
Tree-based methods have their limitations.

Tree structure is prone to instability even with minor data
perturbations.
To leverage the richness of a data set of massive size, we need to
broaden the classic statistical view of “one parsimonious model" for
a given data set.
Due to the adaptive nature of the tree construction, theoretical
inference based on a tree is usually not feasible. Generating more
trees may provide an empirical solution to statistical inference.
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Random Forests

Forests have emerged as an ideal solution.
A forest refers to a constellation of any number of tree models.
Such an approach is also referred to as an ensemble.
A forest consists of hundreds or thousands of trees, so it is more
stable and less prone to prediction errors as a result of data
perturbations (Breiman 1996, 2001).
While each individual tree is not a good model, combining them
into a committee improves their value.
Trees in a forest should not be pruned; otherwise it would be
counterproductive to pool “good" models into a committee.
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Random Forests

Suppose we have n observations and p predictors.
1 Draw a bootstrap sample.
2 Apply recursive partitioning to the bootstrap sample. At each

node, randomly select q of the p predictors and restrict the splits
based on the random subset of the q variables. Here, q should be
much smaller than p.

3 Let the recursive partitioning run to the end and generate a tree.
4 Repeat Steps 1 to 3 to form a forest. The forest-based

classification is made by majority vote from all trees.
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Random Forests

If Step 2 is skipped, the above algorithm is called bagging
(bootstraping and aggregating) (Breiman 1996).
Bagging should not be confused with another procedure called
boosting (Freund and Schapire 1996).

One of the boosting algorithms is Adaboost, which makes use of
two sets of intervening weights.
One set, w, weighs the classification error for each observation.
The other, β, weighs the voting of the class label.
Boosting is an iterative procedure, and at each iteration, a model
(e.g., a tree) is built.
It begins with an equal w-weight for all observations.
Then, the β-weights are computed based on the w-weighted sum of
error, and w-weights are updated with β-weights.
With the updated weights, a new model is built and the process
continues.

Heping Zhang (C2S2, Yale University) UHK and NENU 124 / 186



Forest Size

How many trees do we need in a forest?
Because of so many trees in a forest, it is impractical to present a
forest or interpret a forest.
Zhang and Wang (2009): a tree is removed if its removal from the
forest has the minimal impact on the overall prediction accuracy.

Calculate the prediction accuracy of forest F, denoted by pF.
For every tree, denoted by T, in forest F, calculate the prediction
accuracy of forest F−T that excludes T, denoted by pF−T .
Let ∆−T be the difference in prediction accuracy between F and
F−T : ∆−T = pF − pF−T .
The tree Tp with the smallest ∆T is the least important one and
hence subject to removal: Tp = arg min

T∈F
(∆−T).
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Optimal Size Subforest

Let h(i), i = 1, . . . ,Nf − 1, denote the performance trajectory of a
subforest of i trees, where Nf is the size of the original random
forest.
If there is only one realization of h(i), they select the optimal size
iopt of the subforest by maximizing h(i) over i = 1, . . . ,Nf − 1:
iopt = arg max

i=1,...,Nf−1
(h(i)).

If there are M realizations of h(i), they select the optimal size
subforest by using the 1-se.
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Optimal Size Subforest

Compute the average h(i) and its standard error ˆσ(i):
h(i) = 1

M

∑
j=1,...,M hj(i), i = 1, . . . ,Nf − 1,

σ̂(i) = var(h1(i), . . . , hM(i)), i = 1, . . . ,Nf − 1.

Find the im that maximizes the average h(i) over i = 1, . . . ,Nf − 1:
im = arg max

i=1,...,Nf−1
(h(i)).

Choose the smallest subforest such that its corresponding h is
within one standard error (se) of h(im) as the optimal subforest
size iopt: iopt = min

i=1,...,M
(h(i) > (h(im)− σ̂(im)).

Heping Zhang (C2S2, Yale University) UHK and NENU 127 / 186



Breast Cancer Prognosis

van de Vijver et al. (2002): the microarray data set of a cohort of
295 young patients with breast cancer, containing expression
profiles from 70 previously selected genes.
The responses of all patients are defined by whether the patients
remained disease-free five years after their initial diagnoses or not.
To begin the process, an initial forest is constructed using the
whole data set as the training data set.
One bootstrap data set is used for execution and the out-of-bag
(oob) samples for evaluation.
Replicating the bootstrapping procedure 100 times, Zhang and
Wang (2009) found that the sizes of the optimal subforests fall in a
relatively narrow range, of which the 1st quartile, the median, and
the 3rd quartile are 13, 26, and 61, respectively. This allows them
to choose the smallest optimal subforest with the size of 7.
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Comparison of Prediction Performance

Predicted Observed outcome
Method Error rate outcome Good Poor
Initial random forest 26.0% Good 141 17

Poor 53 58
Optimal subforest 26.0% Good 146 22

Poor 48 53
Published classifier 35.3% Good 103 4

Poor 91 71
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Importance Score

Unlike a tree, a forest is generally too overwhelming to interpret.
Summarize or quantify the information in the forest, for example,
by identifying “important" predictors in the forest.
If important predictors can be identified, a random forest can also
serve as a method of variable (feature) selection.
We can utilize other simpler methods such as classification trees
by focusing on the important predictors.
How do we know a predictor is important?
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Gini Importance

During the course of building a forest, whenever a node is split
based on variable k, the reduction in Gini index from the parent
node to the two daughter nodes is added up for variable k.

Do this for all trees in the forest, giving rise to a simple variable
importance score.
Although Breiman noted that Gini importance is often very
consistent with the permutation importance measure, others found
it undesirable for being in favor of predictor variables with many
categories (see, e.g., Strobl et al. 2007).
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Depth Importance

Chen et al. (2007) introduced an importance index that is similar
to Gini importance score, but considers the location of the splitting
variable as well as its impact.
Whenever node t is split based on variable k, let L(t) be the depth
of the node and S(k, t) be the χ2 test statistic from the variable,
then 2−L(t)S(k, t) is added up for variable k over all trees in the
forest.
The depth is 1 for the root node, 2 for the offspring of the root
node, and so forth.
This depth importance measure was found useful in identifying
genetic variants for complex diseases, although it is not clear
whether it also suffers from the same end-cut preference problem.
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Permutation Importance

Also referred to as the variable importance.
For each tree in the forest, we count the number of votes cast for
the correct class.
We randomly permute the values of variable k in the oob cases
and recount the number of votes cast for the correct class in the
oob cases with the permuted values of variable k.
Average the differences between the number of votes for the
correct class in the variable-k-permuted oob data from the number
of votes for the correct class in the original oob data, over all trees
in the forest.
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Permutation Importance

Arguably the most commonly used choice.
Not necessarily positive, and does not have an upper limit.
Both the magnitudes and relative rankings of the permutation
importance for predictors can be unstable when the number, p, of
predictors is large relative to the sample size.
The magnitudes and relative rankings of the permutation
importance for predictors vary according to the number of trees in
the forest and the number, q, of variables that are randomly
selected to split a node.
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Permutation Importance
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Permutation Importance

there are conflicting numerical reports with regard to the
possibility that the permutation importance overestimates the
variable importance of highly correlated variables.
Genuer et al. (2008): specifically addressed this issue with
simulation studies and concluded that the magnitude of the
importance for a predictor steadily decreases when more variables
highly correlated with the predictor are included in the data set.
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Permutation Importance

Began with the four selected genes.
Identified the genes whose correlations with any of the four
selected genes are at least 0.4.
Those correlated genes are divided randomly in five sets of about
same size.
We added one, two, . . . , and five sets of them sequentially
together with the four selected genes as the predictors.
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Permutation Importance

The x-axis is the number of correlated sets of genes and the
y-axis the importance score.
The forest size is set at 1000.
q equals the square root of the forest size for the left panel and 8
for the right panel.
The rankings of the predictors are preserved.
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Permutation Importance

Included genes that are correlated with any of the correlated gene
at least 0.6, 0.4, and 0.2.
The ranking is more relevant than the magnitude
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Maximum Conditional Importance

Wang et al. (2010): introduced a maximal conditional chi-square
(MCC) importance by taking the maximum chi-square statistic
resulting from all splits in the forest that use the same predictor.
MCC can distinguish causal predictors from noise.
MCC can assess interactions.

Consider the interaction between two predictors xi and xj.
For xi, suppose its MCC is reached in node ti of a tree within a
forest. Whenever xj splits an ancestor of node ti, we count one and
otherwise zero.
The final frequency, f , can give us a measure of interaction
between xi and xj.
Through the replication of the forest construction we can estimate
the frequency and its precision.
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Maximum Conditional Importance

They generated 100 predictors independently, each of them is the
sum of two i.i.d. binary variables (0 or 1).
For the first 16 predictors, the underlying binary random variable
has the success probability of 0.282.
For the remaining 84, they draw a random number between 0.01
and 0.99 as the success probability of the underlying binary
random variable.
The first 16 predictors serve as the risk variables and the
remaining 84 the noise variables.
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Maximum Conditional Importance

The outcome variable is generated as follows.
The 16 risk variables are divided equally into four groups, and
without loss of generality, say sequentially.
Once these 16 risk variables are generated, we calculate the
following probability on the basis of which the response variable is
generated: w = 1−Π(1−Πqk) where the first product is with
respect to the four groups, the second product is with respect to
the first predictors inside each group, and q0 = 1.2× 10−8,
q1 = 0.79, and q2 = 1. The subscript k equals the randomly
generated value of the respective predictor.
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Maximum Conditional Importance

Generate the first 200 possible controls and the first 200 possible
cases.
This completes the generation of one data set.
Replicate the entire process 1000 times.
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Interaction Heat Map
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The x-axis is the sequence number of the primary predictor and the
y-axis the sequence number of the potential interacting predictor. The

intensity expresses the frequency when the potential interacting
predictor precedes the primary predictor in a forest.
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Impact on MCC by Correlated Predictors
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Predictors with Uncertainties

In general, we base our analysis on predictors that are observed
with certainty.
However, this is not always the case.

To identify genetic variants for complex diseases, haplotypes are
sometimes the predictors.
A haplotype is a combination of single nucleotide
polymorphisms(SNPs) on a chromatid.
Has to be statistically inferred from the SNPs in frequencies.
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Predictors with Uncertainties

We assume x1 is the only categorical variable with uncertainties,
and it has K possible levels.
For the i-th subject, xi1 = k with a probability pik (

∑K
k=1 pik = 1).

To identify genetic variants for complex diseases, haplotypes are
sometimes the predictors.
A haplotype is a combination of single nucleotide
polymorphisms(SNPs) on a chromatid.
Has to be statistically inferred from the SNPs in frequencies.
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Predictors with Uncertainties

In a typical random forest, the “working" data set is a bootstrap
sample of the original data set.
Here, a “working" data set is generated according to the
frequencies of x1 while keeping the other variables intact.
the data set would be {zi1, xi2, . . . , xip, yi}n

i=1, where zi1 is randomly
chosen from 1, . . . ,K, according to the probabilities (pi1, . . . , piK).

Once the data set is generated, the rest can be carried out in the
same way as for a typical random forest.
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Predictors with Uncertainties
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Notation

Let δ indicate whether a subject’s survival is observed (one if it is)
or censored (zero if it is not).
Let Y denote the observed time.
In the absence of censoring, the observed time is the survival
time, and hence Y = T.

Otherwise, the observed time is the censoring time, denoted by U.

Y = min(T,U) and δ = I(Y = T), where I(·) is an indicator function.
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Data Example

Smoked Time (days) Smoked Time Smoked Time
yes 11906+ yes 9389+ yes 4539+
yes 11343+ yes 9515+ yes 10048+
yes 5161 yes 9169 no 8147+
yes 11531+ yes 11403+ yes 11857+
yes 11693+ no 10587 yes 9343+
yes 11293+ yes 6351+ yes 502+
yes 7792 no 11655+ yes 9491+
yes 2482+ no 10773+ yes 11594+
no 7559+ yes 11355+ yes 2397

yes 2569+ yes 2334+ yes 11497+
yes 4882+ yes 9276 yes 703+
yes 10054 no 11875+ no 9946+
yes 11466+ no 10244+ yes 11529+
yes 8757+ no 11467+ yes 4818
yes 7790 yes 11727+ no 9552+
yes 11626+ yes 7887+ yes 11595+
yes 7677+ yes 11503 yes 10396+
yes 6444+ yes 7671+ yes 10529+
yes 11684+ yes 11355+ yes 11334+
yes 10850+ yes 6092 yes 11236+
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Survival and Hazard Function

Survival function
S(t) = IP{T > t}.

Hazard function

h(t) =
lim∆t→0 IP{T ∈ (t, t + ∆t)}/∆t

IP{T > t}
.

The hazard function is an instantaneous failure rate in the sense
that it measures the chance of an instantaneous failure per unit of
time given that an individual has survived beyond time t.
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Estimate Survival Function

Parametric Approach: distributions of survival can be assumed.
Exponential: S(t) = exp(−λt) (λ > 0), where λ is an unknown
constant.
Only need to estimate the constant hazard.
The full likelihood function

L(λ) =

60∏
i=1

[λ exp(−λTi)]
δi [exp(−λUi)]

1−δi .
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Estimate Survival Function

For the sample data, the log likelihood function

l(λ) =

60∑
i=1

{δi[log(λ)− λYi]− λ(1− δi)Yi}

= log(λ)

60∑
i=1

δi − λ
60∑

i=1

Ti

= 11 log(λ)− λ(11906 + 11343 + · · ·+ 11236),

where 11 is the number of uncensored survival times and the
summation is over all observed times.
The maximum likelihood estimate of the hazard, λ, is
λ̂ = 11

527240 = 2.05/105, which is the number of failures divided by
the total observed time.
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Validate Survival Function

Compare a parametric fit with the nonparametric Kaplan–Meier
Curve.
Plot the empirical cumulative hazard function against the assumed
theoretical cumulative hazard function at times when failures
occurred.

The cumulative hazard function is defined as H(t) =
∫ t

0 h(u)du.
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Exponential and Kaplan–Meier Curves
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Cumulative Hazard Functions

Survival Risk set Failures Hazard rate Cumulative hazard
time K d d/K Empirical Assumed

2397 57 1 0.0175 0.0175 0.0491
4818 53 1 0.0189 0.0364 0.0988
5161 51 1 0.0196 0.0560 0.1058
6092 50 1 0.0200 0.0760 0.1249
7790 44 1 0.0227 0.0987 0.1597
7792 43 1 0.0233 0.1220 0.1597
9169 39 1 0.0256 0.1476 0.1880
9276 38 1 0.0263 0.1740 0.1902

10054 30 1 0.0333 0.2073 0.2061
10587 26 1 0.0385 0.2458 0.2170
11503 13 1 0.0769 0.3227 0.2358
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Product Limit Estimate of Survival Function

Survival Risk set Failures Ratio Product
time K d (K − d)/K Ŝ(t)

2397 57 1 0.982 0.982
4818 53 1 0.981 0.982 ∗ 0.981 = 0.963
5161 51 1 0.980 0.963 ∗ 0.980 = 0.944
6092 50 1 0.980 0.944 ∗ 0.980 = 0.925
7790 44 1 0.977 0.925 ∗ 0.977 = 0.904
7792 43 1 0.977 0.904 ∗ 0.977 = 0.883
9169 39 1 0.974 0.883 ∗ 0.974 = 0.860
9276 38 1 0.974 0.860 ∗ 0.974 = 0.838

10054 30 1 0.967 0.838 ∗ 0.967 = 0.810
10587 26 1 0.962 0.810 ∗ 0.962 = 0.779
11503 13 1 0.923 0.779 ∗ 0.923 = 0.719
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Cumulative Hazard vs Kaplan–Meier Curve

The mechanism of producing the Kaplan–Meier curve is similar to
the generation of the empirical cumulative hazard function.
The first three columns are the same.
The fourth columns differ by one, namely, the proportion of
individuals who survived beyond the given time point.
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Log-Rank Test

In many clinical studies, a common goal is to compare the survival
distributions of various groups.
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Log-Rank Test

Peto and Peto (1972): at the distinct failure times, we have a sequence

of 2× 2 tables.

Dead Alive
Smoking ai ni

Nonsmoking
di Ki

Time Risk set Failures
Ti Ki di ai ni Ei Vi

2397 57 1 1 47 0.825 0.145
4818 53 1 1 43 0.811 0.153
5161 51 1 1 41 0.804 0.158
6092 50 1 1 40 0.800 0.160
7790 44 1 1 35 0.795 0.163
7792 43 1 1 34 0.791 0.165
9169 39 1 1 31 0.795 0.163
9276 38 1 1 30 0.789 0.166

10054 30 1 1 24 0.800 0.160
10587 26 1 0 21 0.808 0.155
11503 13 1 1 11 0.846 0.130

The log-rank test statistic is LR =
∑k

i=1(ai−Ei)√∑k
i=1 Vi

, where k is the number of

distinct failure times, Ei = dini
Ki
, and Vi =

(
di(Ki−ni)ni
Ki(Ki−1)

)(
1− di

Ki

)
.
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Log-Rank Test

Time Risk set Failures
Ti Ki di ai ni Ei Vi

2397 57 1 1 47 0.825 0.145
4818 53 1 1 43 0.811 0.153
5161 51 1 1 41 0.804 0.158
6092 50 1 1 40 0.800 0.160
7790 44 1 1 35 0.795 0.163
7792 43 1 1 34 0.791 0.165
9169 39 1 1 31 0.795 0.163
9276 38 1 1 30 0.789 0.166

10054 30 1 1 24 0.800 0.160
10587 26 1 0 21 0.808 0.155
11503 13 1 1 11 0.846 0.130

The log-rank test statistic has an asymptotic standard normal
distribution, we test the hypothesis that the two survival functions
are the same by comparing LR with the quantiles of the standard
normal distribution.
For our data, LR = 0.87, corresponding to a two-sided p-value of
0.38.
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Cox Proportional Hazard Regression

Instead of making assumptions directly on the survival times, Cox
(1972) proposed to specify the hazard function.
Suppose that we have a set of predictors x = (x1, . . . , xp).

The Cox proportional hazard model is

λ(t; x) = exp(xβ)λ0(t),

where β is a p× 1 vector of unknown parameters and λ0(t) is an
unknown function giving a baseline hazard for x = 0.
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Cox Proportional Hazard Regression

If we take two individuals i and j with covariates xi and xj, the ratio
of their hazard functions is exp((xi − xj)β), which is free of time.
The hazard functions for any two individuals are parallel in time.
λ0(t) is left to be arbitrary. Thus, the proportional hazard can be
regarded as semiparametric.
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Conditional Likelihood

Condition the likelihood on the set of uncensored times.
At any time t, let R(t) be the risk set, i.e., the individuals who were
at risk right before time t. For each uncensored time Ti, the hazard
rate is h(Ti) = IP{A death in (Ti,Ti + dt) | R(Ti)}/dt.

Under the proportional hazard model,

IP{A death in (Ti,Ti + dt) | R(Ti)} = exp(xβ)λ0(Ti)dt

and

IP{Individual i fails at Ti | one death in R(Ti) at time Ti}

=
exp(xiβ)∑

j∈R(Ti)
exp(xjβ)

.
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Conditional Likelihood

The entire conditional likelihood is the product of those by failed
individual i

L(β) =
∏

failure i

exp(xiβ)∑
j∈R(Ti)

exp(xjβ)
.

Maximizing the conditional likelihood gives rise to the estimates of
β.

β̂ has an asymptotic normal distribution.
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The Western Collaborative Group Study

A prospective and long-term study of coronary heart disease.
In 1960–61, 3154 middle-aged white males from ten large
California corporations in the San Francisco Bay Area and Los
Angeles entered the WCGS, and they were free of coronary heart
disease and cancer.
After a 33-year follow-up, 417 of 1329 deaths were due to cancer
and 43 were lost to follow-up.
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The Western Collaborative Group Study

Characteristics Descriptive Statistics
Age 46.3± 5.2 years
Education High sch. (1424), Col. (431), Grad. (1298)
Systolic blood pressure 128.6± 15.1 mmHg
Serum cholesterol 226.2± 42.9 (mg/dl)
Behavior pattern Type A (1589), type B (1565)
Smoking habits Yes (2439), No (715)
Body mass index 24.7± 2.7 (kg/m2)
Waist-to-calf ratio 2.4± 0.2
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The Western Collaborative Group Study

We entered the eight predictors into an initial Cox’s model and
used a backward stepwise procedure to delete the least significant
variable from the model at the threshold of 0.05.
coxph(Surv(time, cancer) age + chol + smoke +
wcr).
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Parameter Estimation for Cox’s Model

Variable Coefficient S.E. p-value
Age (age) 0.0934 0.009 0.000
Serum cholesterol (chol) 0.0026 0.001 0.033
Smoking habits (smoke) 0.2263 0.103 0.029
Waist-to-calf ratio (wcr) 0.7395 0.271 0.006
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Assessing Proportionality

Dichotomize age, serum cholesterol, and waist-to-calf ratio at their
median levels.
The 2882 (= 3154− 272) subjects are divided into 16 cohorts
Within each cohort i, we calculate the Kaplan–Meier survival
estimate Ŝi(t).

Plot log(− log(Ŝi(t))) versus time as shown in Figure ??.
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Assessing Proportionality
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Assessing Proportionality

h(t) = − d log(S(t))
dt , which is equivalent to S(t) = exp

(
−
∫ t

0 h(z)dz
)
.

The survival function is

S(t; x) = exp
[
−
∫ t

0
exp(xβ)λ0(z)

]
= exp

[
− exp(xβ)

∫ t

0
λ0(z)

]
. (1)

log(− log[S(t; x)]) = xβ + log
[∫ t

0 λ0(z)
]
.

The log-log survival curves in our 16 cohorts are supposed to be
parallel if the proportional hazard assumption holds.
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Gordon and Olshen’s Rule

Gordon and Olshen (1985): What would be an appropriate
measure of node impurity in the context of censored data?
We would regard a node as pure if all failures in the node occurred
at the same time.

1 1 1

0 0 0time time time

(a) (b) (c)
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Gordon and Olshen’s Rule

How far the within-node Kaplan–Meier curve deviates from any of
the curves in P.
Need first to define a distance between the two Kaplan–Meier
curves.

Lp Wasserstein metrics
[∫ 1

0 |F
−1
1 (u)− F−1

2 (u)|pdu
]1/p

, where

F−1
i (u) = min{t : Fi(t) ≥ u}, i = 1, 2.
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Wasserstein Metrics for Survival Functions

[∫ m
0 |F

−1
1 (u)− F−1

2 (u)|pdu
]1/p

, where the upper limit of the integral m is
the minimum of m1 and m2.

1

0 time

A Kaplan--Meier curve of a pure node

A generic Kaplan--Meier curve

The distance (or area)
between the two curves
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Node Impurity

i(τ) = minδS∈P dp(Sτ , δS), where Sτ is the Kaplan–Meier curve
within node τ, and the minimization minδS∈P means that Sτ is
compared with its best match among the three curves.
When p = 1, this can be viewed as the deviation of survival times
toward their median.
When p = 2, it corresponds to the variance of the Kaplan–Meier
distribution estimate of survival.
With this node impurity, we can grow a survival tree.
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Maximizing the Difference

When two daughter nodes are relatively pure, they tend to differ
from each other.
Finding two different daughters is a means to increase the
between variation and consequently to reduce the within variation.
Select a split that maximizes the “difference” between the two
daughter nodes, or, equivalently, minimizes their similarity.
Ciampi et al. (1986) and Segal (1988): The log-rank test is a
commonly used approach for testing the significance of the
difference between the survival times of two groups.
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Likelihood Functions

Davis and Anderson (1989): assume that the survival function
within any given node is an exponential function with a constant
hazard.
LeBlanc and Crowley (1992) and Ciampi et al. (1995): the hazard
functions in two daughter nodes are proportional (the full or partial
likelihood function can be used).
All individuals in node τ have the hazard λτ (t) = θτλ0(t), where
λ0(t) is the baseline hazard independent of the node and θτ is a
nonnegative parameter corresponding to exp(xβ).
Treat the value of the “covariate" as the same inside each
daughter node, hence exp(xβ) becomes a single parameter θτ .
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Likelihood Functions

The survival function of individuals in node τ is
S(t; τ) = exp[−θτΛ0(t)], where Λ0(t) is the baseline cumulative
hazard function integrated from λ0(t).

The full likelihood function within node τ as
L(θτ , λ0) =

∏
{i∈ node τ}[λ0(Ti)θτ ]δi exp[−Λ0(Ui)θτ ].

The full likelihood of the entire learning sample for a tree T can be
expressed as L(θ, λ0; T ) =

∏
τ∈T̃ L(θτ , λ0), which is the product of

the full likelihoods contributed by all terminal nodes of T .
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Likelihood Functions

Every time we partition a node into two, we need to maximize the
full tree likelihood.
Too ambitious for computation; e.g., the cumulative hazard Λ0 is
unknown and must be estimated over and over again.
As a remedy, LeBlanc and Crowley propose to use a one-step

Breslow’s (1972) estimate Λ̂0(t) =

∑
i:Yi≤t δi

|R(t)| , where the denominator
|R(t)| is the number of subjects at risk at time t.

The one-step estimate of θτ is then θ̂τ =
∑
{i∈ node τ} δi∑

{i∈ node τ} Λ̂0(Yi)
, which

can be interpreted as the number of failures divided by the
expected number of failures in node τ under the assumption of no
structure in survival times.
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A Straightforward Extension

Zhang (1995): we observe a binary death indicator, δ, and the
observed time.
Treat them as two outcomes, we can compute the within-node
impurity, iδ, of the death indicator and the within-node quadratic
loss function, iy, of the time.
Combine wδiδ + wyiy.
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Pruning a Survival Tree

Using any of the splitting criteria above, we can produce an initial
tree.
How do we prune the initial survival tree, T ?
Cost-complexity Rα(T ) = R(T ) + α|T̃ |, where R(T ) is the sum of
the costs over all terminal nodes of T .
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Random Survival Forests

Once we are able to construct a survival tree, we can use the
same method described above to construct a random survival
forest (Ishwaran et al. 2008).
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Survival Trees for the Western Collaborative Group
Study
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An initial large tree obtained by the log-rank testing statistic. The top
and bottom numbers under the node are respectively the original and

maximized values of the statistic.
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Maximum Log-rank Statistic vs. Tree Size
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