
Background Results
Data from the EHR provides the opportunity to use 

real-world and real-time information to assess 
outcomes and improve predictive models

It is estimated that 80% of healthcare data are 
unstructured sources, such as clinical notes

Extracting relevant features from unstructured 
sources is a complex process, and descriptive 
statistics about the content are not well-described

The ability to copy-forward notes within the EHR 
potentially introduces outdated, inaccurate, or 
unnecessary information

Describe the content and diversity of clinical notes 
within a large, academic healthcare system

Identify potential features that can be used for 
feature engineering in downstream models, such as 
note similarity, frequency, and distribution

All clinical notes from Yale New Haven Hospital from 
January 2014 through December2015

Notes extracted in delimited file and converted to 
JSON, then analyzed with custom Python scripts

Assessed basic descriptive statistics and lexical 
content stratified by note type, encounter type, and 
author specialty

Type−Token Ratio(TTR)=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)

 Calculated the similarity for each combination of 
H&P, ED notes, and progress notes for two patients 
to assess the feasibility of similarity analysis in free-
text notes
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 These data provide a comprehensive, descriptive 
assessment of the diversity in unstructured notes

Multiple features can be rapidly extracted which may 
be beneficial in downstream analytic models

 Future work will apply these foundational data and 
results to predictive models, such as operative risk 
scores, to assess whether unstructured content can 
improve predictive accuracy
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Number of data elements per patient

Patient Note/Visit FrequencyData Description
• Nearly 1 million unique patients
• 25 million clinical notes
• 20 note features extracted, including note text

Features for YNHH Clinical notes

Category Number 
of types

Percent of 
top 10 types

Percent
missing

Note types (progress, discharge, etc.) 121 87.4% <0.01%

Encounter types (hospital, outpatient, 
etc.) 77 95.5% <0.01%

Author specialties (IM, EM, etc.) 151 32.4% 48.0%

Data and Lexical Diversity by Top 10 Note Types

Note type % Notes Average 
#vocab

Average 
#words
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#sentence

Average 
#word 

/sentence

Forest Plot of Lexical Diversity 
by Top 10 Note Types

Progress Notes 30.9% 244.3 478 25.3 22.4

Telephone Encounter 20.8% 25.8 33.1 13.6 2.5

Plan of Care 17.1% 141.4 352.3 12 33.6

ED Notes 5.7% 36.2 52.5 4.3 12

Patient Instructions 4.9% 168.1 402.1 30.6 16

ED Provider Notes 2.6% 378.8 777 60.2 14.2

H&P 2.0% 342.9 754.8 34.3 18.4

Consult Note 1.3% 423.9 942.5 40.4 26

Discharge Summaries 1.1% 433.8 935.6 40.6 24.3

All Notes 100% 158.6 325.4 23 16.7
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1 The heatmap plot demonstrates the similarity of note content between every two notes during an admission or a period of outpatient visits. Each row/column represents an individual note. 
Darker color in the cross area shows higher similarity between the content of two notes.
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