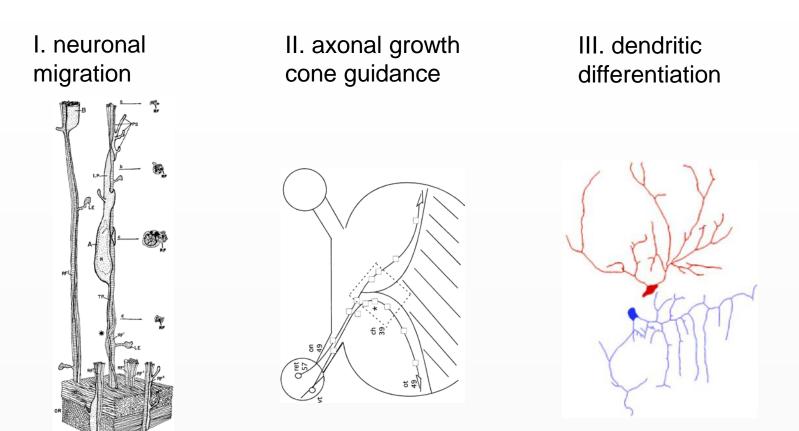
Keck/NIDA Neuroproteomics Center April 26, 2013

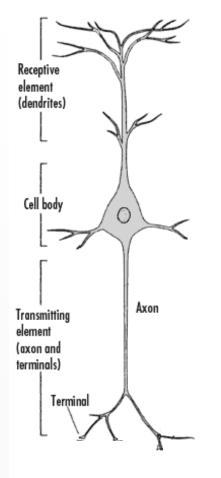
Identification and Analysis of Protein Complexes Mediating Synapse Formation

Thomas Biederer

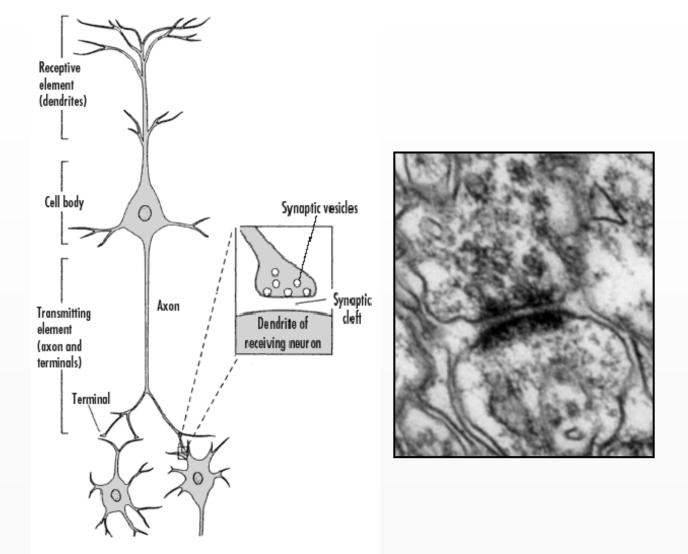

Program in Cellular Neuroscience, Neurodegeneration and Repair

Department of Molecular Biophysics & Biochemistry

Yale University



Surface interactions guide neuronal development


Rakic (1972) J Comp Neurol 145:61 Mason and Erskine (2000) *J Neurobiol* 44:260 Matthews et al. (2007) *Cell* 129:593

Synapses connect neurons

Eric R. Kandel, *In Search of Memory.* Norton, 2006

Synapses connect neurons

Eric R. Kandel, *In Search of Memory.* Norton, 2006

Fine structure of excitatory synapses

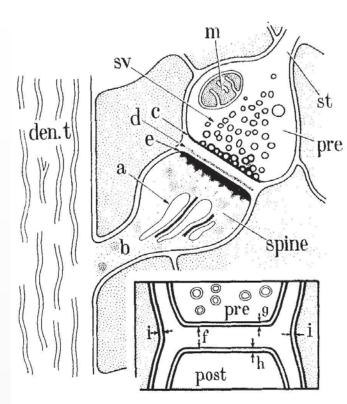
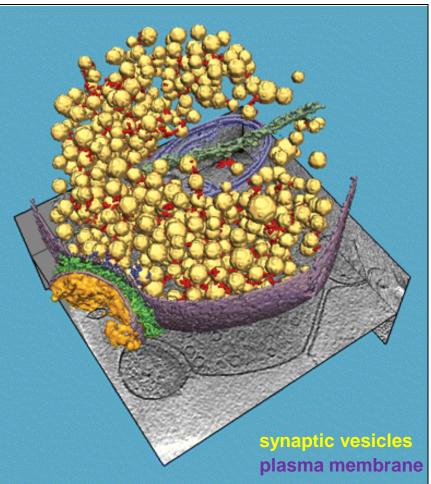



Fig. 1. Diagram of a synaptic contact on a dendritic spine, observed with the electron microscope after osmium tetroxide fixation. The stippled regions represent neuronal and glial processes of the neuropil

Inset. The opposed regions of the pre- and post-synaptic membranes seen after potassium permanganate fixation. The membranes (i) are of neighbouring processes of the neuropil cryo-electron tomographic reconstruction of the presynaptic cytomatrix:

Gray (1959) Nature 183:1592-1593.

Fernández-Busnadiego et al. (2010) *J Cell Biol* 188: 145–156.

Fine structure of excitatory synapses

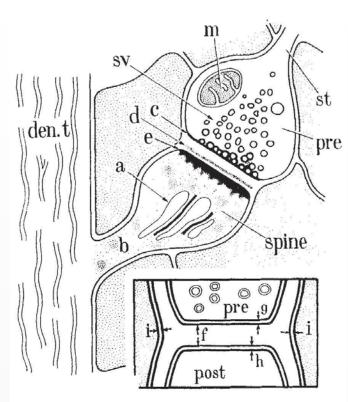
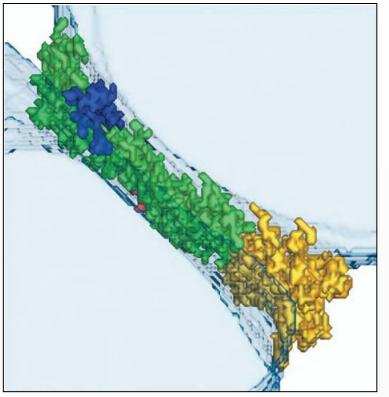
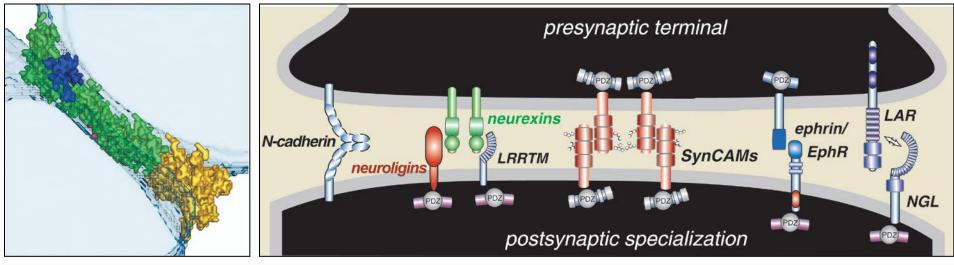
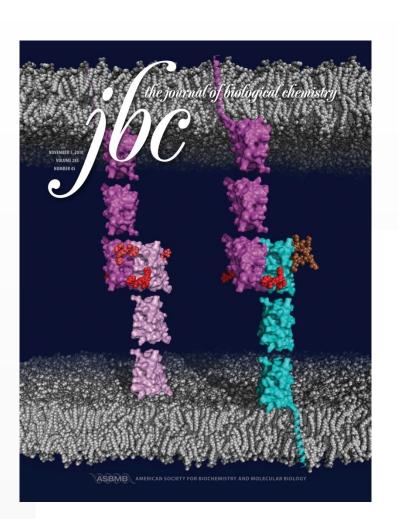
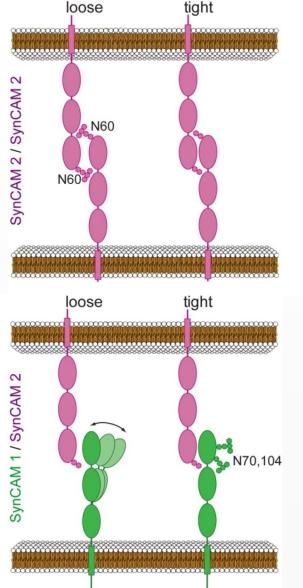



Fig. 1. Diagram of a synaptic contact on a dendritic spine, observed with the electron microscope after osmium tetroxide fixation. The stippled regions represent neuronal and glial processes of the neuropil


Inset. The opposed regions of the pre- and post-synaptic membranes seen after potassium permanganate fixation. The membranes (i) are of neighbouring processes of the neuropil cryo-electron tomographic reconstruction of the synaptic cleft:

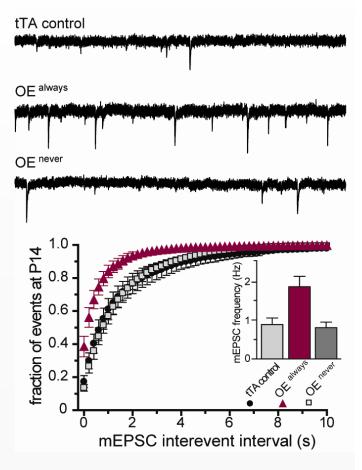
Gray (1959) Nature 183:1592-1593.


Lucic et al. (2005) Structure 13:423-434.


Select adhesion molecules span the synaptic cleft

Lucic et al. (2005) *Structure* 13:423

N-glycans differentially regulate SynCAM adhesion



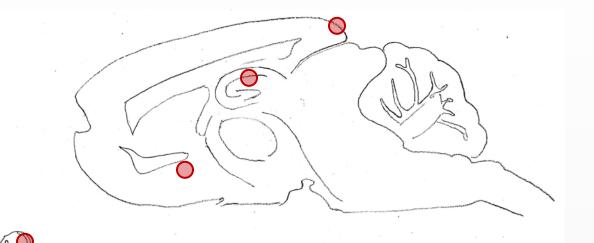
Fogel et al. (2010) J Biol Chem 285: 34864-74.Glycoproteomics with TuKiet Lam, Keck/NIDA Neuroproteomics Center

SynCAM 1 promotes functional excitatory synapses

whole cell patch recording of mEPSCs from CA3-CA1 synapses at P14:

Robbins et al. (2010) Neuron 68:894-906.

Alexander Krupp


Current studies of synapse-organizing mechanisms

hippocampus:

- molecular/cellular studies of synaptogenic mechanisms
- test hippocampus-dependent behaviors in mouse models with altered synaptogenesis

sensory cortex:

• roles of synapse-organizing mechanisms in the experience-dependent remodeling of circuits

retina:

• structural and physiological studies of synapses from EM to circuits

nucleus accumbens:

- control of excitatory input onto inhibitory neurons
- synaptic remodeling by drugs of abuse

Current studies of synapse-organizing mechanisms

hippocampus:

- molecular/cellular studies of synaptogenic mechanisms
- test hippocampus-dependent behaviors in mouse models with altered synaptogenesis

translational relevance:

• mechanistic analysis of mutations linked to developmental disorders

sensory cortex:

• roles of synapse-organizing mechanisms in the experience-dependent remodeling of circuits

translational relevance:

• insights into critical window aberrations in developmental disorders

retina:

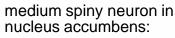
• structural and physiological studies of synapses from EM to circuits

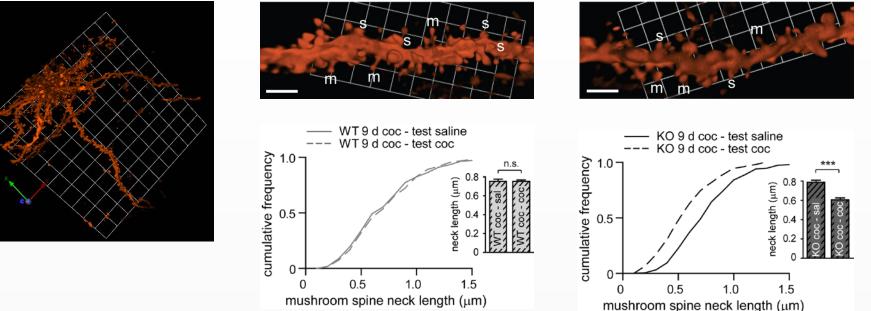
nucleus accumbens:

- control of excitatory input onto inhibitory neurons
- synaptic remodeling by drugs of abuse

translational relevance:

• synaptic alterations in addictive behaviors

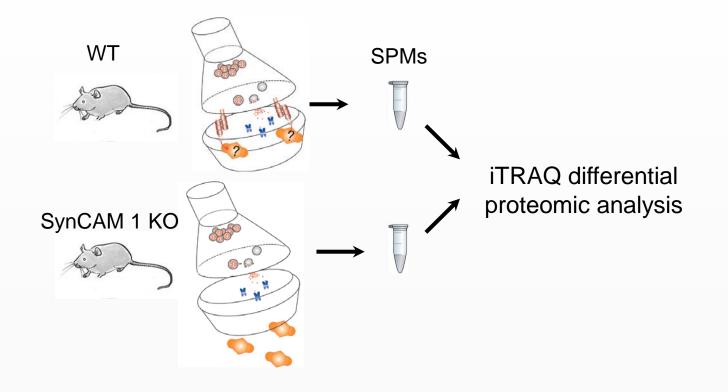

Loss of SynCAM 1 alters cocaine-induced spine structure changes in medium spiny neurons


cocaine-withdrawn SynCAM 1 KO

after cocaine challenge

cocaine-withdrawn wild-type

after cocaine challenge

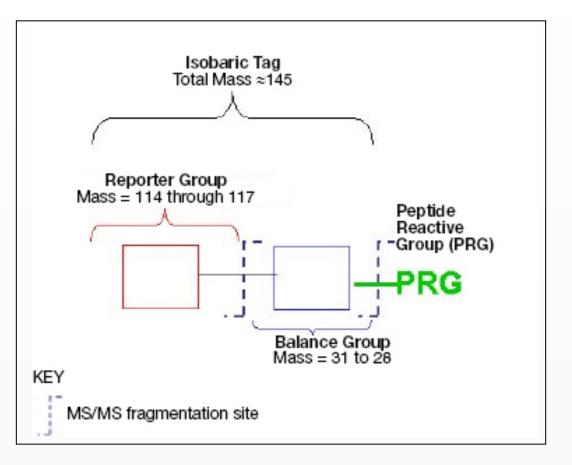

synapse-organizing adhesion molecules can modulate cocaine effects on spine structures in nucleus accumbens and vulnerability to behavioral actions of cocaine
spines of medium spiny neurons show previously unknown structural responses to cocaine

Giza et al. (2013) Neuropsychopharmacology 38:628-638.

1. Proteomic studies of postsynaptic signaling

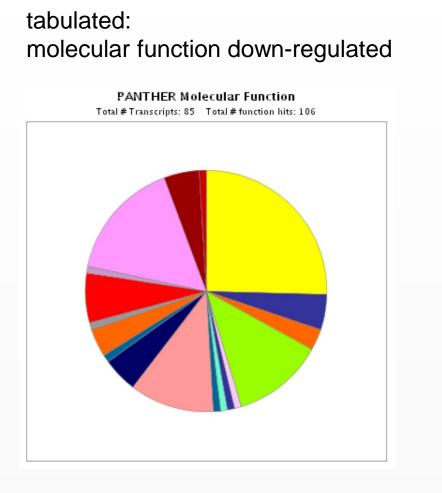
2. Identify novel signaling molecules that underlie concerted actions of synapse-organizing proteins

A proteomic screen for synaptogenic signaling proteins


Proteomic analysis of synaptic composition by iTRAQ

synaptic plasma membrane proteins:

iTRAQ analysis of preparations from SynCAM 1 knock-out brains vs. controls after isobaric tag labeling


multiplexing of four different samples in a single LC/MS/MS experiment

relationships can be quantified by comparing the MS peak area of one reporter group peak to another

from: Applied Biosystems iTRAQ Reference Guide

Synaptic plasma membranes lacking SynCAM 1 display altered protein composition

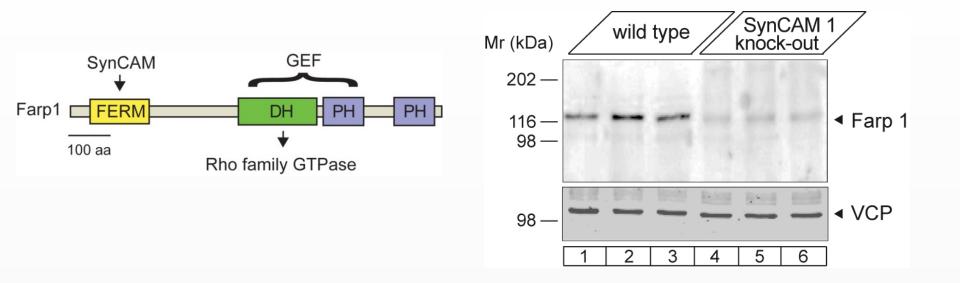
iTRAQ with Chris Colangelo, Keck/NIDA Neuroproteomics Center

Color	Panther Category	Transcripts(Trans)	% Trans to Total Trans			
	Cell adhesion molecule (MF00040)	27	31.8%			
	Cell junction protein (MF00276)	5	5.9%			
	Chaperone (MF00077)	3	3.5%			
	Cytoskeletal protein (MF00091)	13	15.3%			
	Hydrolase (MF00141)	1	1.2%			
	Ion channel (MF00024)	1	1.2%			
	Isomerase (MF00166)	1	1.2%			
	Membrane traffic protein (MF00267)	1	1.2%			
	Miscellaneous function (MF00197)	12	14.1%			
	Molecular function unclassified (MF00208)	5	5.9%			
	Oxidoreductase (MF00123)	1	1.2%			
	Phosphatase (MF00113)	4	4.7%			
	Protease (MF00153)	1	1.2%			
	Receptor (MF00001)	7	8.2%			
	Select calcium binding protein (MF00188)	1	1.2%			
	Select regulatory molecule (MF00093)	17	20.0%			
	Transferase (MF00131)	5	5.9%			
	Transporter (MF00082)	1	1.2%			

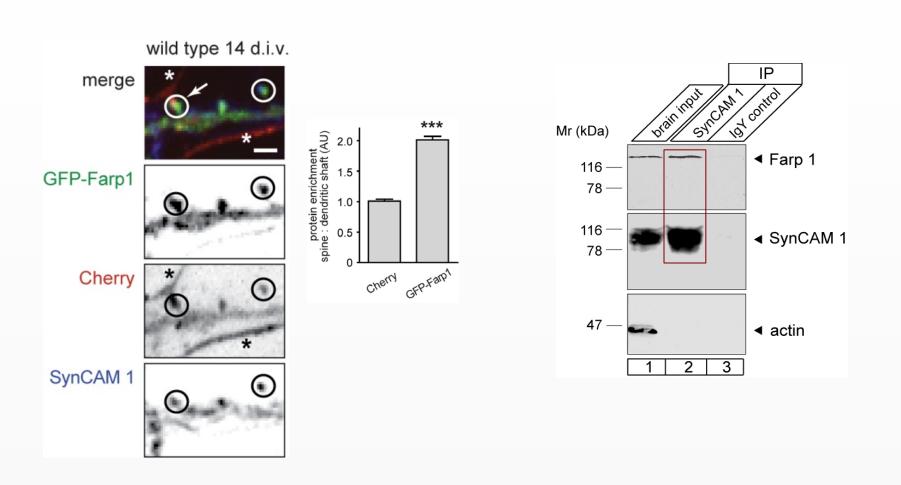
Synaptic scaffolding molecules are altered by loss of SynCAM 1

Membrane Organizing Scaffolding Molecules

Protein Score	<u>Protein</u> ID	<u>Protein</u> <u>Name</u>	Percent Coverage	<u># Distinct</u> <u>Peptides in</u> <u>Ratios</u>	_	<u>15/11</u> Itio	_	<u>115/</u> P va		<u>117/114</u> ratio
19.55 <u>IP</u>	00122094	_ /	mbol=Dlg4 lsc ge homolog 4 <u>ishable</u>	oform 2 of	23.9	€ <u>8</u>	0.7	524	0.1502	0.7371
4.63 <u>IPI0</u>	0344142	Gene_Sym A <u>indisting</u>	nbol=Lin7a Lin <u>uishable</u>	-7 homolog	32.19	9 <u>3</u>	1.1	532	0.6564	0.7540
4.02 <u>IPI0</u>	0313899	Gene_Sym indistinguis	nbol=Cpne9 C shable	opine-9	12.3	3 2	0.8	192	0.5576	0.7730
19.52 <u>IP</u>	00224626	Gene_Sy cycle 10 ł	mbol=Sept7 c nomolog	ell division	35.24	4 <u>6</u>	0.9	680	0.9484	1.2498
2.08 IPI00678465 Gene_Symbol=Dlg1 similar to Disks large homolog 1 (Synapse-associated protein 97) (SAP-97) (Embryo-dlg/synapse-associated protein 97) (E-dlg/SAP97) isoform 16 indistinguishable 16.63 1 -									1.4084	
1.06 <u>IPI0</u>	0459542	Gene_Sym domain co	nbol=EG43560 ntaining 7)1 similar to Pl	DZ	11.	97	1 1	.0596	1.5323

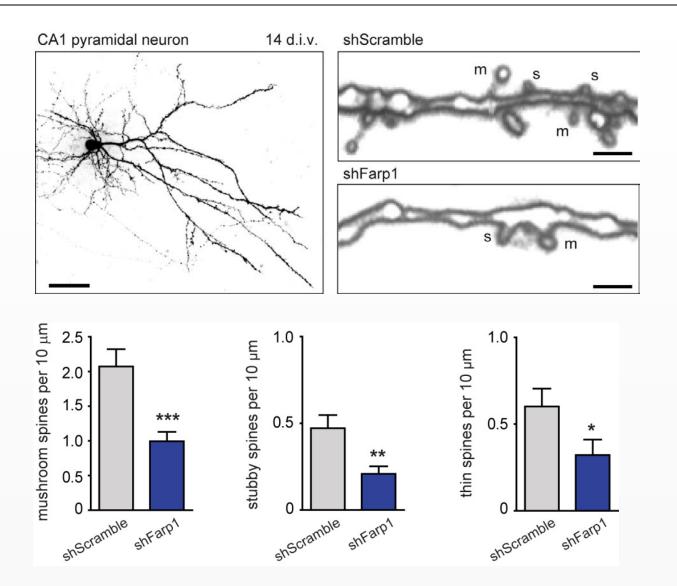

Red reduced Green increased

Proteins involved in signal transduction are altered by loss of SynCAM 1

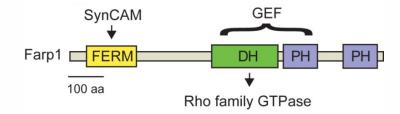

Signaling Molecules

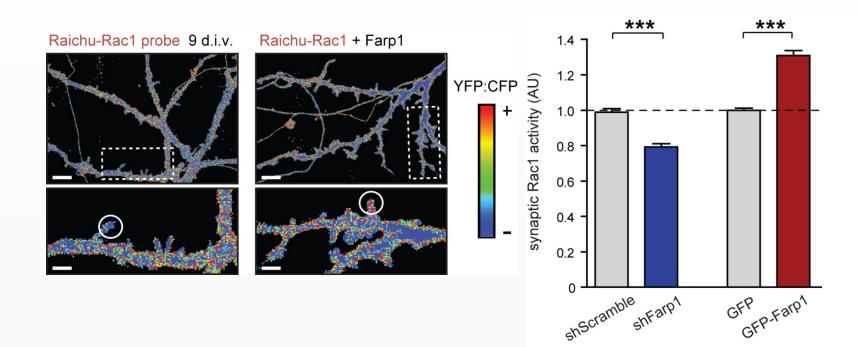
Protein Score	<u>Protein</u> ID	<u>Protein</u> <u>Name</u>	<u>Percent</u> Coverage	<u># Distinct</u> <u>Peptides in</u> <u>Ratios</u>	<u>115/11</u> <u>ratio</u>	_	115/1 P val		<u>117/′</u> ratio	
1.38 <u>IP</u>	100356904		trin domain pro	RMRhoGEF (Arho otein 1	gef)	7.16	<u>1</u> 0	.9016	0.	5420
28.47	P100621806	Alpha Ca Calcium/	calmodulin-de nase type II al	pendent	.77 <u>7</u>	0.94	182	0.815	2 1.0	6210
4.04 <u>IF</u>	100115875	_ /	nbol=Pik4ca P catalytic, alpha	hosphatidylinosito	ol 14.	52 2	-	0000	2.2	2685

Farp1 protein amounts are reduced in SynCAM 1 KO

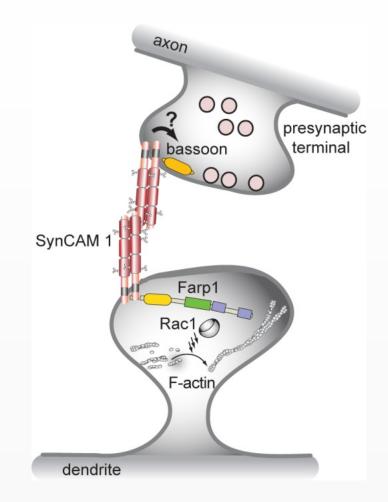


SynCAM 1/Farp1 form a complex at synapses


Lucas Cheadle

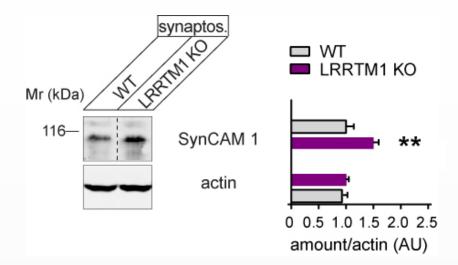

Farp1 is required for normal spine numbers of CA1 neurons in organotypic slice culture

Lucas Cheadle and Adema Ribic


Farp1 activates Rac1 in dendritic spines

Lucas Cheadle

Trans-synaptic SynCAM adhesion and signaling organize excitatory synapses


Cheadle and Biederer (2012) J Cell Biol 199: 985-1001.

1. Proteomic studies of postsynaptic signaling

2. Identify novel signaling molecules that underlie concerted actions of synapse-organizing proteins

Identify synapse-organizing proteins through proteomics of mouse models

 screen protein changes in purified synaptic membranes of mice lacking combinations of synapse-organizing adhesion molecules

 identify the protein composition of synapse-inducing SynCAM complexes after affinity purification of epitope-tagged SynCAM 1 from the brain of transgenic mice overexpressing SynCAM 1

Acknowledgements

Lucas Cheadle Santino Butler Rachel Jeffrey, Ph.D. Karen Perez de Arce, Ph.D. Adema Ribic, Ph.D. Kellie Park, M.D./Ph.D. Fabian Laage-Gaupp Yuling Lei

Yale SCHOOL OF MEDICINE

Cellular Neuroscience, Neurodegeneration and Repair

universität**bonn** Valentin Stein

Dominique Muller

Yale MB&B 🧾 Yorgo Modis

Yale Psychiatry Marina Picciotto Jane Taylor

Yale/NIDA Metonen Instrume NEUROPROTEOMICS CENTER Angus Nairn

Ken Williams TuKiet Lam Chris Colangelo

Funding Support:

NIH/NIDA 2R01 DA018928, NIH/NIDA R21 DA034492, and NIH/NIDA P30 DA018343